
PACIFIC JOURNAL OF MATHEMATICS
Vol. 93, No. 2, 1981

DISTINGUISHING A PLANE CURVE FROM OTHER
CURVES SIMILAR TO IT

M. S. K E A N E AND S. J. SIDNEY

If C is a convex or smooth simple closed plane curve, then
there is a finite subset E of C such that any plane curve which
is similar to C and passes through all the points of E must
coincide with C. Generalizations to compacta in euclidean
spaces are given; on the other hand, there are simple closed
plane curves for which no such finite subsets exist. Circles are
the only plane continua which separate the plane for which
three points suffice, and even for a convex polygon the number
of points required may be arbitrarily large.

1* Introduction* A circle is determined by (any) three of its
points. The aim of this paper is to examine analogous state-
ments for other compact sets in a euclidean space, and especially
for more general simple closed plane curves. Precisely, if K is
compact, must K contain a finite subset E such that whenever Kr

is similar to K and contains all the points of E, it follows that
Kr = KΊ In general the reply is negative even for simple closed
plane curves (Example 7), but the following result (the original
objective of this work) is true.

THEOREM 1. If G is a convex or smooth simple closed plane
curve, then C contains a finite subset E such that Cf ~ C and E c C
together imply C = C.

Here and throughout, ~ denotes similarity and "smooth" means
continuously differentiable. In §2 we prove generalizations and
refinements of Theorem 1 in stages, using finite subsets of C to
successively force C to be congruent to C, have the same "spanning
circle" as C, and finally coincide with C. It will become clear
that, for general K, the only possible obstacle to an affirmative
reply to our question is the absence of any finite subset (consisting
of at least two points) of K of which K contains a smallest copy
(Theorem 5). Taking advantage of this perspective, in §3 a result
(Theorem 6) is proved which shows that, for instance, rather general
piecewise smooth objects can be added to the list begun in Theorem
1, and a simple closed plane curve for which no finite subset works is
constructed. Section 4 is devoted to estimating how large a finite subset
is required for various particular plane sets; in particular (Theorem
8) if a continuum separates the plane, it requires at least four points
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unless it is a circle. In §5 we prove (Theorem 13) that even for a
convex curve which is either polygonal or smooth, the number of
points required may be arbitrarily large. Finally, in §6 we discuss
whether any particular number of points will suffice for "most"
curves.

The question answered by Theorem 1 originated in a context
belonging to the interface between logic and geometry. We are
grateful to S. Garfunkel for calling it to our attention and discussing
it with the second named author; the logical ramifications will no
doubt be explored elsewhere. We are also grateful to the Istituto
Matematico of the Universita di Perugia, Italy, whose hospitality
during the summer of 1978 made our collaboration possible. Finally,
we are very much indebted to the referee, whose detailed and creative
critique of our original manuscript brought about very substantial
improvements in the organization of the material, the depth and
generality of our results, and the quality of our arguments. To
him/her we owe the passage from plane curves to general continua
in euclidean spaces and hence the present form of many of our
results in §§2-4.

2* Existence results* We first establish some notations and
terminology. K will denote a nonempty compact subset of some
euclidean space Rn whose origin is denoted 0. Similarity and con-
gruence are denoted by ~ and = respectively. O(n) is the orthogo-
nal group in euclidean w-space, consisting of the isometries which
leave 0 fixed. If G is a group of transformations, K ~ Kf means

G

Kf = T(K) for some TeG. If k ^ 2 is an integer, a minimal k-
tuple in K is a λ -tuple EcK such that if Ef czK and Ef ~ E, it
follows that Er is at least as large as E. We say that K contains
a minimal tuple if K contains a minimal Λ-tuple for some integer
k ^ 2. There is a unique (degenerate, if K consists of only one point)
{n — l)-sphere of minimal radius which, together with its interior,
contains K; this is the spanning sphere (or spanning circle if n — 2)
of K, denoted S(K).

