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JETS WITH REGULAR ZEROS

LESLIE C. WILSON

If a mapgerm /: Rn, 0-»22p, 0 is a submersion (rkf = p),
then its zero set is regular (the germ of a manifold) by
the Implicit Function Theorem. Of course, there are also
critical maps (rkf < p) whose zero sets are manifolds. Sub-
mersions have the added feature that one can discern that
the zero set is regular from the first derivative of / at 0.
Are there other instances in which one can tell purely
from the derivatives of / at 0 that the zero set is regular?
In this paper we show that there are, and go part way
toward the eventual goal of describing them all.

The fc-jet jkf(x) is (f(x),Df(x), -- ,Dkf(x)) if k < - or (/(«),
Df(x), ) if k = oo. A k-jet z is said to have regular zeros if
every representative / (a germ such that jkf(x) — z) has regular
zero set. Suppose / has regular zero set Vf. In §2 we show that
j°°f has regular zeros iff / is oo-^Γ-determined. In this case
dim Vf = 0 or n — p. If this dimension is 0, then / is oo-^_
determined. If p = 1 and dim Vf = n — 1, then f = g h where g
is a submersion and h is oo-ς̂ 7- determined. (If / is analytic, then
it is oo.^-determined at x iff it is a submersion at each point of
Vf — {x} and is °o-^-determined at x iff Vf = {x}.) In §3 we show
(again assuming Vf regular) that jkf has regular zeros for some
finite fc iff / is oo-j^Γ-determined and either dim V/ = 0 or p = n — 1.
In this section we especially consider finitely .^-determined map-
germs. (If / is analytic, then it is finitely .^determined at x iff
it is a submersion at each of its complex zeros except possibly x.)
Among the examples given are x(x2 + y2), x(x2 + y2)2 and x(x2 + y2 + z2);
the first example is finitely determined and its 3-jet has regular
zeros, the second is oo. but not finitely determined and its 5-jet has
regular zeros, and the third is oo-determined and its °o-jet but no
finite jet has regular zeros.

For notational simplicity, we restrict our study of regular zeros
to jets of germs at 0. Let EntP denote the germs at 0 of C°° maps
from Rn to Rp, mn>p those which are 0 at 0, En = EnΛ and mn = mnfl.
Let 3ίΓ be the set of pairs (R, A), where R 6 mn>n is invertible and
A is a p x p matrix with entries in En such that A(0) is invertible.
Define a group structure on ^ Γ by (R\ A') (R, A) = (RΌRf (AΌR)A)
and a left action of ^ T on mn,p by (R, A) f= (Af)oR-1. Note that
while this definition of <5$Γ differs from that of Mather (see §2 of
[6]), the 3fΓ orbits are identical under both definitions. & and ^
are the subgroups in which A or R is the identity, respectively.
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Two germs / and g are J^-, &- or ^-equivalent if they lie in the
same 3ίΓ, & or ^ orbits, respectively. Note that if / and g are
.^•equivalent, then their zero sets are diίfeomorphic. A jet z is
J%~~, &- or ^-sufficient if all representatives are J%Γ-, &- or &-
equivalent, respectively. A mapgerm / is Λ-J^-determined if its
ft-jet is .^-sufficient and is finitely .^"-determined if the above ft is
finite (etc. for & or <&).

Next we review from [6], [7] and [10] some facts about <3$Γ-
determined mapgerms. Let fEn denote the ideal generated by
/i, •••,/„. Let Jf denote the ideal generated by the p x p sub-
determinants of the Jacobian matrix of /. Let δf be the ideal
generated by fEn and Jf. Then / is finitely JSΓ-, ^ - or %f-
determined iff (respectively) δf, Jf or fEn contains m\ for some
finite I, and is oo -determined iff the ideal contains m?. It follows
that an analytic / is finitely cί^determined iff its complexification
F is a submersion on VF — {0}. In V. 4.3 of [8] it is shown that
an ideal gEn contains m~ iff g satisfies a Lojasiewicz inequality
\g{x)\ ̂  c\x\r, c > 0, r ^ 0 (r is called the order of the inequality).
Let S denote the set of 1-jets of mapgerms with value 0 and rank
less than p. It is easy to see (and is shown in [10]) that / is
infinitely J^~-determined iff dist {jιf, S) satisfies a Lojasiewicz in-
equality. If Xi converges to x in Rn, a sequence α* is flat along xt

if, for each r > 0, there corresponds an N such that ΐ ^ N implies
\a,i\ ^ \Xi — x\τ. Thus / is not °o-t^_determined iff there is a
sequence xt converging to 0 along which dist (j1/, S) is flat.

