DIFFERENTIABLY *k*-NORMAL ANALYTIC SPACES AND EXTENSIONS OF HOLOMORPHIC DIFFERENTIAL FORMS

LAWRENCE BRENTON

In this paper the concept of normality for a complex analytic space X is strengthened to the requirement that every local holomorphic *p*-form, for all $0 \le p \le$ some integer k, defined on the regular points of X extend across the singular variety. A condition for when this occurs is given in terms of a notion of independence, in the exterior algebra $\mathcal{Q}_{A^N}^*$, of the differentials dF_1, \dots, dF_r of local generating functions F_i of the ideal of X in some ambient polydisc $\mathcal{Q}^N \subset \mathbb{C}^N$. One result is that for a complete intersection, "k-independent implies (k-2)-normal" (precise definitions are given below), which extends some ideas of Oka, Abhyankar, Thimm, and Markoe on criteria for normality.

Recall that a complex space (X, \mathcal{O}_X) is normal at a point $x \in X$ if every bounded holomorphic function defined on the regular points in a punctured neighborhood of x extends analytically to the full neighborhood. This is equivalent to the condition that the ring $\mathcal{O}_{X,x}$ be integrally closed in its field of quotients, and except for regular points x in dimension 1 the boundedness requirement is irrelevant: if dim $X > 1, x \in X$ is normal \Leftrightarrow for all sufficiently small neighborhoods U of x the restriction of sections $\Gamma(U, \mathcal{O}_X) \to \Gamma(U - \sum, \mathcal{O}_X)$ is an isomorphism, for \sum the set of singular points of X. In 1974 A. Markoe [6] observed that the basic modern ideas in the topic of cohomology with supports gives a very simple criterion of normality in terms of the homological codimension of the structure sheaf:

THEOREM (Markoe). Let (X, \mathcal{O}_x) be a reduced complex space with singular set Σ . Then $\forall x \in X$, if $\operatorname{codh}_x \mathcal{O}_x > \dim_x \Sigma + 1$, then X is normal at x.

Here $\operatorname{codh}_{x} \mathcal{O}_{X} = \max \{k \mid \exists \text{ germs } f_{1}, \dots, f_{k} \text{ in the maximal ideal}$ of $\mathcal{O}_{X,x}$ such that $\forall i \leq k$, the coset $f_{i} + \sum_{j < i} f_{j} \mathcal{O}_{X,x}$ is not a zero divisor in the ring $\mathcal{O}_{X,x} / \sum_{j < i} f_{j} \mathcal{O}_{X,x}$. For the standard concepts of sheaf cohomology with supports and their relation to the algebraic properties of the stalks the reader may consult [5], [8], [9] or [11]. This generalizes earlier results of Oka [7], Abhyankar [1], and Thimm [10] for hypersurfaces and complete intersections.

At about the same time the present writer became interested in the question of extending holomorphic differential forms across sub-

LAWRENCE BRENTON

varieties of analytic spaces in an effort to understand the local contribution of singular points to the groups $H^q(X, \Omega_X^p)$, especially for compact spaces where the dimensions of these groups are important numerical invariants (see [2] and [3] for some results of this sort for hypersurfaces). Since in particular a 0-form is just an analytic function it seems natural to consider spaces with a higher degree of "normality" and to extend and relate Markoe's result to statements about higher order differential forms. For instance we will see below (Proposition 6) that if X is a complete intersection at each point, then X is normal if and only if there are no local holomorphic 1forms supported on the singular set.

