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DETECTING THE DISJOINT DISKS PROPERTY

ROBERT J. D A VERM AN

This paper explores conditions under which a metric space
S satisfies the following Disjoint Disks Property: any two maps
of the standard 2-cell B2 into S can be approximated by maps
having disjoint images. Among its many applications, it pro-
vides a proof that if Y is the cell-like image of an w-mani-
fold (n>3), then YxE2 has the Disjoint Disks Property, which
implies that YxE2 is a manifold. It adds further evidence for
the unifying force of this property by giving comparatively
easy proofs for established facts about certain decomposition
spaces that are manifolds.

The significance of the Disjoint Disks Property is made manifest
by its role in a recently-proved fundamental result about cell-like
decompositions, due to R. D. Edwards [17]: if an ANR X is the
proper cell-like image of an w-manifold M (n ^ 5) and satisfies the
Disjoint Disks Property, then X is an w-manifold homeomorphic to
M.

J. W. Cannon, who obtained a fairly strong partial result of
this type [12], receives the credit for focusing attention on the
Disjoint Disks Property and making plausible the claim that it
should be the crucial additional feature forcing such an ANR to be
a manifold [10], [11], [12]. Like so much of the subject of manifold
decompositions, origins of this property can be traced to early work
of R. H. Bing, in this case where he developed methods for deter-
mining whether certain cellular decompositions of Euclidean 3-space
E* were shrinkable [5], [6].

Enhancing the significance of the Disjoint Disks Property is
another fundamental result, announced by P. Quinn [28]: if X is a
generalized ^-manifold (namely, a finite dimensional ANR such that
for all x e X H*(X, X - {x}) coincides with H*(E*, En - {0}) and
n ^ 5, then there exists a cell-like proper map of an ^-manifold M
onto X. The combination of Edwards' and Quinn's work presents
a basic characterization of topological manifolds: for ί i ^ 5 a space
X is an w-manifold iff it is a generalized w-manifold that satisfies
the Disjoint Disks Property.

This paper aims toward applications of this characterization,
primarily within decomposition theory itself. At the heart of most
applications here is the well-known result [31] (see also [1] or the
discussion in [10, p. 323]) that if an ANR X is the proper cell-like
image of an ^-manifold M (without boundary), then X is a gener-
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alized ^-manifold. Indeed, even when X fails to be an ANR, it
follows from [4] that H*(X, X — {x}) always coincides with H*(En,
E« - {0}).

Much of the space in this paper is devoted to such finite dimen-
sional generalized manifolds. However, it begins (§ 2) with an
investigation into the behavior of the Disjoint Disks Property in a
somewhat abstract setting. The generality serves two purposes:
first, it clarifies the rather minimal topological conditions on which
production of this property is founded, and second, it permits appli-
cation in the realm of Q-manifolds, where the property also appears
to be important (see [16]). The section culminates with the result,
currently being used rather widely throughout this subject, that
the product of E2 and any generalized w-manifold (n ^ 3) has the
Disjoint Disks Property.

Once the preliminary investigation is complete, the paper sets
forth three distinct kinds of applications. The first (§ 3) details
several pivotal facts about product decompositions. The technology
developed in §2 renders the proofs relatively short and easy, and
receives further justification through subsequent reuse. The second
(§4) provides a comparatively fast proof for a slightly improved
version of the result by J. W. Cannon [9] that every nicely spherical
generalized %-manifold (n ^5) is a topological %-manif old. The final
application (§ 5) gives mild conditions on a cell-like image X of an
^-manifold M(n ^ 4) ensuring that X x E1 be homeomorphic to
M x E1. As a consequence, a primary benefit of § 5 is its straight-
forward proof, directly from the Disjoint Disks Property, that
the ghastly generalized ^-manifold X (n ^ 4) described by Cannon-
Daverman [14], one of the more complicated such spaces extant,
becomes a manifold upon crossing with E1. Although they also
establish this fact in [14], their argument is a good bit more intri-
cate and it accomplishes far less.

Following a spreading practice, we say that a map / : X—> Y is
1 - 1 over a subset Z of Y if f\f"\Z) is 1 - 1.

Let (S, p) denote a metric space. For AaS, the diameter of
A is denoted as diam A and, of course, is defined as

diam A = sup {p(a, af): α, af eA) .

For ε > 0, the ε-neίghborhood Nε(A) is the set of points in S whose
distance from A is less than ε. We say that A is locally k-connect-
ed, written LGk, if for each ae A and each ε > 0 there exists <5>0
such that every map of Si into Nδ(a) extends to a map of Bί+1

into Nε(a) (ί = 0, ••-,&). Similarly, we say that A is locally h-co-
connected, written k-LCG, or, equivalently, that S — A is k-LG at
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A, if for each aeA and each e > 0 there exists δ > 0 such that
every map of Sk into Nδ(a) Π (S — A) extends to a map of Bk+1 into
Nε(a) n (S - A).

Given two maps f,g:X-+ S, we use p(f, g) to denote sup {p(f(x),
g(x)):xeX}.

All homology groups mentioned should be interpreted as singular
homology groups with integer coefficients.

2* Disjointness properties* Instrumental to this discussion
are two properties of a metric space S subordinate to the Disjoint
Disks Property. First, S is said to have the Disjoint Arcs Property
(DAP) if any two maps of B1 to S can be approximated, arbitrarily
closely, by maps having disjoint images. Second, S is said to have
the Disjoint Arc-Disk Property (DADP) if, for all maps / : B1 -> S
and g: B2-* S and for each ε > 0, there exist maps F: B1 —> S and
G:B2-*S such t h a t p{F, f) < ε, p(G, g)< e and F(B') n G{B2) = 0 .

Throughout this section X will denote a locally compact, LC1

metric space whose dimension, at each point, is at least two—in
other words, no closed 1-dimensional subset of X contains a non-
empty open set. In applications X ordinarily will represent the
cell-like image of an w-manifold (n > 2) or, in somewhat more
restricted situations, of a Q-manifold.

LEMMA 2.1. Suppose X is a locally compact metric space such
that, for some integer r > 0 and for every xeX, Ht(X, X — {x}) = 0
(i == 0, 1, , r). Then for each k-dimensional closed subset A of S,
where k ^ r, Hd(X, X — A) = 0 whenever j 6 {0, , r — k).