If S is an (n — l)-sphere which together with its interior contains
a compact set K, it is easy to verify the equivalence of the following
three assertions: S = S(K); S Π K meets every closed hemisphere of
S; and the center of S is contained in the (automatically compact)
convex hull of S Π K. If the last assertion holds, then [4, p. 73,
lemma] it holds with S Π K replaced by some subset of S Π K which
contains at most n + 1 points. Adjoining this subset of S(K) Π K
to a minimal fe-tuple yields (b) of the following proposition, while
adding the endpoints of a diameter of if to a minimal fc-tuple yields
(a).
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PROPOSITION 2. If K contains a minimal k-tuple, then:
(a) K contains a subset Eλ of no more than fc + 2 elements such

that K~ K' and Ex c K' imply Kf ~ K.
(b) K contains a subset E2 of no more than h + n + 1 elements

such that K' ~ K and E2aKf imply S(K') = S(K).

This proposition applies in particular to the sets of Theorem 1.

PROPOSITION 3. If C is a convex plane curve, then C contains
a minimal A-tuple, hence contains subsets Ex and E2, of no more
than six and seven elements respectively, such that Kr ~ K and
E.czK' imply Kr ~K while K'~K and E2aKr imply S(K') = S(K).

If C is a convex or piecewise smooth simple closed plane curve
all of whose corner angles are > 60°, the same assertions hold with
3-tuple, five and six in place of k-tuple, six and seven respectively.

Proof. In the first instance note that C has an inscribed par-
allelogram (indeed, a simple continuity argument shows that every
point of C is the vertex of an inscribed rhombus) and that the
diameters of inscribed parallelograms are bounded below by area
(C)/2 diameter (C); by a standard compactness argument one obtains
a minimal inscribed copy of any inscribed parallelogram. A similar
compactness argument produces a minimal equilateral triangle with
vertices on C in the second instance, since Proposition 10 below (which
does not depend on Proposition 3) guarantees the existence of at least
one equilateral triangle inscribed in C. •

We have not ascertained whether E1 can ever be strictly smaller
than the smallest possible E2, or whether the bounds six, seven, five,
six are best possible.

THEOREM 4. Every compact set K contains a finite subset E
such that K' ~ K and EaK' together imply Kr — K.

We thank the referee for this version of the theorem, as well
as its proof. In view of Proposition 2, it immediately implies the
following, which by Proposition 3 is a generalization of Theorem 1.

THEOREM 5. Every compact set K which contains a minimal
tuple also contains a finite subset E such that Kf ~ K and EczK'
together imply Kf = K.

Proof of Theorem 4. By taking (as in the proof of (b) of
Proposition 2) no more than n + 1 points from K and assuming that
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S(K) is centered at 0, we may reduce the proof of Theorem 4 to
that of the following assertion:

(*) Every compact set K contains a finite subset E such that
K' r^s K and EdKr imply K' = K.

0{n)

We shall prove (*) completely in dimension n = 2 (n = 1 is trivial),
and then indicate the argument for general n.

If n = 2, let G be the subgroup of 0(2) consisting of those
transformations which leave K fixed. Suppose the conclusion of (*)
were false. Let E1(zE2d aEma be a sequence of finite
subsets of K such that Em is a 1/m-net of if. There is Tm e 0(2)
such that Tm(Em) c if but Tm(if) ^ if. Passing to a subsequence, we
may suppose Tm^T in 0(2), and clearly TeG. Replacing Em by
T(Em) and Tm by TmT-\ we may suppose Tm -> J2 the identity trans-
formation. Thus the Tm are (for large m) rotations by angles θm Φ 0
with θm -> 0. Since G Φ 0(2), if must intersect some circle S centered
at 0 in a nonempty proper closed subset, which contains the endpoints
A and B of an open arc J in S\K. For m large, Tm must take A
or 5 into J. Hence if we replace each Em by Em U {A, B} and repeat
the above reasoning, we obtain a contradiction.