DEFINITION 1. Let (X, \mathcal{O}_X) be a reduced complex subspace of a domain $D \subset \mathbb{C}^N$, with ideal sheaf $\mathscr{I}_X \subset \mathscr{O}_D$. By the sheaf of germs of local holomorphic p-forms on X we mean the sheaf on X

$$\Omega_X^p = \Omega_D^p / (\mathscr{I}_X \Omega_D^p + d\mathscr{I}_X \wedge \Omega_D^{p-1})$$
 ,

where $d\mathscr{I}_X \wedge \mathscr{Q}_D^{p-1}$ is the subsheaf of \mathscr{Q}_D^p consisting of those germs of the form $df \wedge \mathscr{P}^{p-1}$, $f \in \mathscr{I}_X$. For $U \subset X$ an open set, by a holomorphic p-form on U we shall mean a section on U of this sheaf.

DEFINITION 2. For $X \subset D$ as above and k a non-negative integer, a point $x \in X$ is said to be *differentiably k-normal* if for any integer $p \leq k$ and any sufficiently small neighborhood U of x, every holomorphic p-form ω^p defined on the regular points of U extends to a holomorphic p-form $\tilde{\omega}^p$ on all of U. \underline{X} itself is differentiably k-normal if each of its points is differentiably k-normal. That is, X is differentiably k-normal if $\forall p \leq k$ the restriction of sections $\Gamma(U, \Omega_X^p) \rightarrow$ $\Gamma(U - \sum, \Omega_X^p)$ is surjective for all open sets U, where \sum is the singular set of X.

REMARKS. It is clear that Ω_X^p is coherent and (hence) that $\forall k$ the set \sum_k of points of X that are not differentiably k-normal is a subvariety of X. If dim X > 1, then differentiably 0-normal is the same as normal, and $\sum \supseteq \sum_N \supseteq \sum_{N-1} \supseteq \cdots \supseteq \sum_0$. The adverb "differentiably" is used here to distinguish the concept under view from that of the "k-normality" of Andreotti and Siu [2]. There a space is k-normal if the kth gap sheaf $\mathcal{O}_X^{(k)}$ is equal to the structure sheaf \mathcal{O}_X —that is, if holomorphic functions always extend across subvarieties of dimension $\leq k$. I thank the referee for drawing my attention to this terminology.

The main result of [3] has the consequence that if X is locally a hypersurface, then X is differentiably k-normal but not differentiably

(k+1)-normal for $k = (\operatorname{codim} \Sigma) - 2$. To give a concrete example, put

$$F(z_1, \dots, z_{n+1}) = (z_1)^m + \dots + (z_{n+1})^m$$

for some integer $m \ge 2$, and let $X \subset C^{n+1}$ be the Fermat cone defined by F = 0. X has one singular point, the origin in C^{n+1} , and it is easy to establish (by Corollary 5 below, for instance) that X is differentiably (n - 2)-normal.

To show that X is not, however, differentiably (n-1)-normal, denote by U_i , $i = 1, \dots, n+1$, the affine set $\{z_i \neq 0\} \subset C^{n+1}$, and define a holomorphic (n-1)-form ω_i^{n-1} on U_i by

$$\omega_{\iota}^{n-1} = (z_i)^{\iota-m}\sum_{l \neq i} \left(-1
ight)^{\sigma_{il}} z_l dz_1 \wedge \cdots \widehat{dz_i} \cdots \widehat{dz_l} \cdots \wedge dz_{n+1}$$

Here \frown means "omit this factor", and $\sigma_{il} = 0$ if $(i, l, 1, 2, \dots, \hat{i} \dots, \hat{l} \dots, n + 1)$ is an even permutation of $(1, 2, \dots, n + 1)$, 1 if an odd permutation. Direct computation verifies that on $U_i \cap U_j (i < j)$,

$$\omega_{\imath}^{\mathfrak{n}-\mathfrak{1}}-\omega_{j}^{\mathfrak{n}-\mathfrak{1}}=F\psi_{\imath j}^{\mathfrak{n}-\mathfrak{1}}+dF\wedgearphi_{\imath j}^{\mathfrak{n}-\mathfrak{1}}$$

for

$$\psi_{ij}^{n-1} = (-1)^{\sigma_{ij}} (z_i z_j)^{1-m} dz_1 \wedge \cdots \widehat{dz_i} \cdots \widehat{dz_j} \cdots \wedge dz_{n+1}$$

and for

$$arphi_{ij}^{n-2} = (m-1)^{-1} (z_i z_j)^{1-m} \sum_{l
eq i,j} (-1)^{\varepsilon_{ilj}} z_l dz_1 \wedge \cdots \widehat{dz}_i \cdots \widehat{dz}_j \cdots \widehat{dz}_l \cdots$$