This result is based on a relatively routine Mayer-Victoris
argument. For completeness, details are provided in the Appendix.

PROPOSITION 2.2. Suppose that for each open subset U of X
and for each 1-dimensional closed subset A of X, H^U, U — A) = 0.
Then X has the DAP.

Proof The initial part of the argument shows that X — A is
0-LC at each point aeA. To see this, consider any neighborhood
V of a and find a path-connected neighborhood U contained in V.
From the long exact sequence of (Uf U — A), one has

0 s HX(U, U-A) > HIU -A) > H0(U) = 0 .

Hence, H0(U — A) = 0, or, equivalently, U — A is path-connected.
Next consider maps flf f2: B

1 —> X and ε > 0. Partition B1 as

- 1 = to < ί i < < ί i - i < « < < • • • < « * = !
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so that each interval [tt_lf £*] has small size (depending on f). Since
Peano continua are arcwise connected, each /id^-i, ίj) contains an
arc from yi(ί<_i) to fx{t^9 whenever fit^) Φ fx{t^. Now it is a
simple matter to produce a map //: B1 -» X approximating /i such
that //1 [ti_lf ti] is either a constant mapping to /x(^) or an embedding
defining an arc in /idΛ-i, ί<]). As a result, the image A = fl{Bλ)
is 1-dimensional.

Cover A by pathwise connected open sets Ua, ae A, each having
diameter less than ε, and determine a new partition

- 1 = 80 < < »i-i < βi < < sm = 1

of i?1 such that /2([β<_i, βj) is contained in some Uie{Ua\aeA)
whenever it intersects A. Now define /2'fo) as /2(8,) whenever s< ί A
and as an element of (!/< Π Z7ί+1) — ̂ L otherwise (here interpret Z70

as CTi. and ?7m+1 as Um). Since C/̂  — A is pathwise connected,
/2ΊK-1, sj extend to a map //: [s^j, s j -> !/< — A. Assembly of these
segmentally described maps produces an ε-approximation fl to /2,
with ft{Bι) c X -

COROLLARY 2.3. If X is a locally compact LC° metric space such
that for each xeX and for i e{0, 1, 2}, H^X, X - {#}) = 0, then X
has the DAP.

In effect, the proof for Proposition 2.2 establishes the more
interesting half of the following result.

PROPOSITION 2.4. A locally compact metric space S has the DAP
if and only if each map f: B1 —> S can be approximated by F: B1 —> S
such that FiB1) is nowhere dense and 0-LCC.

A characterization of the DADP can be derived by similar
methods.

PROPOSITION 2.5. For a locally compact metric space S, the
following statements are equivalent:

(1) S has the DADP.
(2) Each map f: B1 —> S can be approximated by FiB1-*^

such that F{Bλ) is nowhere dense and both 0-LCC and 1-LCC.
(3) Each map g: B2 —> S can be approximated by G: B2 —> S

such that G(B2) is nowhere dense and 0-LCC.

LEMMA 2.6. If X has the DAP, then each map of a finite 1-
complex P into X can be approximated by an embedding e such
that e(P) is 0-LCC.
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Proof. Cannon's proof for Theorem 2.1 in [12], concerning
approximations of singular 2-cells in a space satisfying the DDP,
readily translates to a proof for the matter at hand.

COROLLARY 2.7. If X has the DAP, then every map of a com-
pact 1-dίmensίonal metric space into X can be approximated, arbi-
trarily closely, by embeddings.

This follows by mimicking an argument of Hurewicz-Wallman
[22, Theorem V2].

PROPOSITION 2.8. // X has the DAP, then XxE1 has the DADP.

Proof Let pΣ: X x E1 -> X and pE: X x E1 -> E1 denote the
projection mappings. Given a map f:B1—>Xx E1, one can apply
Lemma 2.6 to approximate pxf by a 0-LCC embedding ex: B

1 —> X.
We shall prove that the embedding e: ex x pEf: B1 —> X x E1 gives
a 1-LCC embedded arc.

First, however, we shall explain why the arc A = ex{Bx) x {0} is
1-LCC embedded in XxE1. Let V x (-δ, δ) be a neighborhood
of aeA. Since X is LC1, we can produce a path-connected open set
U in X such that every loop in U is null homotopic in V and that
U x (—δ,δ) is another neighborhood of a. Because ex{Bι) is 0-LCC,
an argument like the final part of Proposition 2.2 shows that U —
ex{Bx) is also path-connected. Hence, every loop in U x (—δ, δ)— A
can be expressed as the composition of loops from U x (—δ, δ) —
(ex{Bx) x [0, δ)) and from U x (-S, δ) - (e^B1) x (-δ, 0]). In either
case, such loops are contractible in V x (—δ, δ) — A. As a result,
the image of π^U x (-δ, δ) - A) in π^V x (-δ, δ) ~ A) is trivial,
and A is 1-LCC embedded at a.

With comparative ease one might observe that A is also 0-LCC.
The Klee trick [23] or Brown's graph-pushing [8] reveals e(Bx)

and A to be equivalently embedded in X x E1, by means of a
homeomorphism θ: X x E1 -» X x E1 such that pxθ = px. Certainly
then eiB1) is 0-LCC and 1-LCC. According to Proposition 2.5, XxE1

has the DADP.

LEMMA 2.9. Suppose X has the DADP, / and g are maps of
B2 to X, P is a finite 1-complex in B2, and ε > 0. Then there
exist maps F, G: B2—>X such that p(F, f) < ε, p(G, g) < ε and
F(P)f]G(B2)= 0 .

Proof. It is an elementary consequence of the DADP that there
exist maps F:P-*X and G:B2->X, approximating f\P and g,
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respectively, such that F(P) Π G(B2) = 0 . When X is an ANR, it
is well-known that F can be obtained so close to / 1 P that it extends
to F: B2 —> X within ε of / : under the operant hypothesis here that
X be LC\ one can extend F over the skeleta of a triangulation of
B2 containing P as a subcomplex to reach the same conclusion.

PROPOSITION 2.10. // X has the DADP, then XxE1 has the DDP.

Proof. Again let px: X x E1 -» X and ε > 0. Name a triangula-
tion T of B2 having mesh so small that diam/(σ)<ε and diam
g(σ) < e for each σ e T, and let P denote its 1-skeleton.

