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DETECTING THE DISJOINT DISKS PROPERTY

ROBERT J. DAVERMAN

This paper explores conditions under which a metric space
S satisfies the following Disjoint Disks Property: any two maps
of the standard 2-cell B? into S can be approximated by maps
having disjoint images. Among its many applications, it pro-
vides a proof that if Y is the cell-like image of an »-mani-
fold (2>3), then Y x E? has the Disjoint Disks Property, which
implies that Y X E? is a manifold. It adds further evidence for
the unifying force of this property by giving comparatively
easy proofs for established facts about certain decomposition
spaces that are manifolds.

The significance of the Disjoint Disks Property is made manifest
by its role in a recently-proved fundamental result about cell-like
decompositions, due to R.D. Edwards [17]: if an ANR X is the
proper cell-like image of an n-manifold M (n = 5) and satisfies the
Disjoint Disks Property, then X is an n-manifold homeomorphic to
M.

J. W. Cannon, who obtained a fairly strong partial result of
this type [12], receives the credit for focusing attention on the
Disjoint Disks Property and making plausible the claim that it
should be the crucial additional feature forcing such an ANR to be
a manifold [10], [11], [12]. Like so much of the subject of manifold
decompositions, origins of this property can be traced to early work
of R. H. Bing, in this case where he developed methods for deter-
mining whether certain cellular decompositions of Euclidean 3-space
E* were shrinkable [5], [6].

Enhancing the significance of the Disjoint Disks Property is
another fundamental result, announced by F. Quinn [28]: if X is a
generalized n-manifold (namely, a finite dimensional ANR such that
for all xe X H, (X, X — {x}) coincides with H, (E", E* — {0}) and
n = 5, then there exists a cell-like proper map of an n-manifold M
onto X. The combination of Edwards’ and Quinn’s work presents
a basic characterization of topological manifolds: for » = 5 a space
X is an n-manifold iff it is a generalized n-manifold that satisfies
the Disjoint Disks Property.

This paper aims toward applications of this characterization,
primarily within decomposition theory itself. At the heart of most
applications here is the well-known result [31] (see also [1] or the
discussion in [10, p. 323]) that if an ANR X is the proper cell-like
image of an n-manifold M (without boundary), then X is a gener-
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alized #n-manifold. Indeed, even when X fails to be an ANR, it
follows from [4] that H, (X, X — {x}) always coincides with H,. (E",
E™ —{0}).

Much of the space in this paper is devoted to such finite dimen-
sional generalized manifolds. However, it begins (§2) with an
investigation into the behavior of the Disjoint Disks Property in a
somewhat abstract setting. The generality serves two purposes:
first, it clarifies the rather minimal topological conditions on which
production of this property is founded, and second, it permits appli-
cation in the realm of @-manifolds, where the property also appears
to be important (see [16]). The section culminates with the result,
currently being used rather widely throughout this subject, that
the product of E? and any generalized n-manifold (n = 8) has the
Disjoint Disks Property.

Once the preliminary investigation is complete, the paper sets
forth three distinet kinds of applications. The first (§3) details
several pivotal facts about product decompositions. The technology
developed in §2 renders the proofs relatively short and easy, and
receives further justification through subsequent reuse. The second
(§4) provides a comparatively fast proof for a slightly improved
version of the result by J. W. Cannon [9] that every nicely spherical
generalized n-manifold (n =5) is a topological n-manifold. The final
application (§5) gives mild conditions on a cell-like image X of an
n-manifold M(n = 4) ensuring that X X E' be homeomorphic to
M x E*. As a consequence, a primary benefit of §5 is its straight-
forward proof, directly from the Disjoint Disks Property, that
the ghastly generalized n-manifold X (n» = 4) described by Cannon-
Daverman [14], one of the more complicated such spaces extant,
becomes a manifold upon crossing with E*'. Although they also
establish this fact in [14], their argument is a good bit more intri-
cate and it accomplishes far less.

Following a spreading practice, we say that a map f: X— Y is
1 —1 over a subset Z of Y if f|f(Z)is 1 — 1.

Let (S, p) denote a metric space. For AcC S, the diameter of
A is denoted as diam A and, of course, is defined as

diam A = sup {o(a, a'): @, a’ € A} .

For ¢ > 0, the e-neighborhood N.(A) is the set of points in S whose
distance from A is less than ¢. We say that A is locally k-connect-
ed, written LC¥, if for each a € A and each ¢ > 0 there exists >0
such that every map of S’ into N,(a) extends to a map of B+
into N,(a) (=0, ---, k). Similarly, we say that A is locally k-co-
connected, written k-LCC, or, equivalently, that S — 4 is k-LC at
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A, if for each a€ A and each ¢ > 0 there exists é > 0 such that
every map of S* into N,(a) N (S — A) extends to a map of B** into
Nfa)n (S — 4).

Given two maps f, g: X — S, we use p(f, 9) to denote sup {o(f(x),
g(x)): xe X}.

All homology groups mentioned should be interpreted as singular
homology groups with integer coefficients.

2. Disjointness properties. Instrumental to this discussion
are two properties of a metric space S subordinate to the Disjoint
Disks Property. First, S is said to have the Disjoint Arcs Property
(DAP) if any two maps of B' to S can be approximated, arbitrarily
closely, by maps having disjoint images. Second, S is said to have
the Disjoint Arc-Disk Property (DADP) if, for all maps f:B'— S
and g: B*— S and for each ¢ > 0, there exist maps F: B'— S and
G: B*— 8 such that p(F, f) < e, p(G, g) < ¢ and F(B)N GB?) = @.

Throughout this section X will denote a locally compact, LC!
metric space whose dimension, at each point, is at least two—in
other words, no closed 1-dimensional subset of X contains a non-
empty open set. In applications X ordinarily will represent the
cell-like image of an n-manifold (n > 2) or, in somewhat more
restricted situations, of a @-manifold.