 $\wedge dz_{n+1}$,

where $\tau_{ilj} = 0$ if 1 < l < j, 1 otherwise. Thus the ω_i^{m-1} together comprise a well-defined section ω^{n-1} of Ω_X^{m-1} on $X - \{0\}$.

But ω^{n-1} does not extend across 0. For if it did, then (since C^{n+1} is Stein) there would exist a globally defined (n-1)-form $\tilde{\omega}^{n-1}$ on C^{n+1} satisfying, for all i,

(*)
$$ilde{\omega}^{n-1} = \omega_i^{n-1} + F \psi_i^{n-1} + dF \wedge arphi_i^{n-2}$$

for some (n-1)-, (n-2)-forms ψ_i^{n-1} , φ_i^{n-2} on U_i . Put

$$\widetilde{\boldsymbol{\omega}}^{n-1} = \sum_{1 \leq k < l \leq n+1} f_{kl} dz_1 \wedge \cdots \widehat{dz}_k \cdots \widehat{dz}_l \cdots \wedge dz_{n+1}$$

$$\psi_i^{n-1} = \sum_{1 \leq k < l \leq n+1} g_{ikl} dz_1 \wedge \cdots \widehat{dz}_k \cdots \widehat{dz}_l \cdots \wedge dz_{n+1}$$

$$\varphi_i^{n-2} = \sum_{1 \leq p < q < r \leq n+1} h_{ipqr} dz_1 \wedge \cdots \widehat{dz}_p \cdots \widehat{dz}_q \cdots \widehat{dz}_r \cdots \wedge dz_{n+1},$$

where the f's are entire holomorphic functions on C^{n+1} and the g's and h's are defined and homomorphic on U_i . Then for i < j, equating

coefficients of $dz_1 \wedge \cdots \widehat{dz_i} \cdots \widehat{dz_j} \cdots \wedge dz_{n+1}$ in (*) gives, on U_i ,

$$(**) f_{ij} = (-1)^{\sigma_{ij}} z_j (z_i)^{1-m} + F g_{iij} + (m-1) \sum_{l \neq i,j} z_l \bar{h}_{iijl}$$

for

$$ar{h}_{iijl} = egin{cases} (-1)^{l+1} h_{ilij} & ext{for} \quad l < i \ (-1)^l h_{iilj} & ext{for} \quad i < l < j \ . \ (-1)^{l+1} h_{iijl} & ext{for} \quad l > j \end{cases}$$

Now let α be an *m*th root of -1, and evaluate (**) along the punctured line $L_{\alpha} - \{0\}$, for L_{α} defined by $z_j = \alpha z_i, z_l = 0$ for $l \neq i, j$, to conclude

(***)
$$f_{ij} = (-1)^{\sigma_{ij}} \alpha z^{2-m}$$

on $L_{\alpha} - \{0\}$. Thus if m > 2, f_{ij} cannot be defined at the origin, a contradiction. If m = 2, then $f_{ij} = (-1)^{\sigma_{ij}}\alpha$ on $L_{\alpha} - \{0\}$, while if $\beta \neq \alpha$ is the other square root of -1, then similarly $f_{ij} = (-1)^{\sigma_{ij}}\beta$ on $L_{\beta} - \{0\}$. Thus in this case also f_{ij} cannot be defined at 0. This contradiction shows that ω^{n-1} cannot be extended from $X - \{0\}$ to all of X, and hence that X is not differentiably (n - 1)-normal.