2* Infinite jets with regular zeros* A ^"-sufficient jet z has
regular zeros iff any one representative of z has regular zero set.
Our first theorem shows we can restrict our attention to ^f-sufficient
jets.

THEOREM 1. If an oo-jet is not J3t~-sufficient, then some re-
presentative of z has a singular zero set.

The following is a special case of Lemma 3.3 of [10].

LEMMA 2. // a sequence of k-jets zt is fiat along xt, then there
is an fem~ such that jkf(Xi) = zt for infinitely many i.

Proof of Theorem 1. Suppose z is not ^-sufficient. Let / be
a representative of z. There is a sequence xi converging to 0 and
a sequence zt e S such that dist {j1f{x%)y zt) is flat along xim

Assume n^ p. Let π denote the projection of J 2 onto J 1 .
Since the fold germs with value 0 (those germs which are
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equivalent to (xlf , xp_ly x\ ± ±xl) — see [4]) are dense in
π'XS), we can find a sequence of fold jets qι with value 0 such that
j2f(Xi) — qt is flat along xt. Then by Lemma 2 there is a representa-
tive g of z such that j2g(Xi) = qt for infinitely many i. The real
zero set of g in a small neighborhood of α̂  is either an isolated
point or is singular. If n < p, we choose g instead so that g is an
immersion at each α?< with g(xt) — 0. In either case, the zero set of
g is not a manifold in a neighborhood of 0. •

Since an °°-«j%̂  determined / is nonsingular on Vf except possibly
at 0, Vf is of dimension either 0 or n — p. In [10] it is proved
that / is co-j^-determined with isolated zero set iff / is oo-<̂ ~
determined.

PROPOSITION 3. An oo.jet z has regular zeros of dimension
n — 1 iff each (equivalently, any one) representative is ^-equivalent
to a function f(xlf , xn) = XιQ(Xif , xn)> where g is oojg*!
deter'mined.

Proof. Suppose z is an infinite jet with regular zeros of
dimension n — 1. Then every representative is ^-equivalent to a
function f(xlf •••,$») = %i0(%lf ••-,#„)• Since / is oo

(/, df/dxl9 , df/dxn) = (xxg, x.dg/dx, + g, xtdgldx29

satisfies a Lojasiewicz inequality of some order r. L e t U — {\g\ ^

\x\r+1}. On U% (xxg, x1dg/dxu •••, xβg/dx*) satisfies a Lojasiewicz

inequality of order r. Thus, on U% (g, dg/dxlf , dgjdxn) satisfies a
Lojasiewicz inequality of order r — 1. On ί7, # and hence
(#, dg/dxlf , dg/dxn) satisfies a Lojasiewicz inequality of order r + 1.
Thus # is oo-^"-determined. Clearly # =£ 0 when xλ Φ 0. If ^ = 0
and gr = 0, then / is critical; since / is only critical at 0 along Vft

g is 0 only at 0. Thus g is °o -^-determined.
Now suppose we have a g which is °° -^-determined. Let

/ = xxg. Then the zero set of / is xt — 0. Since g satisfies a
Lojasiewicz inequality of some order r, / satisfies one of order r + I
on V= {\xA> \%\1}. If I > r, t h e n \df/dx1\ ^ ||βr| - Ixidg/dx^] implies

that df/dxι satisfies a Lojasiewicz inequality or order r on F c. Thus
(/, df/dx^ and hence ff satisfies a Lojasiewicz inequality. Thus /
is oo-j^-determined. •

EXAMPLE 4. Let A be a p x p matrix whose entries are analytic
functions in n variables, n ^ p. Suppose det A — 0 only at 0. Then
f(x) — (xu , xp) A is oo-j^idetermined with zero set $!=••• =
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xp = 0. This gives examples of all ranks. For instance, let A be
the diagonal matrix with r entries 1 and the rest x\ + + x\.
Then / has rank r.

It is difficult to make any systematic list of examples except in
the case of finitely determined mapgerms, to which we turn our
attention.

3* Finite jets with regular zeros* It is much easier to carry
out computations for finite jets with regular zeros. Finite 3ίΓ-
sufficient jets are of this type, and considerable study has already
been made of these jets. We will see, however, that finite jets with
regular zeros form a somewhat limited class of examples, in that
the zero sets must have dimension 0 or 1.