LEMMA 2.1. Suppose X is a locally compact metric space such
that, for some integer r > 0 and for every x€ X, H(X, X — {x}) =0
t=0,1, ---, 7). Then for each k-dimensional closed subset A of S,
where k= r, H(X, X — A) = 0 whenever j€{0, ---, r — k}.

This result is based on a relatively routine Mayer-Victoris
argument. For completeness, details are provided in the Appendix.

PROPOSITION 2.2. Suppose that for each open subset U of X
and for each l-dimensional closed subset A of X, H,(U, U — A)=0.
Then X has the DAP.

Proof. The initial part of the argument shows that X — 4 is
0-LC at each point acA. To see this, consider any neighborhood
V of a and find a path-connected neighborhood U contained in V.
From the long exact sequence of (U, U — A), one has

0= H((U U—-A)—> H(U — A)— H{U)=0.

Hence, H(U — A) = 0, or, equivalently, U — A is path-connected.
Next consider maps f,, f;: B'— X and ¢ > 0. Partition B as

'—1=t0<t1<"'<ti_1<t1;<°"<tk:1
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so that each interval [¢,_, t;,] has small size (depending on f;). Since
Peano continua are arcwise connected, each f([¢;,_, t;]) contains an
arc from fi(t,_,) to fi(t;), whenever fi(t;,_,) # fi(t;). Now it is a
simple matter to produce a map f/: B'— X approximating f, such
that f7|[t,_, t;] is either a constant mapping to f,(¢,) or an embedding
defining an arc in f([¢t,_, £;]). As a result, the image A = f/(BY)
is 1-dimensional.

Cover A by pathwise connected open sets U,, a € A, each having
diameter less than ¢, and determine a new partition

—l=5< - <8 ,<8< - <8p=1

of B' such that f,([s;_, s;]) is contained in some U,e{U,|ac A}
whenever it intersects A. Now define f)(s,) as fi(s;) whenever s;¢ A
and as an element of (U;N U,.,) — A otherwise (here interpret U,
as U, and U,:, as U,). Since U, — A is pathwise connected,
fr1{si_, s} extend to a map f):[s;_, s;] > U, — A. Assembly of these
segmentally described maps produces an e-approximation f; to f,
with ff(BYYc X — f{(BY).

COROLLARY 2.3. If X 4s a locally compact LC® metric space such
that for each x€ X and for 1€{0,1,2}, H(X, X — {x}) =0, then X
has the DAP.

In effect, the proof for Proposition 2.2 establishes the more
interesting half of the following result.

PROPOSITION 2.4. A locally compact metric space S has the DAP
if and only if each map f: B'— S can be approximated by F: B*— S
such that F(B') is nowhere dense and 0-LCC.

A characterization of the DADP can be derived by similar
methods.

PROPOSITION 2.5. For a locally compact metric space S, the
following statements are equivalent:

(1) S has the DADP.

(2) FEach map f:B*— S can be approximated by F:B'— S
such that F(B') is nowhere dense and both 0-LCC and 1-LCC.

(8) Each map g:B*— S can be approximated by G:B*— S
such that G(B?) 1is nowhere dense and 0-LCC.

LEMMA 2.6. If X has the DAP, then each map of a finite 1-
complex P into X can be approximated by an embedding e such
that e(P) is 0-LCC.
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Proof. Cannon’s proof for Theorem 2.1 in [12], concerning
approximations of singular 2-cells in a space satisfying the DDP,
readily translates to a proof for the matter at hand.

COROLLARY 2.7. If X has the DAP, then every map of a com-
pact 1-dimensional metric space into X can be approximated, arbi-
trarily closely, by embeddings.

This follows by mimicking an argument of Hurewicz-Wallman
[22, Theorem V2].

PropoOSITION 2.8. If X has the DAP, then XX E* has the DADP.

Proof. Let py: X X E*—> X and pz: X X E* — E' denote the
projection mappings. Given a map f: B'— X X E', one can apply
Lemma 2.6 to approximate »,f by a 0-LCC embedding e;: B* — X.
We shall prove that the embedding e:e;y X pzf: Bt — X X E' gives
a 1-LCC embedded arec.

First, however, we shall explain why the are A = ex(B*) x {0} is
1-LCC embedded in X x E*. Let V x (—4,48) be a neighborhood
of ac A. Since X is LC', we can produce a path-connected open set
U in X such that every loop in U is null homotopic in V and that
U X (=4, d) is another neighborhood of @¢. Because e (B') is 0-LCC,
an argument like the final part of Proposition 2.2 shows that U —
ex(BY) is also path-connected. Hence, every loop in U X (—4,d)— A
can be expressed as the composition of loops from U X (—d,d) —
(ex(B*) X [0, 6)) and from U X (—0d, ) — (ex(B*) X (—d, 0]). In either
case, such loops are contractible in V x (—d,0) — A. As a result,
the image of 7, (U X (—46,06) — A) in n(V X (—4, ) — A) is trivial,
and A4 is 1-LCC embedded at a.

With comparative ease one might observe that A is also 0-LCC.

The Klee trick [23] or Brown’s graph-pushing [8] reveals e(B')
and A to be equivalently embedded in X X E', by means of a
homeomorphism #: X X E*— X X E* such that p,0 = p,. Certainly
then ¢(B?) is 0-LCC and 1-LCC. According to Proposition 2.5, X X E*
has the DADP.

LEMMA 2.9. Suppose X has the DADP, f and g are maps of
B* to X, P is a finite 1l-complex in B? and € > 0. Then there
exist maps F,G:B*— X such that o(F, f)<e, oG, 9)<e and
F(P)YNGB*» = @.

Proof. It is an elementary consequence of the DADP that there
exist maps F: P— X and G: B*— X, approximating f|P and g,
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respectively, such that F(P) N G(B* = @. When X is an ANR, it
is well-known that F' can be obtained so close to f|P that it extends
to F: B*— X within ¢ of f: under the operant hypothesis here that
X be LC!, one can extend F' over the skeleta of a triangulation of
B* containing P as a subcomplex to reach the same conclusion.

ProroSITION 2.10. If X has the DADP, then X X E* has the DDP.