Since X has the DADP, there exist maps fu gx: 5 2 - > I x E1

within ε of / and g and satisfying

( * ) Pzfi(P) n VxQι(B2) = 0

Repeating, while limiting the motion so as not to lose (*), one pro-
duces maps /2, g2: B

2-> XxE1 satisfying ρ(f2, fx) <ε, p(g2, g,) <ε, and

(**) PxfJiP) n vxg*{B2) = 0 = VxUB2) n vxg*(P).

Note that, for each σe T, diam/2(<j) < 5ε and diam^r2(σ ) < 5ε.
Enumerate the set Σ of 2-simplexes of Γ as σlf , σm. For

each Gi e Σ choose a point β< e E1 so that /aίσj is within 5ε of X x
{βj and another point tt 6 -B'1 so that flr2(O is within 5ε of X x {ίj
and that no ί̂  belongs to {«Ji = l, ---jm}. Now one can easily
exhibit maps /3 and g3 such that / 8 | P = / 2 | P , gs\P= g2\P and, for
i = 1, , m, /βίO is contained in

x (e€ - 5ε, 8< + 5ε)] U [px/2(^) x {βj] ,

a set of diameter < 15ε, while gz(σ^ is contained in

(*i - 5ε» *< + 5ε)] U [PχΛ(O x {**}]

It follows from (**) and from the choice of points s€ and t5 that
Λ(B2) n g,{B2) = 0 . Moreover, ^(/3, /) < 17ε and p( Λ , ») < 17ε.

The author is indebted to Luis Montejano for a simplification
of an earlier argument for Proposition 2.10.

THEOREM 2.11. If X has the DAP, then XxE2 has the DDP.

See Propositions 2.8 and 2.10.

COROLLARY 2.12. If X has the DAP, then X x Γ has the DDP.

The primary justification for this section involves its bearing
upon a generalized ^-manifold Y9 but a secondary justification
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occurs when Y is the cell-like image of a Q-manifold in which
points have infinite codimension, that is, when H*(Y, Y — {y}) = 0
for every y eY.

COROLLARY 2.13. If Y is a generalized n-manifold, n ^ 3, then
Y x E2 has the DDP.

COROLLARY 2.14. If G is a cell-like decomposition of a Q-mani-
fold M such that each point of M/G has infinite codimension, then
(M/G) x Γ has the DDP.

Proof. By [2, Lemma 2.1] the cell-like property implies that
M/G is a LC1 metric space.

3* Applications* To avoid unremitting repetition, we shall
state here at the outset that all of the theorems in this section are
founded on Edwards' Cell-like Approximation Theorem [17], which,
in one form, asserts that if G is a cell-like decomposition of an n-
manifold M (n ̂  5) for which M/G has the DDP and is finite dimen-
sional, then G is shrinkable, implying that the decomposition map
π: M-^ M/G can be approximated by homeomorphisms. Frequently
we shall find it convenient to exploit the equivalence: when G is a
cell-like decomposition of a finite dimensional ANR X, dim (X/G) < °°
iff X/G is an ANR (see [25, Corollary 3.2] and [25, p. 510] or
[24]; that π: X-+ X/G cannot raise dimension when X/G is an ANR
results directly from the statement that π is hereditary proper
homotopy equivalence).

THEOREM 3.1. If G is a cell-like decomposition of an n-mani-
fold M (n ̂ 3 ) such that M/G is finite dimensional, then G x E2 is
shrinkable and (M/G) x E2 is homeomorphic to M x E2.

Proof. The decomposition spaces (M/G) x E2 and (M x E2)/
(G x E2) are naturally equivalent. By Corollary 2.12, each has the
DDP.

Armed with the powerful result of F. Quinn, one can improve
this as follows.

THEOREM 3.2. If Y is a generalized n-manifold (n ̂  3), then
Y x E2 is an (n + 2)-manifold.

Proof. By Quinn's work [28], Y x E2 is topologically equivalent
to the space associated with a cell-like decomposition of an (n + 2)-
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manifold, and by Corollary 2.13, Y x E2 has the DDP.
The beacon originally attracting interest concerning products of

decomposition spaces remains unanswered: if G is a cell-like decom-
position of an w-manif old such that dim (M/G) is finite, is (M/G) x E1

homeomorphic to M x EιΊ Important cases in which the answer is
affirmative can be identified with the aid of further terminology.
For an upper semicontinuous decomposition G of a separable metric
space X, endowed with the natural π: X—> X/G, it is somewhat
standard parlance to say that G is k-dimensional if dimπ(NG) ^ k
and that G is closed-k-dimensional if dim Clπ(NG) ^ k. The Sum
Theorem from elementary dimension theory [22, Theorem III 2]
indicates that X/G is finite dimensional if both G and X are.

In the next two theorems, to understand their proximity to
best-possible results, one should remember that if G is a cell-like
decomposition of an %-manif old M such that dim (M/G) < °°, then
dim (M/G) ^ n [24], and G itself must be ^-dimensional.

THEOREM 3.3. If G is an (n — 3)-dimensional cell-like decom-
position of an n-manifold M (n ^ 4), then G x E1 is shrinkable and
(M/G) x E1 is homeomorphic to M x E\

Proof. In order to show that (M/G) x E1 has the DDP, we
shall apply Proposition 2.10, after we show that M/G has the DADP.
In order to prove that M/G has the DADP, we shall approximate
an arbitrary map / : B2 -> M/G by F: B2 -> M/G such that dim F(B2)^
n — 2. For any open subset U of M/G, Lemma 2.1 will imply that
Hλ(U, U - F(B2)) = 0. Then the proof of Proposition 2.2 will reveal
F(B2) to be 0-LCC, and Proposition 2.5 will certify M/G to have
the DADP.