The general case is handled with a similar argument and induc-
tion. Suppose n > 2 and we know (*) in dimension n — 1. Construct
GczO{n), Em and Tm as before (assuming (*) false for K). K must
intersect some sphere S centered at 0 in a nonempty proper closed
subset. Choose an open ball B centered on S and with maximal
possible radius subject to B Π (S Π K) = 0 . If S' is the sphere which
bounds B, S Π S' is an (n — 2)-dimensional sphere (or a point) and
maximality of B shows that (if S Γ) S' is not a point) if Π (S Π S')
meets every closed hemisphere of S Π S', so contains a finite subset
F with the same property; if S Π S' = {P} a point take F = {P}. For
m large, Tm must take at least one point of F into Bf)S, unless Tm

leaves invariant the line through 0 and the center of B. Replacing
Em by EmD F in our reasoning, we see that we may recoordinatize
so that for large m, Tm = Jx x Ϊ7m with /x the identity transformation
in the first variable and Um e O(n — 1) the orthogonal group on the
last n — 1 variables.

For each real number t let Ht be the subgroup of those Ue
O(n - 1) such that I.xU leaves Kt = K n ({ί} x Λ*-1) fixed, and let
H be the intersection of all the Ht (that is, H consists of those U
such that Ix xU leaves K fixed). It follows from standard facts
about Lie groups [e.g., Th. 50 of 3] that there are finitely many t,
say tlf , tk, such that H = HhΠ Π iftA; and Ktj Φ 0 . Using (*)
for n — 1 there are finite subsets Fd of ϋΓty such that Kf /~^/ Ktj



DISTINGUISHING A PLANE CURVE FROM OTHER CURVES SIMILAR TO IT 329

and F3 c Kr imply K' = Ktj. Now replace Em by Em U F± U U Fk

and repeat the reasoning. For m large, Tm — Ix x Um where Um(Fβ) c
Ktp hence UmeHtj and so UmeH or, what is the same, TmeG, a
contradiction. This completes the proof of (*) and of Theorem 4. •

3* The failure of existence* The following theorem describes
what must occur for Theorem 5 to fail. It shows that Theorem 1
can be extended to many additional curves, for instance to piecewise
smooth closed (but not necessarily simple) plane curves, and to ana-
logous higher dimensional objects such as piecewise smooth closed
surfaces. In addition, it should motivate the example which appears
after it.

Roughly, the point P whose existence is proved must be such
that all of K reproduces itself in K within every neighborhood of
P. Thus if K is, say, a curve, it must have a highly singular
behavior at P.

THEOREM 6. Suppose the compact set K does not contain a finite
set E such that Kr ~ K and EaKf imply Kr = K; equivalently, K
does not contain a minimal tuple. Then there are a point PeK
and a sequence of similarities (Tm) with the following property: for
every neighborhood N of P, K c lim^oo Tm(N Π K) in the sense that
for every ε > 0 there is an mQ such that for all m > m0 every point

of K is within ε of some point of Tm(N f] K).

Proof. Pick a sequence of finite subsets of K, E1a.E2a c
Emd , such that Em is a 1/m-net of K. K contains no minimal
copy of Emf so there is a similarity Tm such that T~\Em) is a subset
of K of diameter < 1/m. Passing to a subsequence, we may suppose
that the sets T~\Em) converge to a point PeK. This P and these
Tm will do. •

We shall now construct a simple closed curve C which does not
contain a minimal tuple. It will be clear that this curve can be
rectifiable and, in addition, enjoy either of the following two mutually
exclusive properties (except on one side of one point): polygonal (as
in the particular example we exhibit) or infinitely differentiable
(obtained by "rounding the corners" in our example). Precisely, C
can be obtained as the image of a continuous function F: [0, 1] —> Rι

which is one-to-one on [0, 1) and such that, for each c 6 (0, 1), the
restriction of F to [0, c] is either piecewise aίfine or infinitely differen-
tiable with nowhere vanishing derivative.