Proof. Again let p,: X X E*'— X and ¢ > 0. Name a triangula-
tion T of B? having mesh so small that diam f(6) < ¢ and diam
g(o) < ¢ for each o€ T, and let P denote its 1l-skeleton.

Since X has the DADP, there exist maps f,, 9.: B*— X X E*
within ¢ of f and g and satisfying

() Dxfi(P) N px0:(B*) = @ .

Repeating, while limiting the motion so as not to lose (x), one pro-
duces maps f,, 9.: B*— X X E* satisfying po(f,, f) <¢, p(g,, 9:) <¢, and

(xx) Pxfy(P) N 0x9:(B%) = @ = pxfo( B?) N 0x9:(P) .
Note that, for each o e T, diam f,(¢) < 5¢ and diam g.,(o) < be.
Enumerate the set 3 of 2-simplexes of T as oy, -:-, 0,. For

each o,€ 3 choose a point s, € E* so that f,(¢,) is within 5¢ of X X
{s;} and another point ¢,€ E* so that g,(o,) is within 5¢ of X X {¢;}

and that no ¢; belongs to {s;|]¢ =1, ---, m}. Now one can easily
exhibit maps f, and g, such that f;|P = f£,| P, ¢;| P = g,| P and, for
1=1, ---, m, fy(o,) is contained in

[p1fi(00;) X (8; — be, 8, + 5e)] U [pxfe(o,) X {8}],
a set of diameter < 15¢, while g,(o,) is contained in
[pxg:(00,) X (t; — be, t, + 5e)l U [pxgs(o) X {t}].

It follows from (x*) and from the choice of points s; and f; that
f:(B® N gs(B* = @. Moreover, o(fs, f) < 17e and p(g,, 9) < 17e.

The author is indebted to Luis Montejano for a simplification
of an earlier argument for Proposition 2.10.

THEOREM 2.11. If X has the DAP, then X X E* has the DDP.

See Propositions 2.8 and 2.10.

COROLLARY 2.12. If X has the DAP, then X x I* has the DDP.

The primary justification for this section involves its bearing
upon a generalized n-manifold Y, but a secondary justification
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occurs when Y is the cell-like image of a @-manifold in which
points have infinite codimension, that is, when H (Y, Y — {y}) =0
for every yeY.

COROLLARY 2.13. If Y is a generalized n-manifold, n = 3, then
Y X E* has the DDP.

COROLLARY 2.14. If G is a cell-like decomposition of a Q-mani-
fold M such that each point of M|G has infinite codimension, then
(M/G) X I* has the DDP.

Proof. By [2, Lemma 2.1] the cell-like property implies that
M|/G is a LC*' metric space.

3. Applications. To avoid unremitting repetition, we shall
state here at the outset that all of the theorems in this section are
founded on Edwards’ Cell-like Approximation Theorem [17], which,
in one form, asserts that if G is a cell-like decomposition of an n-
manifold M (n = 5) for which M/G has the DDP and is finite dimen-
sional, then G is shrinkable, implying that the decomposition map
7: M — M/G can be approximated by homeomorphisms. Frequently
we shall find it convenient to exploit the equivalence: when G is a
cell-like decomposition of a finite dimensional ANR X, dim (X/G)<
iff X/G is an ANR (see [25, Corollary 3.2] and [25, p. 510] or
[24]; that n: X — X/G cannot raise dimension when X/G is an ANR
results directly from the statement that = is hereditary proper
homotopy equivalence).

THEOREM 3.1. If G is a cell-like decomposition of an n-mani-
Jold M (n = 3) such that M|/G is finite dimensional, then G X E* is
shrinkable and (M|G) X E* is homeomorphic to M X E*.

Proof. The decomposition spaces (M/G) X E* and (M x E?)/
(G X E* are naturally equivalent. By Corollary 2.12, each has the
DDP.

Armed with the powerful result of F. Quinn, one ean improve
this as follows.

THEOREM 3.2. If Y 1is a generalized n-manifold (n = 3), then
Y X E*? is an (n + 2)-manifold.

Proof. By Quinn’s work [28], Y X E*is topologically equivalent
to the space associated with a cell-like decomposition of an (n + 2)-
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manifold, and by Corollary 2.13, Y X E* has the DDP.

The beacon originally attracting interest concerning products of
decomposition spaces remains unanswered: if G is a cell-like decom-
position of an n-manifold such that dim (M/G) is finite, is (M/G) X E*
homeomorphic to M x E'? Important cases in which the answer is
affirmative can be identified with the aid of further terminology.
For an upper semicontinuous decomposition G of a separable metric
space X, endowed with the natural z: X — X/G, it is somewhat
standard parlance to say that G is k-dimensional if dimn(Ngy) < k
and that G is closed-k-dimensional if dim Clz(Ng) < k. The Sum
Theorem from elementary dimension theory [22, Theorem III 2]
indicates that X/G is finite dimensional if both G and X are.

In the next two theorems, to understand their proximity to
best-possible results, one should remember that if G is a cell-like
decomposition of an n-manifold M such that dim (M/G) < oo, then
dim (M/G) =< » [24], and G itself must be n-dimensional.

THEOREM 3.3. If G is an (n — 3)-dimensional cell-like decom-
position of an n-manifold M (n = 4), then G X E*' is shrinkable and
(M|G) X E* is homeomorphic to M x E*.

Proof. In order to show that (M/G) x E* has the DDP, we
shall apply Proposition 2.10, after we show that M/G has the DADP.
In order to prove that M/G has the DADP, we shall approximate
an arbitrary map f: B*— M/G by F: B*— M/G such that dim F(B*)<
n — 2. For any open subset U of M/G, Lemma 2.1 will imply that
H(U, U— F(B*) =0. Then the proof of Proposition 2.2 will reveal
F(B* to be 0-LCC, and Proposition 2.5 will certify M/G to have
the DADP.