For support in producing the desired approximation F, consider
the complete metric space C of maps from B2 to M/G. Determine
open subsets Wu W2 of M/G, with π(NG) c Wi+1 c Wt for all i,
such that dim (Π Wt) ^ n — 3, and find straight line segments Llf

L2, in B2 such that dim (B2 - UL,) = 0. Define

0, = {h 6 C: h is a (1/λO-map over (M/G) - Wk}

Pk= \heC:h\ \J Lt is a (l/fc)-map

Routine arguments show both 0fc and Pk to be open subsets of C.
Moreover, each is dense: that 0fc is dense follows when n ^ 5 because
each h can be approximated by the projection of an embedding into
M and when n = 4, thinking of the worst possible situation where
NG is dense in M, because each h can be approximated by the
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projection of an immersion in M whose self-intersections lie in NG;
that Pk is dense follows from Corollary 2.3 and Lemma 2.6, combined
with an ε-controlled version of the Borsuk Homotopy Extension
Theorem, giving first an embedding of JJiU ̂  so close to h | U?=i Lt

that later one discovers it extends to a map h'\ B2-> M/G close to
h. By the Baire Category Theorem, each f eC can be approximated
by Fe (Π 0k) Π (Π P*). Then F: B2-* M/G will be a map for which
each point inverse F~ι(x) is O-dimensional (being the union of at
most one point from \jLt together with a subset of B2 — \jLt) and
for which the image S2(F) of its singular set (i.e., S2(F) = {xe
F(B2) I F~ι(x) Φ point}) is contained in ΓiWt and, therefore, has
dimension at most n — 3. According to a result of Freudenthal
[21] (cf. [27, Theorem 24-2]),

dim F(B2) ^ max {dim B2, dim S2(F) + 1} ^ n - 2 .

In case G is a closed-(w — 2)-dimensional cell-like decomposition,
it is comparatively easy to obtain an approximation F to a given
map / : B2 -* M/G such that dim î CB2) ^ n - 2. Then the first part
of the preceding argument gives an alternate proof for a result of
Cannon [12, Theorem 10.1].

THEOREM 3.4. (Cannon-Edwards.) If G is a closed-(n—2)-dimen-
sional cell-like decomposition of an n-manifold M(n ^ 4), then G x
E1 is shrinkable and (M/G) x E1 is homeomorphic to M x E1.

With the techniques developed in § 2, we can set forth a concise
explication of a fact known to many practitioners of this subject.
Similar results are proved by Cernavskii-Seebeck-Ferry [20, Theorem
5] or by Quinn [28] when M/G is known to be a manifold or, at
least, when (M/G) x E1 is. Cannon [12, § 9] also states a result
which nearly implies this one, and the argument supplied here
should suggest how to fill in details for the DDP analogue of the
theorem he gives.

THEOREM 3.5. Suppose M is an n-manifold (n ^ 4), G is a
cell-like decomposition of M x {0} a M x E1 such that (M x {0})/G is
an ANR, and G* is the trivial extension of G over M x E1. Then
(M x Eλ)IG* has the DDP.

Proof Let π denote the decomposition map M x E1 —> (M x E1)/
G*. Simplifying the notation, we let Y= π(M x E1), Y+ = π(M x
[0, oo)), Y_ =• π(M x (-oo, 0]) and X = π(M x {0}). By [7, Chapter
5] π(M x [0, 1]), which is the mapping cylinder of the obvious map
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M-+X, is an ANR. Consequently, Y+ and Y_, which are homeo-
morphic to open subsets of π(M x [0, 1]), are ANR's as well. Simi-
larly, Y is also an ANR.

As a result, to prove this theorem it suffices to prove that Y
has the DDP.

Consider maps f and f2 of B2 to Y. Since X is nowhere dense
in Y, one can modify /< (i = 1, 2) slightly so that ffι{X) is nowhere
dense in B\ Define Z, = jff W , Γ, = /Γ1(Γ+) and L, - /f'(YL).

According to Corollary 2.3 and Lemma 2.7, the map/ΊU/2 on
the disjoint union of Zx and Z2 can be approximated by an embedd-
ing Fλ U F2: ZiΌ Z2-> X. This can be done so that f U f2 and i*\ U
F2 are homotopic via a short homotopy. It follows from the con-
trolled version of the Borsuk Homotopy Extension Theorem suggested
earlier that Fx U F2 can be determined so close to f U /21 Zx U ^ 2

that for i = l,2 FtlZt extends to maps Ft: Ti-^Y+ and Ft: L.-^Y-
approximating the restriction of Fi to the appropriate domains.
Prom the easily-verified observation that X is 0-LCC and 1-LCC in
both Y+ and F_, it follows that the extensions Ft above can be
further adjusted, first, so as to satisfy Zt = Fr\X)f by requiring
F^Ti - Zt) c Y+ - X and Ft(Lt - Z€) c Y_ - X, and second, because
each of the latter ranges is a manifold of dimension ^ 5, so as to
satisfy F,(B2 - Zx) n F2(B

2 - Z2) = 0 . Now, because the initial
maps were obtained so that F^ZJ f] F2(Z2) = 0 , the images F±(B2)
and F2(B

2) must be disjoint.

The same argument gives a Disjoint Disks Property worth
stating about Q-manifold decompositions.

PROPOSITION 3.6. Suppose M is a Q-manifold, G is a cell-like
decomposition of M x {0} such that M x {0}/(? is an ANR having
the DAP, and (?* is the trivial extension of G over M x [ — 1, 1].
Then (M x [ - 1 , 1])/G* ftαs the DDP.

4* Nicely spherical decompositions* Let X denote a decom-
position space associated with an upper semicontinuous decomposition
of an ^-manifold. In accordance with one aspect of the tradition,
we say that X is spherical (some authors prefer spheroidal, but to
be precise, probably one should call it locally peripherally whichever)
if each xeX has arbitrarily small neighborhoods Ux whose frontiers
FrUx are (n — l)-spheres; furthermore, we say that X is nicely
spherical if, in addition, Ux is LC1 at each point of FrUx (equi-
valently, FrUx is 1-LCC in ClUβ). What is accomplished in this
section provides technical improvement to a result of J. W. Cannon
[9, Theorem 62]; part of that improvement, one should note, depends
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upon a change in the term "nicely spherical" from the definition
given in [9], where each component of X — Frΐlx was required to
be LC1 at FrUx. Because of that change in terminology, there is
no change in the statement of the main result: if G is a cell-like
decomposition of an w-manif old M(n ^ 5) such that M/G is nicely
spherical, then M/G is an ^-manifold.

We begin by recording the obvious.

LEMMA 4.1. If G is a decomposition of an n-manifold M such
that M/G is spherical, then M/G has dimension ^ n.