EXAMPLE 7. We construct C in stages d c C2 c c Cm c
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with C = U Cm. Fix a positive number b. Each Cm will be a compact
polygonal arc which, except for the presence of the segment J —
{(x, 0): 0 ^ x ^ 6}, will lie completely in {(x, y): x ^ δm, y > 0} where
(δm) is a sequence of positive numbers tending to 0. Cm will end at
a point Pm in the open first quadrant. No point of Cm will lie directly
to the left of Pm, and the points Pm will converge to 0. Finally, all
of Cm+\Cm will lie to the left of and no higher than Pm, so will be
at least as close to 0 as Pm, whence UCm will in fact be a simple
closed curve C.

It is only necessary to describe the enlargement of Cm to Cm+1.
Starting at Pm, draw an arc going left, then down, then left, then
up, staying in the open first quadrant, not meeting Cm9 and ending
as close as desired to 0. Using the endpoint of this "connecting link"
as a starting point, construct a miniature copy of Cm which meets
neither the link nor Cm-Cm+1 is the union of Cmf the link, and the
miniature copy of Cm.

The sets C\Cm converge to 0. Any finite subset of E is contained
in some Cm which is reproduced in each C\Cm, for mr ^ m, so C
cannot contain a minimal tuple; clearly 0 is the point whose existence
is specified by Theorem 6.

A sample version of the first three stages with connecting link
is presented in Figure 1 below.

P,

2. c2

F I G U R E 1

(*. 0) 0

i—

>

c3

4* Particular sets in the plane* We define the (similarity)
index s(K) of the compact set K to be the smallest possible cardinality
of a subset E of K such that K' ~ K and EaK' imply K' = K;
the definition of oriented (similarity) index o(K) is analogous, with ~
replaced by +, which will denote orientation-preserving similarity.
These indices sometimes coincide (e.g., regular polygon) and some-
times differ (e.g., nonisosceles triangle). Clearly 1 ^ o(K) ^ s(K) <;
±oo, and if K contains at least three points then o(K) ^ 3; further,
if o(K) is finite then so is s(K). If K and K' are exhibited as lists
of points, say {P, Q, •} and {P', Q', •}, the labelings are assumed
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to be so chosen that any similarity between K and Kf which we
discuss makes points labelled with the same letter correspond. In
this section we shall be concerned only with plane sets.

THEOREM 8. If C is circle, o(C) = s(C) = 3. If K is a plane
continuum which separates the plane and is not a circle, then s(K) >̂
o(K) > 3.

The hypothesis on separation is really necessary. If K = {{x, x2):
— 1 ^ x ^ 1}, then K is not a subset of a circle, but S(K) = 3 (take
the three points (-1, 1), (0, 0) and (1, 1)). The proof of Theorem 8
is contained largely in Propositions 10 and 11, the proofs of which
in turn require some topological preliminaries (which may be ignored
K is a simple closed curve).

Let if be a plane continuum, K the union of K and the bounded
components of its complment, and U a component of the interior of
K. If 3 denotes topological boundary then dUddKczdKaK and
[1, §VI. 4] 3 U is connected.

LEMMA 9. If AedU then dU\{A\ is connected.

Proof. If not 3 U\{A} = H1 (J H2 where the Hά are disjoint, non-
empty, and open and closed in dU\{A}. By [1, Th. IV. 10.1] their
closures are Hd = Hό (J {A}. Let ίϊό be the union of Hό and those
(necessarily bounded) components V of the complement of dU such
that dVdH^ The ίϊά are compact, J3; Π iϊ2 = {A}, and Hλ U H2 has
U as a bounded component of its complement, so by [1, Cor. 1 to
Th. V. 9.2] at least one of the Hj9 say Hu has disconnected com-
plement.