For support in producing the desired approximation F, consider
the completé metric space C of maps from B? to M/G. Determine
open subsets W, W,--- of M/G, with n(N;) c W, < W, for all ¢,
such that dim (NW,) = n — 3, and find straight line segments L,,
L,, --- in B* such that dim (B* — UL,) = 0. Define

0,={heC:h is a (1/k)-map over (M/G) — W}
P, = {hec; RUL, is a (1/k)-map} .

Routine arguments show both 0, and P, to be open subsets of C.
Moreover, each is dense: that 0, is dense follows when n = 5 because
each i can be approximated by the projection of an embedding into
M and when % = 4, thinking of the worst possible situation where
N; is dense in M, because each h can be approximated by the
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projection of an immersion in M whose self-intersections lie in Ng;
that P, is dense follows from Corollary 2.8 and Lemma 2.6, combined
with an e-controlled version of the Borsuk Homotopy Extension
Theorem, giving first an embedding of %, L, so close to k| Uk, L,
that later one discovers it extends to a maph': B*— M/G close to
h. By the Baire Category Theorem, each f e C can be approximated
by Fe(no0,)N(NP,). Then F: B*— M/G will be a map for which
each point inverse F~'(x) is 0-dimensional (being the union of at
most one point from UL, together with a subset of B2 — UL,) and
for which the image S,(F') of its singular set (i.e., SyF') = {xe
F(B?|F~'(x) + point}) is contained in N W, and, therefore, has
dimension at most n» — 3. According to a result of Freudenthal
[21] (ef. [27, Theorem 24-2]),

dim F(B*) < max {dim B?, dim S,(F') + 1} <n — 2.

In case G is a closed-(n — 2)-dimensional cell-like decomposition,
it is comparatively easy to obtain an approximation F to a given
map f: B*— M/G such that dim F(B?) < n — 2. Then the first part
of the preceding argument gives an alternate proof for a result of
Cannon [12, Theorem 10.1].

THEOREM 3.4. (Cannon-Edwards.) If G s a closed-(n—2)-dimen-
stonal cell-like decomposition of an n-manifold M(n = 4), then G X
E* i3 shrinkable and (M|G) X E* 1s homeomorphic to M x K.

With the techniques developed in §2, we can set forth a concise
explication of a fact known to many practitioners of this subject.
Similar results are proved by Cernavskii-Seebeck-Ferry [20, Theorem
5] or by Quinn [28] when M/G is known to be a manifold or, at
least, when (M/G) x E* is. Cannon [12, §9] also states a result
which nearly implies this one, and the argument supplied here
should suggest how to fill in details for the DDP analogue of the
theorem he gives.

THEOREM 3.5. Suppose M is an n-manifold (n=4), G is a
cell-like decomposition of M X {0} C M X E*' such that (M X {0})/G is
an ANR, and G* is the trivial extension of G over M X E'. Then
(M x E")/G* has the DDP.

Proof. Let m denote the decomposition map M x E'— (M x E*)/
G*. Simplifying the notation, we let Y =n(M X E*), Y. = n(M X
[0, <)), Y_=a(M X (—o0,0]) and X = z(M x {0}). By [7, Chapter
5] m(M % [0, 1]), which is the mapping cylinder of the obvious map
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M— X, is an ANR. Consequently, Y, and Y_, which are homeo-
morphic to open subsets of w(M x [0, 1]), are ANR’s as well. Simi-
larly, Y is also an ANR.

As a result, to prove this theorem it suffices to prove that Y
has the DDP.

Consider maps f; and f, of B? to Y. Since X is nowhere dense
in Y, one can modify f; (4 = 1, 2) slightly so that f;*(X) is nowhere
dense in B2 Define Z; = fi'(X), T; = fi(Y,) and L, = fiY(Y_).

According to Corollary 2.3 and Lemma 2.7, the map f, U f, on
the disjoint union of Z, and Z, can be approximated by an embedd-
ing UF,:Z, U Z,— X. This can be done so that f,U f, and F,U
F', are homotopic via a short homotopy. It follows from the con-
trolled version of the Borsuk Homotopy Extension Theorem suggested
earlier that F,UF, can be determined so close to f,Uf;|Z, U Z,
that for ¢ =1, 2 F,|Z, extends to maps F;: T,— Y, and F;: L,— Y~
approximating the restriction of F;, to the appropriate domains.
From the easily-verified observation that X is 0-LCC and 1-LCC in
both Y. and Y_, it follows that the extensions F', above can be
further adjusted, first, so as to satisfy Z, = F;%X), by requiring
F(T,—Z)cY,— Xand F,(L, — Z,)c Y_— X, and second, because
each of the latter ranges is a manifold of dimension = 5, so as to
satisfy F(B*— Z,)N Fy(B*— Z,) = @». Now, because the initial
maps were obtained so that F\(Z,) N Fy(Z, = @, the images F\(B?
and F,(B? must be disjoint.

The same argument gives a Disjoint Disks Property worth
stating about Q-manifold decompositions.

PROPOSITION 3.6. Suppose M is a Q-manifold, G is a cell-like
decomposition of M x {0} such that M X {0}/G is an ANR having
the DAP, and G* is the trivial extemsion of G over M x [—1,1].
Then (M x [—1, 1])/G* has the DDP.

4. Nicely spherical decompositions. Let X denote a decom-
position space associated with an upper semicontinuous decomposition
of an n-manifold. In accordance with one aspect of the tradition,
we say that X is spherical (some authors prefer spheroidal, but to
be precise, probably one should call it locally peripherally whichever)
if each # € X has arbitrarily small neighborhoods U, whose frontiers
FrU, are (n — 1)-spheres; furthermore, we say that X is micely
spherical if, in addition, U, is LC! at each point of F»U, (equi-
valently, F»U, is 1-LCC in CIU,). What is accomplished in this
section provides technical improvement to a result of J. W. Cannon
[9, Theorem 62]; part of that improvement, one should note, depends
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upon a change in the term “nicely spherical” from the definition
given in [9], where each component of X — F»U, was required to
be LC' at FrU,. Because of that change in terminology, there is
no change in the statement of the main result: if G is a cell-like
decomposition of an n-manifold M(n = 5) such that M/G is nicely
spherical, then M/G is an m-manifold.