PROPOSITION 5. Suppose f: Cn, 0-+Cp, 0, p < n, is holomorphic
and finitely determined. Then Rf = OJ(fl9 , fp)On (On is the ring
of holomorphic germs) is reduced. If Vf is nonsingular, then f is
a submersion. If p < n — 1, then Rf is normal.

Proof, f finitely determined implies that / is a submersion at
each nonzero point of its zero set Vf. In particular Vf is of
dimension n — p. As shown on page 141 of [5], this implies that
fu "ffp is an O%-sequence (i.e., for each i, fi+1 is not a zero-divisor
of OJ(flf , fi)On). Since xl9 , xn is a maximal OΛ-sequence, and
all maximal O%-sequences are of the same length (Theorem 18 of [5])
and p <n, fl9 -—,fp is not a maximal Ow-sequence. Thus there is
a δemn which is not a zero-divisor of Rf. It follows easily from
Proposition II. 3.6 of [8] that Rf is reduced. By the Nullstellensatz,
KVf) = (Λ, , fv)On. If Vf is nonsingular, then I(Vf) = (gu , gp)On

where g~ (glf ---,gp) is a submersion. By Proposition 2.3 of [6],
there is an invertible matrix A with entries in On such that f — Ag.
It follows that / is a submersion.

A variety whose ideal is generated by an O%-sequence is called
a complete intersection. By Corollary 1 to Theorem 15 of [5], a
complete intersection is normal iff its singularities are of codimen-
sion at least two. By the first paragraph, if / is finitely determined,
then Vf is a complete intersection. Since the singularities of Vf

are of codimension n — p, the theorem is proved. •

This theorem shows that there is no nontrivial theory of finite
jets with regular zeros in the complex analytic category. (There is
still an unanswered question: must the complex zero set of a critical
°o-J^ determined analytic mapgerm be singular?)
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PROPOSITION 6. If the zero set V of a finitely ^"-determined
germ f£mniP is a positive-dimensional manifold, then either f is
a submersion or p = n — 1 (and V is a curve).

Proof. If p^n, then (fl9 •• ,f9)Enz>ml for some k, so the
zero set is zero-dimensional. Suppose p <; n — 2. We may as well
assume / is analytic. The complex zero set Vc is normal and hence
(by definition) irreducible, and is of dimension n — p. If V is a
positive-dimensional manifold, necessarily of dimension n — p, its
complexification is a manifold M of [complex dimension n — p, and
is contained in F c . Since Vc is irreducible, it must equal M. Thus
/ must be a submersion. •

PROPOSITION 7. A finitely determined germ in m2 has zero set
a 1-manifold iff it is ^-equivalent to f(x, y) = xg(x, y), where g is
finitely determined and vanishes only at 0.

Proof. A function in m2 has zero set a 1-manifold iff it is &-
equivalent to some f(x, y) = xg(x, y), with g Φ 0 if x Φ 0. We may
as well assume g is analytic. Note that grad/ = (xdg/dx + g, xdg/dy).
Working now in C2: if x Φ 0, then / = 0 iff g = 0 and, along this
zero set g r a d / ^ 0 iff gradgr^O; if x = 0, then g = 0 iff / is
critical. •

If Femn+riP+r is of rank r, it is .^"-equivalent to a germ
(/(#i, , B«), Sn+i, , xn+r) by [7]. The zero set of F is a manifold
iff that of / is. F is finitely ^-determined iff / is. The corank
of F is p. Thus Proposition 7 yields a characterization of all corank
1, finitely J^-determined mapgerms with zero set a 1-manifold.

EXAMPLE 8. The finitely ^^-determined real valued germs
having simple singularities (see [1]) and zero set a 1-manifold are
^-equivalent to one of the germs f(x, y) = x{xk + y2), with k =
2, 4, 6, . Damon in [3] studies the topological type of Vf for
finitely ^-determined germs / having stable unf oldings in the nice
range of dimensions, with n > p. These are all simple and of corank
1 or 2. He shows that, of the corank 2 germs, only those with
normal form (xy, z2 + x2 ± yh), k odd ^ 3 , and (xy, z2 + x* + yι), k
even ^4, I odd ^ 3 , have Vf a topological 1-manifold. But Vf for
these germs is not a C°° 1-manifold. Thus the only stable maps in
the nice range of dimensions whose zero sets are positive-dimensional
manifolds are those represented by normal forms (x(x2 + y2) + sy +
tx + ux2

9 s, t, u), which is known as the hyperbolic umbilic, and
#4 + y2) + sy + tx + ux2 + vxz + wx\ s, t, u, v, w).
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EXAMPLE 9. There are finitely .^-determined germs of arbitrary
corank having zero set a 1-manifold, as can be seen from the follow-
ing example. Let F = {Xιfx{xu z), , xnfn(xn, z)). Assume each /<
is finitely J^-determined and vanishes only at 0 in R2. Then F is
finitely .^-determined and vanishes only along the 2-axis in Rn+1.
As a particular example we have (x(x2 + z2), y(y2 + z2)).