Let W be the unbounded component of the complement of U. W
contains the complement of K, so H2 c dK c W whence H2 U W is
connected, and so is the union of H2 U W with those bounded com-
ponents V of the complement of 3 U such that dV Π H2 Φ 0 ; but this
union is the complement of ΈLX. This contradiction establishes the
lemma. Π

The following result is due to M. L. O'Connor [2]; as her work
has not yet been published, we offer here a proof incorporating the
referee's improvements of our original argument for simple closed
curves.

PROPOSITION 10. If K is a plane continuum which separates
the plane and E is any noncollinear triple of points, then K contains
infinitely many triples E' + E.
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Proof. Let U be a component of the interior of K. We shall
show that the set of vertices of the Ef + E which are contained in
dU is dense in dU. Let E = {P, Q, R] with longest side QR.

Let A be any point of U, and let Px be a point nearest to A on
3C7. The circle S with center A and radius APX has its interior in
U. Choose Qx, Rx on S\{PJ so that {Plf Qlf Rλ} + E; then Qx and ^
lie on U. Rotate {Px, Q, iϋj about Px until Qx or Rλ meets 3Ϊ7, say
Qϊ, one obtains {Px, Qί, R2} + E with Q' edU and i?2e ί7, and Q' is
close to any point to which A is close.

If P'edU\{Q'}, let R{P') be that point such that {P', Q', i2(P')} +
i£. Then i2( ) is a continuous function on the connected (Lemma 9)
set dU\{Q'}, R(PX) = R2eU, and, if P2 is a point of dU (equivalents,
of ϋ) at maximal distance from Qf then Q'R{P2) ̂ > Q'P2 implies that
J2(P2) e f/, hence for some P', i2' = R(P') edU. Π

PROPOSITION 11. If K is a plane continuum which separates
the plane and is not a convex curve, and if E is any collinear triple
of points, then K contains infinitely many triples E' + E.

Proof. Let U be a component of the interior of K, and let E =
{P, Q, R} with Q an interior point of the segment from P to R.

Suppose U is not convex. Take Plf Rx on 3 U such that the
interior of the segment from Px to R± does not meet U. Let Ae U
and let R' be a point of dU closest to A. For P'edU\{R'} let Q(P')
be such that {P', Q(P'), 22'} + E. If A is close to Rλ then i?' is close
to Rλ and Q(Pχ) g U. If P2eaί7\{i2'} is such that the interior of the
segment from P2 to Rf lies in U, then Q(P2) e U. Hence for some
P\ Q' = Q(P')edU. There are infinitely many possible Rl9 so the
proof is complete in this case.

Suppose U is convex, so d U is a convex curve C which we may
assume contains no segment. Let A e C be a point of accumulation

of K\C. Assume for definiteness that ~QR ^ΨQ. Pick R.
If A a point of accumulation of K Π U, for fixed Qr 6 K Π U define

P( ) from C to itself so that P(R'), Qf and R' are distinct and
collinear. If Qr is close enough to A then Q'RJPiRJQ' ^ QR\PQ,
while if J?2 = P φ J then P(Λ8) = Rx and Q'R2IP(R2)Q' £ PQ/QR ^

so for some R' e C, Q'R'IP{R')Q' = Qtf/PQ, and taking P r -
P(Λ') gives {P', Q', Λ'} + E.

If A is a point of accumulation of K\U, for fixed P' 6 K\U define
Q( ) from C to the plane so that {P', Q(J?'), -β') + E. If i22 is such
that the line through P' and R2 is a line of support for C, then
Q(R2) $ U; on the other hand, if P' is close enough to A then Q(Rλ) e
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U, hence for some R', Q' = Q(R')eC. The proposition is proved. •

Proof of Theorem 8. If C is a circle, there is nothing to prove.
Let K be as in the hypotheses, with spanning circle S{K) assumed
to be centered at 0. If if is a union of circles centered at 0, then
(being connected, but not a circle) it has nonempty interior, so clearly
s(K) = o(K) = + co. Suppose K is not a union of circles centered
at 0. Then the similarities which leave K invariant form a finite
subgroup G of 0(2). Thus it suffices to show that, for any triple
EaK, K contains infinitely many Er + E.