We begin by recording the obvious.

LEmMMA 4.1. If G is a decomposition of an n-manifold M such
that M|G s spherical, then M|G has dimension < n.

Consequently, in order to prove that M/G is a manifold when
G is a cell-like decomposition, it suffices to verify that M/G satisfies
the DDP.

LEMMA 4.2. Let G be a decomposition of an n-manifold
M(n = 5) such that M/G is wicely spherical, fi and f, maps of B*to
M|G, C a closed subset of M|G such that C, = fi(BY N fH(B)NC s
0-dimensional, and W an open subset of M/G containing C,. Then
there exist maps F,, F,: B*— M|G satisfying

(1) F(BYNF(BYNC= g,

(2) F, fi'(W)cWwW, and

(3) FiB*—fi (W)= fil B* — fi'(W) (i =1, 2).

Proof. Step 1. Finiteness Considerations. Each point ¢eC,
has an open neighborhood U, in W whose frontier F'»U, is an (n—1)-
sphere 0-LCC and 1-LCC embedded in CIU,. From the open cover
{U,|c e C,} extract a finite subcover {U,|j =1, ---, v} and trim the
latter to another cover {V;|j =1, ---, r} of C, by open sets in M/G,
with V;cClV;c U;.

Step 2: A Reduction. Given maps f,, f;: B*— M/G for which
HBYNHBYNCcCU{V;|ij =k k+1,---, r}, we shall describe maps
F, F,: B*—> M/G such that

q) FBYNFBHYNCcU{V,;lj=k+1,---, 7},

@) F.f(Uy)c U, and

(&) FiB* — fi'(Uy) = fil B* — fi*(Up) (1 =1, 2).

Repeated application (» times) of this reduced version will establish
Lemma 4.2.

Step 8: Eradication of fi(B* from U,. Define Z, = f*(ClU,)
and Y, = f7'(FrU,). The mapf;|Y, of Y, into the simply connected
ANR FrU, extends to a mapm;: Z, — FrU, (i1 = 1, 2).

Step 4: General Position Improvements. To circumvent atypical
complications when n = 5, we specialize to the case n = 6, leaving
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the extra case to the reader for later meditation. Because dim FrU,=
5, m, and m, admit general position modifications, affecting no
points of Y, or Y,, so that m,(Z, — Y,) N my(Z, — Y,) = @. Define
maps fi: B*— M/G as m; on Z, and as f; elsewhere (¢ = 1, 2). Then
any ce< f{(B% N f2(B* N C belongs either to

(€N AB) 0 ABI - Vi~ UV,

or to
CNAAY) Nmy(Z, — Yo)] U [m(Z, — Y) N f(Y2))) -

Only the points of the second kind cause any further concern.
Step 5: Final Improvements to m,;. Define sets

X, = Z, N mi(C N m(Z) N fi(Y)

and

XI* = X1 - ’m'l_l( 0 VJ) ’
J=k+1
and define sets X,, X,* symmetrically. Then X* is a compact sub-
set of X, and X*CZ, — Y, i =1,2), for if xe X*N Y,, then

m(@) €[C N m(¥) 0 £(YD] — UV
cICN AT N AT - U Vs,

which is void by hypothesis. As a result, in B* there exist neigh-
borhoods T; of X having closures in Z,— Y, (¢=1,2). Then
m,(CIT) N my(CIT,) = @. Since U, is LC' at points of m(T,), these
maps m;|T; can be approximated by maps m; of T; to U, such that
m\(T,) and my(T,) remain disjoint, with the amount of adjustment
damped to zero at F»T, in B* so that the extension m} of this map
elsewhere over Z; via m, is continuous (2 = 1, 2). It follows that

Cnmi(Z)NmyZ,) =CnmZ —T)NmyZ, — T,
c CnNm(X, — X*) N my(X, — X7¥)

cCﬂ( 0 V,-).

J=k+1

Consequently, the maps F'; defined as m; on Z, and as f;, elsewhere
fulfill the required conclusions of the reduction given in Step 2.

LEmMMA 4.3. Suppose G is a decomposition of an n-manifold



DETECTING THE DISJOINT DISKS PROPERTY 289

M(n = 5) such that M|G is nicely spherical, C is a closed gq-dimen-
sional subset of M|G, f. and f, are maps of B* to M|G, W is an
open subset of M|G containing CN fi(B,) N f>,(B?, and ¢ > 0. Then
there exist maps F,, F,: B*— M/G satisfying

(1) CNF(B)NF(B) = 0,

(2) p(F, fi) <e, and

(3) F{|B*— fi(W)=fi|B*— fi\(W) (i =1,2).

Proof. The argument proceeds by induction on ¢, with Lemma
4.2 essentially resolving the initial case q¢ = 0.

Assume this Lemma holds for all (¢ — 1)-dimensional closed sub-
sets of M/G. For the ¢-dimensional set C, determine a countable
collection {4,} of (¢ — 1)-dimensional closed subsets such that C —
UA; is 0-dimensional. Apply the inductive hypothesis repeatedly,
exercising controls pertaining to the limit, to obtain maps f*: B*—
M/G (i=1,2) such that f*(B*) N (UA4; = @, o(f* f) <e/2, and
fE| B — f7{(W) = fi|B* — fi'(W). Then Cn f*(B*) N f*(B*, being
a subset of C — UA4,, is 0-dimensional. Now apply Lemma 4.2, but
with open set W* in W containing C N £*(B? N f*(B?% and having
no component of diameter larger than ¢/2, to obtain F, and F.

This readily yields Cannon’s result [9, Theorem 62].

THEOREM 4.4. If G is a cell-like decomposition of an mn-mani-
fold M (n = 5) such that M|G is nicely spherical, then G is shrinkable
and M|G is homeomorphic to M.

Proof. Thinking of M/G as C, one can interpret Lemma 4.3 as
asserting M/G to have the DDP. Theorem 4.4 follows from [17].

Scrutiny of the preceding arguments will reveal the validity of
the improvements to Theorem 4.4 stated below.