Actually, much more can be said about (n-1)-forms on this space X. For m_1, \dots, m_{n+1} integers, with $0 \le m_l \le m-2$ for all l, define a holomorphic (n-1)-form on $X - \{0\}$ by

By the same argument as above for ω^{n-1} , $\omega_{m_1,\dots,m_{n+1}}^{n-1}$ does not extend across 0. In fact, the set $\{\omega_{m_1,\dots,m_{n+1}}^{n-1}\}$ for all such indices m_1, \dots, m_{n-1} forms a basis over C for the quotient of stalks $\Omega_{X-\{0\},0}^{n-1}/\Omega_{X,0}^{n-1}$. That is, if U is any neighborhood of 0 in X, then every holomorphic (n-1)form ξ^{n-1} on $U - \{0\}$ can be written uniquely

$$\xi^{n-1} = p\omega^{n-1} + \eta^{n-1}$$

where p is a polynomial in z_1, \dots, z_{n+1} with constant coefficients and of degree at most m-2 in each variable z_i , and where η^{n-1} is a holomorphic (n-1)-form on all of U. This example quite easily generalizes to the Brieskorn varieties $(z_1)^{p_1} + \cdots + (z_{n+1})^{p_{n+1}} = 0$.

We want next to introduce a notion of independence of differential forms, which is our main tool in studying differentiable k-normality.

DEFINITION 3. Let R be a commutative ring, let M be the free R-module on generators dx^1, \dots, dx^N , and denote by Λ^*M the total exterior algebra of M. A sequence $\Phi_1, \dots, \Phi_r \in M$ is called k-inde-

pendent over R if $\forall p \leq k$ and $\forall i \leq r$, if

$$\omega_i^{\scriptscriptstyle p} \wedge arPsi_i = \sum\limits_{j < i} \omega_j^{\scriptscriptstyle p} \wedge arPsi_j$$

for some $\omega_j^p \in \Lambda^p M$, $j = 1, \dots, i$, then $\exists \varphi_j^{p-1} \in \Lambda^{p-1} M$, $j = 1, \dots, i$, such that

$$\pmb{\omega}_i^p = \sum\limits_{j \leq i} arphi_j^{p-1} \wedge \pmb{\varPhi}_j$$
 .

THEOREM 4. Let (X, \mathcal{O}_X) be a reduced subspace of a domain Din \mathbb{C}^N . Denote by $\mathscr{I}_X \subset \mathscr{O}_D$ the ideal sheaf defining X and by Σ the set of singular points of X. Let $x \in X$ and suppose that for some integer $k \geq 0$,

(i) $\operatorname{codh}_{x} \mathscr{O}_{x} > \dim_{x} \Sigma + k + 1$, and

(ii) there exist generators F_1, \dots, F_r of $\mathscr{I}_{X,x}$ such that dF_1, \dots, dF_r are k-independent over $\mathscr{O}_{X,x}$.

Then for all integers p, q with $p + q \leq k + 1$,

$$(\mathscr{H}^{q}_{\Sigma}\Omega^{p}_{X})_{x}=0$$
.

Proof. Without loss of generality assume that the functions F_i are defined throughout D and generate \mathscr{I}_X at each point of D. Put $X_0 = D, X_1 = V(F_1), X_2 = V(F_1, F_2), \dots, X_r = X$, where $V(F_1, \dots, F_i)$ means the variety of F_1, \dots, F_i with ideal sheaf $\sum_{j \leq i} F_j \mathscr{O}_D$. Fix $k' \leq k + 1$. We will prove by induction on i that $\forall i$

$$(\ ^{*}\) \qquad \qquad \mathscr{H}^{q}_{\Sigma}(\varOmega^{p}_{X_{i}}\otimes \mathscr{O}_{X})_{x}=0 \quad \forall q+p=k' \; .$$

The case i = r, then, is the desired result.