If E is not collinear, or K is not a convex curve, this is imme-
diate from Propositions 10 and 11. If £7 is collinear and if is a
convex curve, then K contains a segment, whence the assertion
follows. •

We now catalogue the indices of a few familiar simple closed
plane curves C. We have s(C) = o{C) = 4 if C is a regular polygon,
an isosceles triangle, a parallelogram, or an ellipse (not a circle). If
C is a nonisosceles triangle, o{C) — 4 but s(C) = 5; if C is a trapezoid,
4 <; o(C) ^ s(C) ^ 5. We indicate briefly how to prove these.

If C is a regular polygon of n > 3 sides (or a rectangle), take
for E the endpoints and an interior point of a (long, for a rectangle)
side together with an interior point of the opposite side if n is even
(or for a rectangle) or the opposite vertex if n is odd. For an ellipse
take the endpoints of the two axes. For a rhombus which is not a
square, take the vertices. For a trapezoid which is not a parallel-
ogram take the vertices together with an interior point of the longer
parallel side. For a parallelogram C which is neither a rectangle
nor a rhombus, take for E the endpoints of the longer diagonal
together with sufficiently nearby points of the longer sides, so
chosen that E itself consists of the vertices of a parallelogram.

The situation for triangles is rather more complicated. The
arguments are based on the following simple lemma, together with
a tedious enumeration of cases; we omit any details.

LEMMA 12. Suppose P, Q, R are the successive vertices of a non-
degenerate triangle T and A, B, C, D are the successive vertices of
a convex quadrilateral, both similarly oriented. Then there is Tf +
T which contains A, B, C and D with A and B on the segment from
Pr to Qr if and only if {letting a letter stand for the magnitude of
the angle at the corresponding vertex of a polygon):

P^ A^ P+π - D and Q ^ B^Q + π - C .

If in addition A = P + π — D or B = Q + π — C, then there are
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uncountably many such T'; otherwise there is only one.

5* Unboundedness of the index* While the results of the
preceding section suggest that most familiar curves have small indices,
it is nevertheless the case that there are "reasonable" curves with
arbitrarily large indices. More is true: even to determine a curve
among those obtained from it by rotation about a fixed center may
require arbitrarily many points. Precisely:

THEOREM 13. Let k be a positive integer. Then there are a
positive integer N(k) and a convex curve C(k) (which may be taken
polygonal or infinitely differentiate, as desired) such that, if G(k)
denotes the subgroup of 0(2) consisting of rotations about 0 through
multiples of 2πjN(k), then for any subset E of C(k) consisting of
no more than k points, there is C" /p^y C(k) such that C Φ C(k)

but EaC.

The proof of this theorem rests on the following combinatorial
fact.

LEMMA 14. Let k be a positive integer. Then there is a positive
integer n(k) such that if n ^ n(k) is an integer, then Zn, the (ring
of) integers modulo n, can be partitioned into two subsets A and B
such that the following two assertions hold:

(a) If 0 Φ meZn then A Φ A + m = {x + m: xe A}.
(b) If K is any subset of Zn containing no more than k elements,

then there is me Zn, m Φ 0, such that if xe K then xe A if and only
if x + m e A.

Before proving the lemma, we use it to prove the theorem.

Proof of Theorem 13. We shall construct C = C(k) to be a
polygon; it will be clear that by smoothing the corners one can obtain
an infinitely differentiable C.