Consequently, in order to prove that M/G is a manifold when
G is a cell-like decomposition, it suffices to verify that M/G satisfies
the DDP.

LEMMA 4.2. Let G be a decomposition of an n-manifold
M(n ^ 5) such that M/G is nicely spherical, fx and f2 maps of B2 to
M/G, C a closed subset of M/G such that Co = fx(B2) Π MB2) Π C is
^-dimensional, and W an open subset of M/G containing CQ. Then
there exist maps Fu F2: B2 —> M/G satisfying

(1) F,{B2) n F2(B2) n C = 0 ,
( 2 ) Ftff\W) cz W, and
(3) Fi\Bi-fi-

1(W)=ft\B*-ft-\W) (i = l,2).

Proof Step 1: Finiteness Considerations. Each point ceCQ

has an open neighborhood Uc m W whose frontier FrUc is an (n — 1)-
sphere 0-LCC and 1-LCC embedded in CIUC. From the open cover
{UcIc e Co} extract a finite subcover {Uj\j — 1, , r) and trim the
latter to another cover {Vj\j = l, , r] of Co by open sets in M/G,
with VjCzClVjdUj.

Step 2: A Reduction. Given maps flf f2: B2 —> M/G for which
/XB2) n/2(-B2) Π C c U{V*| j = fc, fc + 1, •••,**}, we shall describe maps

Fl9 F2: B2 -+ M/G such that
(10 F,(B2) n F2(B2) n Cd {J{V3-\j = k + 1, . , r},
(2') FJr\Uk)c:Uk, and
(30 FAB2 -fr\Uk)=fAB2 -ff\Uh) « - 1, 2).

Repeated application (r times) of this reduced version will establish
Lemma 4.2.

Step 3: Eradication of f^B2) from Uk. Define Zi=fr\GlUk)
and y* = frl(FrUk). The map/J F< of ^ into the simply connected
ANR FrUk extends to a map mt: Zt—> FrUk (£ = 1, 2).

Sίβp 4: General Position Improvements. To circumvent atypical
complications when n = 5, we specialize to the case w ̂  6, leaving
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the extra case to the reader for later meditation. Because dim k

5, m1 and m2 admit general position modifications, affecting no
points of Y1 or Y2, so that m1{Z1 - Yx) Π m2(Z2 - F2) = 0 . Define
maps //: B2 —> M/G as mt on Zt and as ft elsewhere (i = 1, 2). Then
any cef[(B2) Π /2'CB2) Π C belongs either to

[C n /.(ΰ2) n ΛCB2)] - Ffc c c0 - u F,

or to

c n ([/TO n m2(z2 - F2)] u [m^z, - rx) n /2( r2)]).

Only the points of the second kind cause any further concern.
Step 5: Final Improvements to mt. Define sets

x^z.n mτ\c n m,^) n /2(r2))
and

X * V
1 — -Λ l "«Ί \ VJ * j

\j=k+l

and define sets X2, X2* symmetrically. Then X? is a compact sub-
set of X, and X? dZ,- Yt (i = 1, 2), for if x e X* Π Ylf then

m^x) e[Cn mm n/2(Γ2)] - U Vs
j—k

which is void by hypothesis. As a result, in B2 there exist neigh-
borhoods T, of Z,* having closures in Zt - Yi (i = 1, 2). Then
m^ClT,) n m2(ClT2) = 0 . Since ?7fe is LC1 at points of m ^ ) , these
maps m̂  | Γt can be approximated by maps m of Ti to i7fc such that
^ίC^i) a n ( i W'z.iTz) remain disjoint, with the amount of adjustment
damped to zero at FrTi in B2 so that the extension m\ of this map
elsewhere over Z^ via m, is continuous (i = 1, 2). It follows that

C n m'lZ,) Π m2(^2) = C n m[{Zx - T,) n m2(Z2 - T2)

c C n m.CX, - X?) n m2(X2 - X2*)

ccnί ΰ FΛ.

Consequently, the maps Ft defined as m[ on Zt and as ft elsewhere
fulfill the required conclusions of the reduction given in Step 2.

LEMMA 4.3. Suppose G is a decomposition of an n-manifold
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M(n ^ 5) such that M/G is nicely spherical, C is a closed q-dimen-
sίonal subset of M/G, fλ and f2 are maps of B2 to M/G, W is an
open subset of M/G containing C Π f(B2) Π fi{B2), and ε > 0. Then
there exist maps Fu F2: B

2 —> M/G satisfying
(1) C n F,{B2) n F2{B2) = 0 ,
( 2 ) p{Fiyf%)<ε, and
(3) FΛB2 - fr\W) = fΛB2 - f

Proof. The argument proceeds by induction on q, with Lemma
4.2 essentially resolving the initial case q = 0.

Assume this Lemma holds for all (q — l)-dimensional closed sub-
sets of M/G. For the g-dimensional set C, determine a countable
collection {Aά} of (q — l)-dimensional closed subsets such that C —
\jAj is 0-dimensional. Apply the inductive hypothesis repeatedly,
exercising controls pertaining to the limit, to obtain maps f*: B2—>
M/G (i = l,2) such that f?(B2) n ( U ^ ) = 0 , p(f?,f)<eβ, and
/ , * | B 2 - / Γ 1 ( T Γ ) = / * | S ί - / r 1 ( T Γ ) . Then C n/^(δ 2 ) n / 2 W , being
a subset of C — U Ay, is 0-dimensional. Now apply Lemma 4.2, but
with open set T7* in ΐ^ containing C Π/i*(JB2) n/2*(-B2) and having
no component of diameter larger than ε/2, to obtain i\ and F2.

This readily yields Cannon's result [9, Theorem 62].

THEOREM 4.4. If G is a cell-like decomposition of an n-mani-
fold M (n ̂  5) such that M/G is nicely spherical, then G is shrinkable
and M/G is homeomorphic to M.

Proof Thinking of M/G as C, one can interpret Lemma 4.3 as
asserting M/G to have the DDP. Theorem 4.4 follows from [17].

Scrutiny of the preceding arguments will reveal the validity of
the improvements to Theorem 4.4 stated below.

THEOREM 4.5. Suppose G is a cell-like decomposition of an n-
manifold M (n ̂  5) such that each point x e M/G has arbitrarily
small neighborhoods Ux whose frontiers FrUx are simply connected
ANR's having the DDP and for which Ux is LC1 at each point of
FrUx. Then G is shrinkable and M/G is homeomorphic to M.