If i = 0, $\Omega_{x_i}^p \otimes \mathcal{O}_x = \Omega_p^p \otimes \mathcal{O}_x$ is free, so (*) holds by the condition $q \leq k' < \operatorname{codh}_x \mathcal{O}_x - \dim_x \sum$ ([9], Theorem 1.14). Now let i > 0 and assume inductively that $\mathscr{H}_{\Sigma}^q (\Omega_x^p \otimes \mathcal{O}_x)_x = 0 \quad \forall q + p = k'$. We have the complex

$$\begin{array}{ccc} (**) & \mathbf{0} \longrightarrow \mathscr{O}_{X} \xrightarrow{\rho_{dF_{i}}^{(0)}} \mathcal{Q}_{X_{i-1}}^{1} \otimes \mathscr{O}_{X} \xrightarrow{\rho_{dF_{i}}^{(1)}} \mathcal{Q}_{X_{i-1}}^{2} \otimes \mathscr{O}_{X} \longrightarrow \cdots \\ & \longrightarrow \mathcal{Q}_{X_{i-1}}^{p-1} \otimes \mathscr{O}_{X} \xrightarrow{\rho_{dF_{i}}^{(p-1)}} \mathcal{Q}_{X_{i-1}}^{p} \otimes \mathscr{O}_{X} \xrightarrow{\pi_{i}^{(p)}} \mathcal{Q}_{X}^{p} \otimes \mathscr{O}_{X} \longrightarrow \mathbf{0} , \end{array}$$

where $\rho_{dF_i}^{(j)}: \Omega_{X_{i-1}}^j \otimes \mathcal{O}_X \to \Omega_{X_{i-1}}^{j+1} \otimes \mathcal{O}_X$ is induced by right wedge multiplication by dF_i and where $\pi_i^{(p)}$ is the natural projection. Since dF_1, \dots, dF_i are at least (p-1)-independent over $\mathcal{O}_{X,x}$ at x, (**) is exact at x. Hence for $j = 1, \dots, p-1$, the sequences

$$0 \longrightarrow \operatorname{im} \rho_{{}^{dF_i}}^{{}^{(j-1)}} \longrightarrow \mathscr{Q}_{{}^{X_{i-1}}}^j \otimes \mathscr{O}_{{}^{X}} \longrightarrow \operatorname{im} \rho_{{}^{dF_i}}^{{}^{(j)}} \longrightarrow 0$$

are exact at x, and at the last stage, so also is

$$0 \longrightarrow \operatorname{im} \rho_{dF_i}^{(p-1)} \longrightarrow \mathcal{Q}_{X_{i-1}}^p \otimes \mathscr{O}_X \longrightarrow \mathcal{Q}_{X_i}^p \otimes \mathscr{O}_X \longrightarrow 0 \ .$$

Taking $\mathscr{H}_{\Sigma}^{\mathfrak{Q}}$ at x, this yields

$$\cdots \longrightarrow \mathscr{H}_{\Sigma}^{p+q-j} (\Omega^{j}_{X_{i-1}} \otimes \mathscr{O}_{X})_{x} \longrightarrow \mathscr{H}_{\Sigma}^{p+q-j} (\operatorname{im} \rho^{(j)}_{dF_{i}})_{x} \\ \longrightarrow \mathscr{H}_{\Sigma}^{p+q-j+1} (\operatorname{im} \rho^{(j-1)}_{dF_{i}})_{x} \longrightarrow \cdots$$

and

$$\begin{array}{ccc} & & \longrightarrow \mathscr{H}_{\Sigma}^{q}(\mathcal{Q}_{X_{i-1}}^{p} \otimes \mathcal{O}_{X})_{x} \longrightarrow \mathscr{H}_{\Sigma}^{q}(\mathcal{Q}_{X_{i}}^{p} \otimes \mathcal{O}_{X})_{x} \\ & & \longrightarrow \mathscr{H}_{\Sigma}^{q+1}(\operatorname{im} \rho_{dF_{i}}^{(p-1)})_{x} \longrightarrow \cdots . \end{array}$$