EXAMPLE 10. Let f(x, y, z) = (xy - (y2 + z2)zf xz + (y2 + z2)y).
Unlike the above rank 0 examples, this map has quadratic terms.
It is finitely^^-determined and only vanishes in R3 along the cc-axis.

Suppose z is an ©o-jet with regular zeros. Recall that every
representative / of z is ^-^idetermined, that Vf has dimension
n — p or 0, and that Vf has dimension 0 iff / is oo-^-determined.
Thus every representative f of z has Vf of the same dimension. Say
that a finite jet with regular zeros has strictly regular zeros if the
zero sets of its representatives are all of the same dimension. I
conjecture that every jet with regular zeros has strictly regular
zeros (I can prove this for p = 1).

THEOREM 11. Suppose f is a critical oo -^-determined germ
in mn>p with nonsingular zero set. Then some finite jet of f has
strictly regular zeros iff Vf has dimension 0 or 1.

Proof. Suppose z = jrf(O) has strictly regular zeros. By
Proposition VII. 6.2 of [8], some representative g of z is finitely
.^•determined. By Proposition 6, Vg has dimension 0 or 1. Thus
Vf also has dimension 0 or 1.

Now we prove the converse. Suppose dim Vf = 0. Then / is
oo -^-determined, hence satisfies a Lojasiewicz inequality of order
r, for some positive integer r. Then every representative of jrf(O)
also satisfies a Lojasiewicz inequality of order r. Thus jrf has
strictly regular zeros.

Now assume that dim Vf = 1. Necessarily p = n — 1. We may
assume, without loss of generality, that Vf is the line x = 0, where
x = (Xu - - , xp). Then fix, y) = xg{x, y), where g is p x p matrix
valued with entries in En. Any representative F of jrf(O) can be
expressed as F{x, y) — xG(x, y) + h(y), where the entries of G — g
are in mr

n and the components of h are in m[+1.
We are going to apply Tougeron's Implicit Function Theorem

(see [9]). The normal derivative of / along its zero set is the n x n
Jacobian matrix (df/dx)(0, y) = g(0, y). Since / is °o-^icletermined,
there is some positive integer d such that det #(0, y) = (nnit)yd (note
if d = 0, / would be a submersion). (dF/dx)(0, y) = G(0, y) and, if
r > d, then δ(y) = det G(0, y) = (unit)yd. If r ^ 2d, then F(0, y) =
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h(y)eφpδ
2m1 so, by Tougeron's theorem, there exists x(y) e ®p mf+1

such that F(x(y), y) = 0.
In [10] it is shown that each co-^idetermined germ / is finitely

^-determined, i.e., for some finite k each representative of jkf(O) has
its zero set homeomorphic to Vf. Thus if r ^ k, the zero set of
the above F is a topological 1-manifold. Since VF contains the C°°
1-manifold (x(y), y), it is itself a C°° 1-manifold. Thus if r ^ 2d and
r Ξ> k, then jrf(O) has regular zeros. Π

We have not in general computed the smallest r for which
jrf(O) has regular zeros in the above proof. However, consider the
following example.

EXAMPLE 12. Let f(x, y) = x(x2 + y2)2; f is oo .^-determined but
not finitely J^-determined. We will show that iδ/(0) has regular
zeros. Any representative of jδ/(0) is of the form F(x, y) =
x((x2 + y2)2 + h(x, y)) + yδk(y) where kemx and h e ml. We search
for a solution of F = 0 of the form x = yw(y), w e mx. By cancell-
ing yδ from both sides of the equation F(yw, y) = 0, we see the
desired solution exists iff there is a solution w(y) of l(w, y) =
w((w2 + I)2 + 2A(w, 1)) + k(y), where s ^ 1. Since at (0, 0) / = 0
and df/dw = 1, the solution w(y) e mt exists.

By the Kuiper-Kuo Theorem (see [2]), f(x(x2 + y2)2) is C°
sufficient. Hence the zero set of F is a topological 1-manifold and,
since it contains (yw(y), y), a, C°° 1-manifold. So j\x(x2 + y2)2) has
regular zeros as claimed.
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