THEOREM 4.6. Suppose G is a cell-like decomposition of an n-
manifold M (n ̂  5) such that each point x 6 π(NG) has arbitrarily
small neighborhoods Ux as in Theorem 4.5. Then G is shrinkable
and M/G is homeomorphic to M.

REMARK. In proving Theorem 4.6, one should consider only
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maps fu f2: B
2 —> M/G arising as πFx and πF2, where F1 and F2 are

disjoint embeddings of B2 of M. Then each point of f(B2) Π f2(B2)
will belong to π(NG) and will possess the appropriate local peripheral
structure.

With additional effort comparable to that required earlier for
the case n = 5, one also can establish the following result.

THEOREM 4.7. Suppose G is a cell-like decomposition of an n-
manifold such that each point x e π(NG) has arbitrarily small neigh-
borhoods Ux such that FrUx is a simply connected (n — l)-manifold
and Ux is LC1 at points of FrUx. Then G is shrinkable and M/G
is homeomorphic to M.

5* Decomposition spaces locally encompassed by manifolds*
Essential to the development of this section is a result due to Cannon,
Bryant and Lacher [13, Theorem 7.2], stated below in a form
slightly modified from theirs.

THEOREM 5.1 [13]. Suppose G is a cell-like decomposition of an
n-manifold M (n ̂  4), N is an (n — l)-manifold contained in M/G
as a closed subset, and G(N) is the decomposition induced over N.
Then G(N) x E1 is a shrinkable decomposition of M x E1.

Recall that G(N) is defined to be the decomposition of M con-
sisting of the sets π~\x)f xeN, and the singletons of M — π~\N).

COROLLARY 5.2. Suppose G is a cell-like decomposition of an
n-manifold M (n ̂  4) and P is an (n — ΐ)-complex embedded in M/G
as a closed subset that contains π(NG). Then G x E1 is a shrinkable
decomposition ofMx Eι.

Proof. Underlying the (n — 2)-skeleton of P is a (closed) subset
A such that P — A is an (n — l)-manifold. Let G(A) denote the
decomposition induced over A by π. According to Theorem 3.4,
G(A) x E1 is shrinkable. Hence, there exists a map θ of M x Eι

to itself that is a limit of homeomorphisms and for which {θ^ix^x e
M x E1} = G(A) x E\ Name the induced map ψ = πθ~ι: M x E1 ->
(M/G) x E1 and note that ψ is 1 - 1 over A x E\

Since the set N = P — A is an (n — l)-manifold embedded in
(M/G) — A as a closed subset, it follows from Theorem 5.1 that the
decomposition of [M x JB?1) — ψ~\A x E1) induced over N x E1 by
ψ, which is equivalent to the product with E1 of the decomposition
of M — π~\A) induced over N by π, [is also shrinkable. In parti-
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cular, there exists a homeomorphism πr of M x Eι — ψ"\A x Eι)
onto ((M/G) — A) x E1 approximating ψ so closely that the extension
π* of πf to the rest of M x E1 via α/r is continuous. By insisting
at the outset that ψ be an approximation to π, one can conclude
at the end that π* is an approximation to π. Such a map π*,
which is a homeomorphism, shows that G x E1 is shrinkable.

COROLLARY 5.3. Suppose G is a cell-like decomposition of an
n-manifold M (n ^ 4), P is an (n — l)-com îea? embedded in M/G as
a closed subset, and G(P) is the decomposition induced over P. Then
G(P) x E1 is a shrinkable decomposition of M x E1.

Let G be a decomposition of an ^-manifold M. Then ikf/G is
said to be locally encompassed by manifolds if each point x e M/G
has arbitrarily small neighborhoods Ux whose frontiers are (n — 1)-
manifolds. For example, if M/G is spherical (nicely or not), it is
certainly encompassed by manifolds.

The following definition serves as a basic fixture in the primary
technical results to be used. Given an open subset U of a space
X, a subset A of FrU, and Fa A, one says that U is 1-LC in U{J
F at A if, for each aeA and each neighborhood V of a, there
exists a neighborhood V' of a such that every loop in V Π U is
contractible in V f] (U U F).

The next lemma, which is elementary, is stated without proof.
It follows from the hypothesis that ClU is LC1. Hence, one can
model an argument on Proposition 1 in [15].

LEMMA 5.4. Suppose U is an open subset of an LC1 metric X
whose frontier Σ is a manifold {more generally, an ANR) and
suppose D is a dense subset of E1. Then U x E1 is 1-LC in (U x
E1) \J(Σ x D) at Σ x E\

LEMMA 5.5. Suppose X is an LC1 metric space, U1 is an open
subset of X with frontier Σ, U2 — X — ClU^ and Ue is 0-LC at
Σ (e = 1, 2). Suppose P* is an open subset of B2 that can be expres-
ed as the union of (relatively) closed sets Aλ and A2 and f:B2->
X x E1 is a map such that f(Ae) dClUe x E1. Finally, suppose
De is a subset of Σ x E1 (β = 1, 2) such that Ue x E1 is 1-LC in
(Ue x E1)ΌDe at Σ x E\

Then for each ε > 0 there exists a map fε:B
2—>Xx E1 satisfy-

ing
( i ) P(fs,f)<ε,
(ϋ) fε\(B2 - p*) u (A, n A2) = f\(B2 - pη u (Ax n A2),
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(iii) fε(Ae)aClUe x E\ and
(iv) fe(Ae - (Λ n A2)) Π ( 2 x E") <zDe (β = 1, 2).

Proo/. Carefully extend the map f\(B2 - P*) U (A± n A2) over
successive skeleta of a fine triangulation Te(e = 1, 2) of Ae~(A1ΠA2)
whose mesh approaches 0 near (B2 — P*) U (Ax Π A2).

THEOREM 5.6. If G is a cell-like decomposition of an n-manifold
(n ^ 4) such that M/G is locally encompassed by manifolds, then
G x E1 is shrinkable and (M/G) x Eι is homeomorphic to M x E\

Proof That M/G is locally encompassed by manifolds certainly
implies that dim (M/G) ̂  n. Hence, to establish this theorem, it
suffices to verify that (M/G) x E1 satisfies the DDP. Towards that
end, consider maps flf f2: B2 —> (M/G) x E1 and a rational positive
number ε.