By the inductive hypothesis, the first group in each of these triples vanishes, so the induced maps

$$\mathscr{H}^{q}_{\Sigma}(\Omega^{p}_{X_{i}}\otimes \mathscr{O}_{X}) \longrightarrow \mathscr{H}^{q+1}_{\Sigma}(\operatorname{im} \rho^{(p-1)}_{dF_{i}})_{x} \longrightarrow \mathscr{H}^{q+2}_{\Sigma}(\operatorname{im} \rho^{(p+2)}_{dF_{i}})_{x} \longrightarrow \cdots \\ \longrightarrow \mathscr{H}^{p+q-1}_{\Sigma}(\operatorname{im} \rho^{(1)}_{dF_{i}})_{x} \longrightarrow \mathscr{H}^{p+q}_{\Sigma}(\operatorname{im} \rho^{(0)}_{dF_{i}})_{x} \cong (\mathscr{H}^{p+q}_{\Sigma}\mathscr{O}_{X})_{x} = 0 ,$$

are all injective. Hence in particular $\mathscr{H}_{\Sigma}^{q}(\Omega_{X_{i}}^{p}\otimes \mathcal{O}_{X})_{x}=0.$

COROLLARY 5. Let $X \subset D \subset \mathbb{C}^N$ be a complete intersection of dimension n. Suppose that $\mathscr{I}_X \subset \mathscr{O}_D$ has generators F_1, \dots, F_{N-n} whose varieties meet transversally and are such that dF_1, \dots, dF_{N-n} are k-independent in any order over \mathscr{O}_X at each point of X. Then X is differentiably (k-2)-normal.

Proof. It is shown in [3] (Lemmas 1 and 2 and Remark 6) that the single function F_i is k-independent over \mathscr{O}_X at $x \Leftrightarrow$ for some choice of local co-ordinates z^1, \dots, z^N in D the derivatives $\partial F_i/\partial z^1, \dots, \partial F_i/\partial z^k$ form a regular $\mathscr{O}_{X,x}$ -sequence $\Leftrightarrow \operatorname{codim}_X(\sum_i \cap X) \ge k$ at x, for \sum_i the singular set of the variety X_i of F_i . Since the $V(F_i)$ meet transversally, $\sum = \bigcup_{i=1}^{N-n} (\sum_i \cap X)$. Thus $\dim_x \sum = \max\{\dim_x(\sum_i \cap X)\} \le$ $n-k = \operatorname{codh}_x \mathscr{O}_X - k$, at each point $x \in X$. By the theorem, then, $\mathscr{H}_2^q \mathscr{Q}_X^p = 0 \ \forall p+q \ge k-1$. Taking q = 1 we conclude that $\mathscr{H}_1^* \mathscr{Q}_X^p = 0$ $\forall p \le k-2$. That is, for every open set $U, H_2^*(U, \mathscr{Q}_X^p) = 0$. The conclusion now follows from the sequence

$$H^0(U, \Omega^p_X) \longrightarrow H^0(U - \sum, \Omega^p_X) \longrightarrow H^1_2(U, \Omega^p_X)$$
.

REMARK. Taking q = 0 in the conclusion to Theorem 4 (respectively, in its application in Corollary 5) shows that such spaces have no local holomorphic *p*-forms supported on \sum for $p = 0, 1, \dots, k + 1$ (respectively, for $p = 0, 1, \dots, k - 1$). This observation suggests the characterization of normality mentioned in the introduction:

PROPOSITION 6. Let x be a point of a reduced analytic space

266

 (X, \mathscr{O}_{X}) such that X is a complete intersection at x. Then X is normal at $x \Leftrightarrow H_{\Sigma}^{0}(U, \Omega_{X}^{1}) = 0 \forall$ sufficiently small neighborhoods U of x, for Σ the set of singular points of X.