THEOREM 4.5. Suppose G is a cell-like decomposition of an n-
manifold M (n = 5) such that each point x € M/G has arbitrarily
small neighborhoods U, whose frontiers FrU, are simply connected
ANR’s having the DDP and for which U, is LC* at each point of
FrU,. Then G is shrinkable and M|G is homeomorphic to M.

THEOREM 4.6. Suppose G is a cell-like decomposition of an n-
manifold M (n = 5) such that each point x<cw(Ng) has arbitrarily
small neighborhoods U, as in Theorem 4.5. Then G s shrinkable
and M|G is homeomorphic to M.

REMARK. In proving Theorem 4.6, one should consider only
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maps fi, fi: B2— M/G arising as nF, and nF,, where F, and F, are
disjoint embeddings of B® of M. Then each point of f,(B? N fi(B?
will belong to m(N;) and will possess the appropriate local peripheral
structure.

With additional effort comparable to that required earlier for
the case » = 5, one also can establish the following result.

THEOREM 4.7. Suppose G is a cell-like decomposition of an n-
manifold such that each point x € w(Ng) has arbditrarily small neigh-
borhoods U, such that FrU, is a stmply conmected (n — 1)-manifold
and U, is LC* at points of FrU,. Then G is shrinkable and M/G
18 homeomorphic to M.

5. Decomposition spaces locally encompassed by manifolds.
Essential to the development of this section is a result due to Cannon,
Bryant and Lacher [13, Theorem 7.2], stated below in a form
slightly modified from theirs.

THEOREM 5.1 [13]. Suppose G is a cell-like decomposition of an
n-manifold M (n = 4), N is an (n — 1)-manifold contained in M/G
as a closed subset, and G(N) 1is the decomposition induced over N.
Then G(N) X E' is a shrinkable decomposition of M x E*.

Recall that G(N) is defined to be the decomposition of M con-
sisting of the sets z#~'(x), x € N, and the singletons of M — 7z (N).

COROLLARY 5.2. Suppose G is a cell-like decomposition of an
n-manifold M (n = 4) and P is an (n — 1)-complex embedded in M|G
as a closed subset that contains w(Ng). Then G X E' is a shrinkable
decomposition of M X E'.

Proof. Underlying the (n — 2)-skeleton of P is a (closed) subset
A such that P— A is an (»n — 1)-manifold. Let G(A) denote the
decomposition induced over A by =. According to Theorem 3.4,
G(A) X E* is shrinkable. Hence, there exists a map 6 of M x E*
to itself that is a limit of homeomorphisms and for which {§-'(x)|x €
M x E'} = G(A) X E*. Name the induced map + = w6~: M X E'—
(M|G) x E* and note that 4 is 1 — 1 over A X E.

Since the set N=P — A is an (n — 1)-manifold embedded in
(M/G) — A as a closed subset, it follows from Theorem 5.1 that the
decomposition of (M x E') — (A X E') induced over N x E' by
4, which is equivalent to the product with E' of the decomposition
of M — n7'(A) induced over N by =, /is also shrinkable. In parti-



DETECTING THE DISJOINT DISKS PROPERTY 291

cular, there exists a homeomorphism 7z’ of M X E' — (4 X EY)
onto (M/G) — A) X E* approximating + so closely that the extension
n* of #’ to the rest of M X E' via 4 is continuous. By insisting
at the outset that « be an approximation to =, one can conclude
at the end that z* is an approximation to z. Such a map =%,
which is a homeomorphism, shows that G x E* is shrinkable.

COROLLARY 5.3. Suppose G is a cell-like decomposition of an
n-manifold M (n = 4), P is an (n — 1)-complex embedded in MG as
a closed subset, and G(P) is the decomposition induced over P. Then
G(P) x E* is a shrinkable decomposition of M X KE*.

Let G be a decomposition of an m-manifold M. Then M/G is
said to be locally encompassed by manifolds if each point x e M/G
has arbitrarily small neighborhoods U, whose frontiers are (n — 1)-
manifolds. For example, if M/G is spherical (nicely or not), it is
certainly encompassed by manifolds.

The following definition serves as a basic fixture in the primary
technical results to be used. Given an open subset U of a space
X, a subset A of FrU, and FFC A, one says that U s 1-LC in UU
F at A if, for each a€ A and each neighborhood V of a, there
exists a neighborhood V' of a such that every loop in V' N U is
contractible in VN (U U F).

The next lemma, which is elementary, is stated without proof.
It follows from the hypothesis that CIU is LC'. Hence, one can
model an argument on Proposition 1 in [15].

LEMMA 5.4. Suppose U is an open subset of an LC' metric X
whose frontier X 1s a manifold (more genmerally, an ANR) and
suppose D is a dense subset of E'. Then U x E' is 1-LC in (U X
EYUQ X D) at ¥ x E*.

LEMMA 5.5. Suppose X is an LC* metric space, U, is an open
subset of X with frontier ¥, U,= X — ClU,, and U, is 0-LC at
Y (e=1,2). Suppose P* is an open subset of B® that can be expres-
ed as the union of (relatively) closed sets A, and A, and f:B*—
X X E' is a map such that f(4, CcClU, x E*. Finally, suppose
D, s a subset of ¥ X E' (e =1, 2) such that U, X E* is 1-L.C in
(U, x E"YUD, at ¥ X HE".

Then for each ¢ > 0 there exists a map f.: B*— X X E' satisfy-
ing

(1) o(fy f)<e

(ii) fil(B*—=PHUANA) = f](B*—P*)U(4.N 4,
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(iii) f(A4,) cClU, x B, and
(iv) fil4,—(A'NA)NE X EYCD, (e =1,2).

Proof. Carefully extend the map f|[(B*— P*)U (4,N 4,) over
successive skeleta of a fine triangulation T, (e =1, 2) of A,—(4,NA,)
whose mesh approaches 0 near (B® — P*) U (4, N 4,).