Step 1: Aw alteration of the decomposition map. Because M/G
is locally encompassed by manifolds, one can find a collection {Nt\i =
1, 2, } of compact (n — l)-manifolds in M/G such that dim ((M/G) —
U Nt) ^ 0. By Theorem 5.1, the decompositions G(JV4) x f f o f l x
J571 are shrinkable (i = 1, 2, •); by Theorem 3.5 the decompositions
(G x {£})* induced over (ikf/G) x {t} are shrinkable for all teE1. It
follows from a rather fundamental principle exploited repeatedly by
Edwards [17] (to the effect that if the decompositions induced by a
proper cell-like map π: M x E1 -> X (M an w-manifold, n ^ 4) over
each member of a countable collection {A%) of closed sets from X
is shrinkable, then π can be approximated by a cell-like map that
is 1 — 1 over U At) that we can obtain a cell-like map p: M x i?1 —>
(M/G) x J^1 that is 1 - 1 over the sets N, x E1 and (Af/G) x {«},
for every rational number q. Now p(Np) is contained in the product
of the irrationals with ((M/G) — U Nt). Consequently, there exist
0-dimensional Fσ sets X and Xf in M/G and i?1, respectively, such
that p(Np) aXx X'.

REMARK. The fundamental principle mentioned above was
certainly noticed by Cannon and his students. It appears, for ex-
ample, in the thesis of D. Everett [18, Theorem 3]; in the published
version of his thesis, Everett relegates this principle to the middle
of a proof [19, pp. 365-366].

Step 2: Modifications of the maps fe. Determine a triangula-
tion T of B2 such t h a t diam/ e (σ) < ε for all σeT and e = 1, 2.

Since (M/G) x E1 satisfies t h e DADP, we may assume t h a t
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fx(B2) n/2(Γ(1)) = 0 = Λ(T^)nΛ(B2)

approximating each of these maps by the image under p of disjoint
embeddings in M x E\ we may assume that/x(jB2) Π/2(-B2) c I x Γ ;
noting that X x E1 is 1-dimensional and σ-compact, implying that
it is 0-LCC in (M/G) x E\ we can assume further that fe(T{1)) f)
(X x E1) = 0 (e = 1, 2), without affecting the set S^f^B2) f)f2(B2);
finally, since X x {ί} is 1-LCC in (M/G) x E1 for each ί e E1 (this
follows from a localized Van-Kampen argument because (M/G x
[t, 00)) — (X x {t}) is locally contractible and because any small loop
in (M/G x E1) — (X x {£}) can be expressed as a composition of
(small) loops from (M/G x [ί, o o ) ) - ( l χ {t}) and (AΓ/G x (-00, «]) -
(X x {£}), we may assume, in addition, that for e = 1, 2 and fc an
integer

/e(52) n (X x {&ε/2}) - 0 .

Sίβp 3: Finίteness Considerations. Choose a neighborhood T7*
of X in ikf/G such that each component of TF* has diameter less
than ε/2, and define W as T7* x (E1 - U^zί^ε/2}). For each point
s e S = /1CB2) Γi/2(-B2) there exists a neighborhood Vs of s in W such
that V8 = Us x J s, where J 8 = (fc(β) ε/2, (fc(s) + l)ε/2) for some integer
fc(s) and where 27S is a connected open subset with closure in "FT*,
having manifold frontier, and satisfying

(A

(B

(G

•o)

o)

o)

(U.

(Fri

{U,

X

Us

X

x E1)

FrJs) n(/ii

B2) n /2(B2

(52) U MB

:i))) = 0 :
) = 0 ,
;2)) = 0

Cover S by a finite number {Vl9 V2, , Fr} of such sets
Sίep 4: A Reduction. For i = 1, « , r we plan to describe

maps fllS and f2J of β 2 to (M/G) x ί/1 that agree with fx and /2

over ((M/G) x E1) — W and that satisfy the analogues of (Ao), (Bo),
(Co) above, as well as

Of course, in the final case j = r we will have the required disjoint
approximations. As in the inductive proof of Lemma 4.2, this can
be accomplished by proving the following: if hx and h2 are maps of
B2 into (M/G) x E1 such that

Π K(B2) n[UjFrUm) x J?1] - 0

) U fe2(β2)] n [ (j(Um x F r J j ] = 0



294 ROBERT J. DAVERMAN

where Vm — Um x Jm (m = 1, , r) and that

then there exist maps Fu F2: B2 -»• (M/G) x E1 such that for e = l, 2

Fr\W) = h~\W) ,

Fe\B2 — Fr\W) = he\B2 — h~ι{W) ,

i U F2(B>)] n [ IU (Um x F r J J ] = 0 ,

ί

n ϊϊ7 ( Z?2\ ^ - /I, / Γ>2\ Γ\ It f Z?2\\ T7 ^— Q I I T/
.Γgl-o ) C- \"Ά& ) ί 1 ̂ 2V̂ > j ~" K, c o — y Ky .

Step 5: Elimination of Intersections in W Choose a point
ί, 6 J^ such that

[h^B2) U W5 2 )] n (Z7< X {<<}) = 0 .

For β = 1, 2, define Z e = h-\ClV%) and

x J,) .

According to [7, Chapter 4], ((FrUt) x J,) U (ί7t x {tj) is an ANR.
By Borsuk's Extension Theorem, the map ht\ Y1 of Yx into (FrU%)x
Jt extends to

mx: Z, > ((FrU<) x J,) \J (U, x {«,}) ,

since fei | Yx is homotopic to one that extends over Zλ (ht followed
by the "projection" of ClUi x Jt to ClUt x {£J). Choose 8,6/, such
that

,) n h2(B2)] n (Ut x {s,}) = 0 .

As before, h2 \ Y2 extends to

m2: Z2 >((FrUi) x J4) U (Ut x fe})

At this point, we have maps me: Ze —> {ClU^) x J. (e = 1, 2) that ex-
tend over the rest of I?2 via he and the images of which intersect
at no point of Vit although they may intersect at points of
(FrUJ x Jt.