Let N = N(k) be arbitrary subject to N ^ n(k), n(k) as in the
lemma (so N ^ 2), and let A and B be as in the lemma with n = N.
If the plane has cartesian coordinates, for j e ZN let P3 = (cos(2jπ/N),
sin(2jπ/N)). C h o o s e r s o t h a t cos(π/N) < r < 1 a n d f o r j e A l e t
Q. = (rcos((2jf - Ϊ)π/N), rsin((2j - l)π/N)). Let C be the convex
polygon whose vertices are the Pά for jeZN and the Q5 for jeA.
For jeZN let Cά denote the arc obtained by traversing C counter-
clockwise from Pά_λ to Pf, thus Cά is a closed segment if jeB, and
is the union of two non-collinear closed segments which meet at
a common endpoint if jeA.
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Now suppose E is a subset of C consisting of k points Alf , Ak

with At 6 Cjω, 1 <: i <̂  k. Letting K = {i(i): 1 ^ i <; k}, choose m as
in (b) of the lemma and let C" be the image of C under rotation
about 0 through an angle of 2πm/N. From (a) of the lemma C" Φ C,
and from (b) EaC. •

Proof of Lemma 14. If k and n are integers with n ^> k ^2,
by a (&, ri)-configuration F is meant a sequence of ordered pairs
fe, *<)}<U where «, = 0 or 1 and {ίJLi is a strictly increasing sequence
of integers such that tx = 0 and tk < n. A projection of ί7 is any
of the (at most w) sets TF = {w + ίJJu where weZn. If {̂ 4, 5} is an
ordered partition of Zn, by an appearance of i*7 in {A, B) we mean
a subset ίΓ of ZM consisting of k elements which can be listed (perhaps
in more than one way) as wί9 , wk in such a way that if 1 ^ i ^ k
then wt — w^ti while s€ = 0 if and only iiwteA. Condition (b) of the
lemma can now be restated as follows: if F is any (k, ^-configuration
which has an appearance in {A, B}, then F has at least two distinct
appearances in {A, B}. We shall prove the lemma with (b) replaced
by the following stronger statement:

(b') If F is any (&, ^-configuration, then F has at least two
distinct appearances in {A, B}.

Fix an integer k ^ 2. We need to know:
(c) There are a positive integer nx(k) and a positive number

ε = ε(k) such that if n ^ n^k) and J?7 is any (k, ̂ -configuration, then
there are at least nε pairwise disjoint projections of F.

Granted (c), suppose that n ^ max^i^), n2(k)} where n2(k) is so
large that 1 + nεLog(l - 2~k) ^ 0 for n ^ n2(k). If F is a (k, n)-
configuration which has m(^ne) pairwise disjoint projections then
there are no more than

m(2k - i)^-^2k2n-km ^ nε(2k - ιy^2k2n-k"ε = σ

ordered partitions of Zn in which F appears at most once (the ine-

quality follows from n ^ n2(k)). There are ί V* J2fc (fc, ^)-configurations,

so there are at most σ( ? )2k = 2nτ ordered partitions of Zn in which

(W) fails, where

τ =

tends to 0 as n gets large, so is < 1/2 if w ^ nz(k). In addition
there are at most ^{2d:l< d <nfd divides n) < (1/2)2* ordered
partitions of Zn for which (a) fails, so n(k) — max{̂ χ(&), n2(k), nB(k)}
gives the lemma with (b) replaced by (b')
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It remains to verify (c), which we shall do for any ε(k) < l/2(k — 1)
and any n^k) 7> (k — l)2^-15 which is large enough so that

f o r a 1 1 * ^ < * > '

where the brackets denote "integer part of". Indeed, let n ^ n^k)
and let F — {(sif £*)}?=! be any (k, ̂ -configuration and W any of its
projections. Let u(i) = tt — £,_! if 2 ^ i <; k and u(l) = tx — tk + n,
and choose a permutation p of {1, •••,&} so that %(|θ(l)) rg ••• <;
u(p(k)). Let r = r(fc, w) = nU2{k~1\ There are two cases.

First, suppose u(p(i + 1)) ^ rw(p(i)) for 1 <; i ^ /b — 1. Then for
l^i^k we have u(ί) ^ w(/o(l)) ^ r-'k-ι)u{p{k)) ^ n-1/2(n/k) = nm/k,
so the TFy ΞΞ TΓ + j = {w + j : w 6 W) for 0 ^ i < ^1/2/fc give at least
[n1/2/k] ̂  ^ ε pairwise disjoint projections of F.