THEOREM 5.6. If G is a cell-like decomposition of an m-manifold
(n = 4) such that M|G 1is locally encompassed by manifolds, then
G X E' is shrinkable and (M/G) X E* is homeomorphic to M X E*.

Proof. That M/G is locally encompassed by manifolds certainly
implies that dim (M/G) < n. Hence, to establish this theorem, it
suffices to verify that (M/G) x E' satisfies the DDP. Towards that
end, consider maps f, f;: B2— (M/G) X E* and a rational positive
number e.

Step 1: An alteration of the decomposition map. Because M/G
is locally encompassed by manifolds, one can find a collection {N;|i=
1,2, ---} of compact (n — 1)-manifolds in M/G such that dim ((M/G)—
UN,) £0. By Theorem 5.1, the decompositions G(NN;) X E' of M X
E' are shrinkable (+ =1, 2, ---); by Theorem 8.5 the decompositions
(G x {t})* induced over (M/G) x {t} are shrinkable for all te E'. It
follows from a rather fundamental principle exploited repeatedly by
Edwards [17] (to the effect that if the decompositions induced by a
proper cell-like map n: M X E*— X (M an n-manifold, n = 4) over
each member of a countable collection {A4;} of closed sets from X
is shrinkable, then 7= can be approximated by a cell-like map that
is 1 —1 over U A, that we can obtain a cell-like map p: M X E' —
(M/G) X E* that is 1 — 1 over the sets N, X E' and (M/G) X {q},
for every rational number q. Now p(XN,) is contained in the product
of the irrationals with ((M/G) — U N,). Consequently, there exist
0-dimensional F, sets X and X' in M/G and E*, respectively, such
that p(N,)c X x X"

REMARK. The fundamental principle mentioned above was
certainly noticed by Cannon and his students. It appears, for ex-
ample, in the thesis of D. Everett [18, Theorem 3]; in the published
version of his thesis, Everett relegates this principle to the middle
of a proof [19, pp. 365-366].

Step 2. Modifications of the maps f,. Determine a triangula-
tion T of B* such that diam f,(¢) <e for all T and e=1, 2.
Sinece (M/G) x E* satisfies the DADP, we may assume that
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LB NFTY) = @ = f(TY) N (B ;

approximating each of these maps by the image under » of disjoint
embeddings in M X E', we may assume that f,(B) N f,(B) Cc Xx X';
noting that X X E' is 1-dimensional and o-compact, implying that
it is 0-LCC in (M/G) x E', we can assume further that f,(7T%)N
(X x E")Y = @ (e =1, 2), without affecting the set S=f,(B* N fi(B?;
finally, since X X {t} is 1-LCC in (M/G) X E* for each teE' (this
follows from a localized Van-Kampen argument because (M/G X
[, =) — (X X {t}) is locally contractible and because any small loop
in (M/G X E') — (X x {t}) can be expressed as a composition of
(small) loops from (M/G X [t, o)) — (X X {t}) and (M/G X (—<o, t]) —
(X x {t}), we may assume, in addition, that for ¢ =1,2 and k an
integer

Fo(B) N (X X {ke/2h) = @ .

Step 3: Finiteness Considerations. Choose a neighborhood W*
of X in M/G such that each component of W* has diameter less
than ¢/2, and define W as W* X (E' — Uiz {k¢/2}). For each point
se S = fi(B® N fu(B?) there exists a neighborhood V, of s in W such
that V, = U, X J,, where J, = (k(s)-¢/2, (k(s) + 1)¢/2) for some integer
k(s) and where U, is a connected open subset with closure in W*,
having manifold frontier, and satisfying

(A) (U, x ENYN(A(TP)ULLTY) =D,
By (F.U, x BN fi(B) N f(B*) = @,
€ (U, x Frd )N (fi(BY)U f(BY)) = O .
Cover S by a finite number {V,, V,, ---, V,} of such sets {V,}.

Step 4: A Reduction. For j=1, ---,r we plan to describe
maps f;,; and f,; of B® to (M/G) X E' that agree with f; and f,
over (M/G) X E') — W and that satisfy the analogues of (A,), (B,),
(C,) above, as well as

5B B8 — (U V).

Of course, in the final case j = r we will have the required disjoint
approximations. As in the inductive proof of Lemma 4.2, this can
be accomplished by proving the following: if h, and h, are maps of
B? into (M/G) x E* such that

(B (B N hy(B?) m[ U (#rU,) E:] ~- 2

(€ (B URBIN] U U x Fri)|= 0
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where V,=U, X J, (m =1, ---, r) and that
i—1
(B Nh(BH S —U V;,

then there exist maps F,, F,: B* — (M/G) X E* such that for e=1, 2

F (W) = h'(W),
F,|B* — F;X(W) = h,|B* — k;\(W) ,

[F(B% U Fy(BY] NI ,,Q (U, x Frd)l= o,
F(BY) N Fy(B?) C (h(B) N hy(BY)) — V,C S — L;j V.

Step 5: Elimination of Intersections im V,. Choose a point
t,€J, such that

 WBYURBNN T X ) =2 .
For ¢ = 1, 2, define Z, = h;*(ClV,) and
Y, =hI(FrVy) =h((FrU) x J)) .

According to [7, Chapter 4], (FrU, X J,) U (U, x {t,}) is an ANR.
By Borsuk’s Extension Theorem, the map %,|Y, of Y, into (F»U,) X
J, extends to

my: Z, — (FrU,) x J;) U (U; X {t}),

since h,|Y, is homotopic to one that extends over Z, (h, followed
by the “projection” of ClLU, x J; to CLU; x {t,}). Choose s,cJ; such
that

[m,(Z) Nh(BH]N(U; X {s:})) = @ .
As before, h,| Y, extends to
my: Zy — (FrU,;) x J;) U (U, X {3@}) .

At this point, we have maps m,: Z, — (ClLU,) X J, (e = 1, 2) that ex-
tend over the rest of B? via h, and the images of whieh intersect
at no point of V,, although they may intersect at points of
(FrU,) x J,.