Proof. Complete intersections have 0-independent generators. Namely, if locally X is an n-dimensional subvariety of N-dimensional polydisc Δ^N , and if F_1, \dots, F_{N-n} generate the ideal of X in Δ^N , then at the regular points of X near x the differentials dF_1, \dots, dF_{N-n} are independent over C. That is, if $g_i dF_i = \sum_{j < i} g_j dF_j$, then the g's are identically 0 most places in a neighborhood of x, hence everywhere.

Now Theorem 4 applies. X is normal at $x \Rightarrow \operatorname{codim}_x \sum > 1 \Rightarrow$ $(\mathscr{H}_{\Sigma}^{0}\Omega_{X}^{1})_{x} = 0 \Rightarrow H_{\Sigma}^{0}(U, \Omega_{X}^{1}) = 0 \forall$ sufficiently small neighborhoods U of x.

Conversely, $(\mathscr{H}_{\Sigma}^{0}\Omega_{X}^{1})_{x} = 0 \rightarrow dh_{x}\Omega_{X}^{1} < \operatorname{codim}_{x} \sum ([9], \text{Theorem 1.14}).$ If $\operatorname{codim}_{x} \sum$ were equal to 1, this would mean that $dh_{x}\Omega_{X}^{1} = 0$ and $\Omega_{X,x}^{1}$ is free. But then x is a regular point of X, contradicting $\operatorname{codim}_{x} \sum = 1$. (If dim X = 1, we should look at $\mathscr{H}_{\Sigma \cup \{x\}}^{0}\Omega_{X}^{1}$ throughout, and at this point achieve not a contradiction but the assertion that x is regular, hence normal.) The alternative is $\operatorname{codim}_{x} \sum > 1$, which implies normality by the Oka-Abhyankar-Thimm-Markoe criterion, or by Theorem 4.

Added in proof. It has recently come to the author's attention that similar results have been obtained by G.-M. Greuel, Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollstandigen Durchschnitten Math. Ann., 214 (1975), 235-266. For isolated singularities of hypersurfaces the topic was first considered from the present point of view by Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflachen, Manuscripta Math., 2 (1970), 103-161.

References

1. S. Abhyankar, Concepts of order and rank on a complex space and a condition for normality, Math. Ann., **141** (1960), 171-192.

6. A. Markoe, A characterization of normal analytic spaces by the homological codimension of the structure sheaf, Pacific J. Math., **52** (1974), 485-489.

7. K. Oka, Lemma Fondamental, J. Math. Soc. Japan, 3 (1951), 204-214.

^{2.} A. Andreotti and Y.-T. Siu, *Projective embedding of pseudoconcave spaces*, Annali di Pisa Scuola Norm. Sup., (3) **24** (1970), 231-278.

^{3.} L. Brenton, Complex singularities: a Riemann-Roch theorem for complex surfaces and extensions of holomorphic differential forms, Thesis, University of Washington, Seattle, 1974.

^{4.} _____, On the homological dimension of sheaves of differential forms on a complex hypersurface, (1978), (to appear).

^{5.} R. Hartshorne, *Local cohomology*, Lecture notes no. 41, Springer-Verlag, Berlin-Heidelberg-New York, 1967.

^{8.} G. Scheja, Riemannsche Hebbarkeitssätze für cohomologieklassen, Math. Ann., 144

(1962), 345-360.

 Y.-T. Siu and G. Trautmann, Gap sheaves and extensions of coherent analytic subsheaves, Lecture notes no. 172, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
 W. Thimm, Über Moduln und Ideal von holomorphic Funktionen mehrerer Variablen, Math. Ann., 139 (1959), 1-13.

Received May 22, 1979 and in revised form March 18, 1980. This research was supported in part by National Science Foundation Research Grant No. MCS 77-03540.

WAYNE STATE UNIVERSITY DETROIT, MI 48202