Second, suppose there is an index i, 1 <̂  i ^ fc — 1, for which
i + 1)) > ru(p(ί)). Then

(fc - l M ^ i

so the W'j =W + (μ + ΐ)j for 0 £ j < %(|θ(i + l))/(μ + 1) give a family
of pairwise disjoint projections of F, of cardinality at least

Γuipd + 1)) 1 > Γ rg Ί > Γ r Ί ^
L ^ + 1 J ~~ L(Λ; — l)(μ + 1)J ~ L2(fc - 1) J "

This proves (c), and so the lemma. •

It is difficult to estimate N(k) from the proof. For k — 2, for
instance, one can verify with e(2) = 1/3 that nλ(2) = 36 and n(2) =
1293 will work, and better estimates are hard to get.

However, if we represent Z16 as a sequence of places and put
in each place a 0 or 1 according as the place belongs to A or B,
then it is easily verified that the string 0110100110010110 satisfies
(a) and (b) (but not (b')) of the lemma, hence one can take N(2) = 16.

6* Curves of small index* The values of the indices of par-
ticular curves given at the end of §4 suggest that "most" simple
closed plane curves should have small index. Is there some index,
or finite set of indices, which is "typical"? The group of orientation
preserving similarity transformations is a four-parameter group, so
four pieces of information "should" suffice to pinpoint one of its
members. Thus we can hope that for "most" simple closed curves
(or continua which separate the plane) o(K) = 4 and s(K) = 4 or 5.
We now present an interesting but inconclusive fact along these lines.

Let W be the set of all simple closed plane curves, with the
metric
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p(C, C) = sup inf d(P, Q) + sup inf d(P, Q)
PeC QeC PeC QeC

where d is the usual euclidean metric on the plane. Let D be the
subset of W consisting of curves C for which s(C) = 4.

PROPOSITION 15. D is dense in W, and is the projection onto
W of a GΓset in W x {R2)\

The proposition remains true if we replace W by any of various
natural subsets, for instance, the set of convex curves. In particular,
the set of convex curves with 0 in their interiors is complete under
a metric equivalent to p, and the proposition is true for this set, even
if we replace {R2f by S\ S a circle.

Proof of Proposition 15. Consider a simple closed curve C with
the following properties: C contains a unique pair of points, say A
and B, a maximal distance apart; and exactly one member of this
is an endpoint of a nondegenerate closed subarc J of C such that
there is a circle S of radius r for which C f) S — J, while if S' is
any other circle of radius no more than r, then C Π S' contains no
more than two points. It is not hard to see that the set of such
C—even those that are C°°—is dense in W, and we obtain C e D by
taking for E the set consisting of A, B and two other points of J.
Thus D is dense in W.

Define Gn c W x (R2)\n = 1, 2, •) as follows. Let (C, P) e W x
(R2)\ so P = (Pl9 P2, P3, P4) with Pj e R2. We shall declare that
(C, P) 6 Gn provided that C is not a circle, that the Py are distinct,
and that there are positive numbers δ = δ(C, P) and σ = σ(C, P),
δ < σ < 1/n, satisfying:

dist(P,, C) = inf d(Q, Pό) < 1/n ,
QeC

Sδ<iDid(Pu P^;
iφj

and whenever Q and R in (R2f are such that d(Qίf P, ) < δ, dist(i2, , C) <
δ, d(Ri9 Rj) ^ d(Qif Qό)ln, and {Qlf Q2, Q3, QJ ~ {Λi, ft, ft, ft}, then it
follows that d(Rjf Pό) < σ, 1 ^ j ^ 4. It is not hard to check that
Gn is open, and that (C, P) belongs to ΠGn precisely iί CeD and
# = {Pu P2, P3, PJ works in the definition of s(C) £ 4. In other
words, the projection of the Gδ-set Π Gn onto W is precisely D. •
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