Step 6: General Position Improvements. As was done earlier,
to circumvent complications peculiar to the case n = 4, we specialize
to the case n = 5. For e=1,2 let R, = m }(FrU,) X J,). Because
dim (F7U,; x E*) = 5 and because the sets U, X {s;} and U, x {t;} are
disjoint, the maps m,|R, into U, x J; admit general position modi-
fications, affecting no points of F»R,, hence extending over Z, — R,
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via m,, so that m,(Z, — Y)Nm,(Z, — Y,) = @. Define maps s,: B*—
(M|G) x E* as m, on Z, and as h, elsewhere. Then any sech{(B)N
hy(B? belongs either to

[S O 7(B?) N hi(BY)] — V,C S — g v,
or to
[hl( Y1) N mz(Zz - Yz)] U [m1(Z1 - Y1) N hz( Yz)] .

By expelling points of the second kind, without adding any others,
we will achieve our goal.

Step 7: Final Modifications. It follows from Condition (B,_,)
that m,(Y,) N my(Y,) = @. Thus, for e =1,2 there exist disjoint
open subsets P, and @, in B? satisfying

Y.cP.ch)y(Wn(MG) —U,) xJ)),
(m,|Z, — Y)"(m(Z) N my(Z)cQ.CZ, — Y.,
h(P) N hy(Py) = @ = hi(Q)) N ha(@s) .

Note that any point b € B* for which
h:(b) € [hl( Y1) N mz(Zz - Yz)] U [m1(Z1 - Y1) n hz( Yz)]

belongs to P, U Q..

Since FrU, is an (» — 1)-manifold separating M/G, properties
of generalized manifolds guarantee that (M/G) — CIU, is 0-LC at
FrU, [30] [1]. After choosing disjoint dense subsets D’, D" of
E* —{s;, t}, we can apply Lemma 5.5 to obtain maps F,: B*—
(M/G) X E* such that

F,|B*—(P,UQ,) = h.|B*— (P, UQ,),
F(P,)c(WNn[((MG) — CLU,) x JDU[FrUy) x (D'NJ)],
FQ)c (U, x J)UIFrU,) x (D" NJ)],

all of which can be arranged with minor care in the approximation
so that, in addition,

F(P)NFyP,) = @ = Fi(Q) N F(Qy) .
F(PUQ)NmM(B* — (P,UQy) = @ = m(B* — (P,U Q) NFy(P,UQ,).

The disjointness of D’, D" then implies that
F(P,UZ)NFy(P,UZ) = .
Consequently, the maps F, and F, satisfy
F\(B*) N Fy(B*) C h{(B") N ky(B")
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and eradicate the intersections of the second kind identified in Step
6. Routine auditing of the entries will verify that these maps
fulfill the requirements of the reduction outlined in Step 4.

This argument establishes the following improved version of
Theorem 5.6.

THEOREM 5.7. Suppose G is a cell-like decomposition of an n-
manifold M (n = 4) and {4;]1 =1, ---} is a collection of closed sub-
sets of M|/G such that each point of (M/G) — U A, is locally encom-
passed by manifolds and for each decomposition G(A,) induced over
A, G(A) X E* is a shrinkable decomposition of M X E*. Then GX
E' is shrinkable and (M/G) X E* is homomorphic to M x E*.

COROLLARY 5.8. Suppose G is a cell-like decomposition of an
n-manifold M (n = 4) and {P;|i =1,2, ---} 48 a collection of closed
subsets of M|G such that each P, is either am (n — 1)-complex or an
(n — 1)-manifold and each point of (M|G) — U P, is locally encom-
passed by manifolds. Then G X E' is shrinkable and (M/G) X E* is
homeomorphic to M X E*.

The cell-like, totally noncellular decompositions described by
Cannon-Daverman in [14] satisfy the hypothesis of Corollary 5.8.
As a result, this section gives another proof (at least for n > 3),
quite unlike the one given in [14], that the product of the decom-
position space and E' is a manifold.

COROLLARY 5.9. If G 1is a cell-like decomposition of an n-
manifold M (n = 4) that has a defining sequence in the sense defined
wn [14, §2, 3], then G X E* is shrinkable and (M|G) X E* is homo-
morphic to M X E*.

Appendix. Proof of Lemma 2.1. Clearly Lemma 2.1 is valid
when dim A = —1. Assume it to be true for all closed subsets of
dimension < k. Given a k-dimensional closed subset A, consider ze¢
H, (X, X — A), where 0 < j<r — k. We shall show that z = 0.

The key to the proof is the observation that, when A’ and A”
are closed subsets of X for which dim (4’ N A”) < k, the Mayer-
Vietoris sequence for the “excisive couple of pairs” {(X, X — A4'),
(X, X — A")} (see [29, p. 189]) yields an inclusion-induced isomor-
phism « :

H; (X, X — (A’ 0 A™) — Hy(X, X — (A’ U A™))
L H(X, X — A)@ HyX, X — A”)
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because of the inductive assumption that H,(X, X — (4'N A")) =0
(=4, +1).

Fix a compact pair (C, C') (X, X — A) carrying a representa-
tive of z. Since H;(X, X — {x}) = 0 for every ze X, each a € A has
a neighborhood N, in A for which the image of z in H (X, X — N,)
is trivial. Elementary dimension theory properties give a cover
{C.li=1, ---, m} of CN A by closed sets such that {C,} refines the
cover {N,laeCn A}, the interior (rel A) of UC, contains CnN A4,
and the frontier of each C, has dimension <k — 1. Define A4, as
ClA —Ur.C) ¢=0, ---, m). Since A, does not interseet C, the
image of z in H (X, X — A,) is trivial. Induectively, for 4’ = 4, ,
and A" = C,, we presume that the image of z in H;(X, X — A') is
trivial, and we know it is trivial in H;(X, X — A"); by construction
dim (A"’ N A") £ dim FrC;, = k — 1, and the Mayer-Vietoris argument
above reveals that the image of z in H;(X, X — (4" U A")) = H/(X,
X — A) is trivial. Of course, when ¢ = m, this proves that z itself
is trivial.
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