Step 6: General Position Improvements. As was done earlier,
to circumvent complications peculiar to the case n = 4, we specialize
to the case n ^ 5. For e = 1, 2 let i?e = m^fSFrU^ x «/<). Because
dim (FrUi x E1) ^ 5 and because the sets E7, x {sj and Ui x {ίj are
disjoint, the maps mβ\Rβ into ?/* x Ji admit general position modi-
fications, affecting no points of FrRe, hence extending over Ze — Re
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via me, so that m1(Zι — Yl){\m2(Z2 — Y2) = 0 . Define maps h'€: I?
2—>

(M/G) x E1 as me on Ze and as he elsewhere. Then any s e h[(B2) Π
K(B2) belongs either to

[S n K(B2) n h2(B2)] -VidS-v vό

or to

d Π m 2 ( ^ 2 - Y2)] U [ m , ^ - YJ f] h2(Y2)] .

By expelling points of the second kind, without adding any others,
we will achieve our goal.

Step 7: Final Modifications. It follows from Condition (B^)
that mx( Yi) Π w2( Y"2) = 0 . Thus, for e = 1, 2 there exist disjoint
open subsets Pe and Qe in B2 satisfying

Γ e C P e c ( A 3 - W Π [((M/G) - U<) x JJ) ,

(me\Ze - r j - X m ^ ) n m2(Z2)) aQec:Ze- Ye,

K(Pd n fe^(P2) = 0 = λi(Qi) n fc;(Q2).

Note that any point 6 e B2 for which

m2(^2 - F2)] U [m^Z, - Γx) Π h2(Y2)]

belongs to PeU Qe-
Since FrUt is an (w — l)-manifold separating M/G, properties

of generalized manifolds guarantee that (M/G) — ClUi is 0-LC at
FrUi [30] [1]. After choosing disjoint dense subsets D', D" of
E1 — {sif ί j , we can apply Lemma 5.5 to obtain maps Fe: B2 —>
(M/G) x E1 such that

Fe\B2 - (Pe U Qe) = K\B2 - (P. U Qe) ,

F.(P.) c (Wf][((M/G) - α ^ ) x JA) U [ (Fr^) x (JD'fΊ/*)] ,

Fe(Qe) c ( ^ x Jt) U [(FrC/J x (Z)" n Jt)] ,

all of which can be arranged with minor care in the approximation
so that, in addition,

F2(P2) = 0 = ^(QJ n F2(Q2) .

i U Qi) n m2(£2 - (P2 U Q2)) = 0 = m^S2 - (Px U QJ) Π i^2(P2 U Q2).

The disjointness of D\D" then implies that

ΉCPi u zj n .P 2 (P 2 u ^2) = 0 .

Consequently, the maps Fx and i 2̂ satisfy

n i^2(s2) c /^Kβ2) n K(B2)
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and eradicate the intersections of the second kind identified in Step
6. Routine auditing of the entries will verify that these maps
fulfill the requirements of the reduction outlined in Step 4.

This argument establishes the following improved version of
Theorem 5.6.

THEOREM 5.7. Suppose G is a cell-like decomposition of an n-
manifold M (n ^ 4) and {Ai \ i = 1, } is a collection of closed sub-
sets of M/G such that each point of (M/G) — U Ai is locally encom-
passed by manifolds and for each decomposition G(A^) induced over
Ai7 G(At) x E1 is a shrinkable decomposition of M x E\ Then Gx
E1 is shrinkable and (M/G) x E1 is homomorphic to M x Eι.

COROLLARY 5.8. Suppose G is a cell-like decomposition of an
n-manifold M (n ^ 4) and {Pi \ i = 1, 2, } is a collection of closed
subsets of M/G such that each Pi is either an (n — l)-complex or an
in — V)-manifold and each point of (M/G) — U Pt is locally encom-
passed by manifolds. Then G x E1 is shrinkable and (M/G) x EL is
homeomorphic to M x E\

The cell-like, totally noncellular decompositions described by
Cannon-Daverman in [14] satisfy the hypothesis of Corollary 5.8.
As a result, this section gives another proof (at least for n > 3),
quite unlike the one given in [14], that the product of the decom-
position space and E1 is a manifold.

COROLLARY 5.9. If G is a cell-like decomposition of an n-
manifold M (n ^ 4) that has a defining sequence in the sense defined
in [14, § 2, 3], then G X E1 is shrinkable and (M/G) x E1 is homo-
morphic to M x E1.

Appendix* Proof of Lemma 2*1* Clearly Lemma 2.1 is valid
when dim A = — 1. Assume it to be true for all closed subsets of
dimension < k. Given a ^-dimensional closed subset A, consider z e
HS(X, X - A), where 0 ^ j ^ r - k. We shall show that z = 0.

The key to the proof is the observation that, when A! and A"
are closed subsets of X for which dim (A' ΓΊ A") < k, the Mayer-
Vietoris sequence for the "excisive couple of pairs" {(X, X — Ar),
(X, X — A")} (see [29, p. 189]) yields an inclusion-induced isomor-
phism a

Hi+1(X, X-(A'n A")) > H3(X, X-(A'Ό A"))

- ^ Hό(X, X - A') 0 HS(X, X - A")
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because of the inductive assumption that Hβ(X, X — (A' Π A")) — 0

(β = i, i + 1).
Fix a compact pair (C, C") c (X, X — A) carrying a representa-

tive of z. Since iϊ/X, X — {#}) = 0 for every xeX, each α e A has
a neighborhood Na in A for which the image of z in H^X, X~ Na)
is trivial. Elementary dimension theory properties give a cover
{Ct\ί = 1, , m) of C Π A by closed sets such that {CJ refines the
cover {AΓα | α 6 C Π A}, the interior (rel A) of U C< contains C n A,
and the frontier of each Ct has dimension <,k — 1. Define Â  as
Cί(A — UΓ+i Cy) (i = 0, , m). Since Ao does not intersect C, the
image of z in iϊ/X, X — Ao) is trivial. Inductively, for A! — Ai_ι

and A" == Ciy we presume that the image of z in Hό{X, X — A') is
trivial, and we know it is trivial in H, (X, X — A"); by construction
dim (A' Π A") ^ dim FτGi ^ fc — 1, and the Mayer-Vietoris argument
above reveals that the image of z in H, (X, X - (A' U A")) - -ff/X,
X — AJ is trivial. Of course, when i = m, this proves that 2 itself
is trivial.
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