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THE NUMBER OF AUTOMORPHISMS OF AN
ATOMIC BOOLEAN ALGEBRA

JUDY ROITMAN

A method of construction via forcing is developed which
allows great freedom in the interplay among the number of
atoms, number of automorphisms, size of the algebra, and such
objects of settheoretic interest as c. As by-products we have

THEOREM 1. The following is consistent: there is a 0-
dimensional Hausdorff space with fewer than c autohomeo-
morphisms, at least one of which moves a nonisolated point.

THEOREM 2. The following is consistent: there is an
infinite Boolean algebra with more automorphisms than
elements, the number of whose automorphisms is not a
power of 2.

0* Introduction* This paper explores the interplay among the
number of atoms, number of automorphisms, and size of an atomic
Boolean algebra, and the relation of these cardinals to such set
theoretic objects as c. As by-products we have

THEOREM 1. The following is consistent: there is a ^-dimensional
Hausdorff space with fewer than c automorphisms, at least one of
which moves a nonisolated point.

THEOREM 2. The following is consistent: there is an infinite
Boolean algebra with more automorphisms than elements, the number
of whose automorphisms is not a power of 2.

Background. De Groot and McDowell had shown that a regular
Hausdorff space has uncountably many automorphisms if at least one
nonisolated point is moved by some automorphism. Their proof
suggested that "uncountably many" might be pushed to "at least c
many," but Theorem 1 refutes this.

Theorem 2 is a partial answer to question 4 of the triple survey
paper [2]. We'll say that a Boolean algebra is rich if the number
of automorphisms is greater than its size. If λ ^ K < 2λ it's easy
to find rich algebras of size /c with 2λ automorphisms. Must all rich
algebras be of this type? Theorem 2 says no. What cardinals are
possible for the number of automorphisms of a rich algebra?
Theorem 3(c), below, gives a wide range of possibilities.

The main theorem of this paper is the result of an investigation
of how a construction of van Douwen could be generalized, altered,
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and eventually mauled in order to construct, in certain models of
set theory, atomic Boolean algebras with various properties which
demonstrate that certain cardinal invariants have few restraints.
We need some terminology to state these results.

An almost rigid algebra is one in which no automorphism moves
infinitely many atoms. Define Pv(p) as the set of functions from p
into 2 of size <η. Recall that if M is a model of set theory and
η<v = η in M then forcing with Pη(p) over M preserves cardinals.
As ad hoc terminology, say that a triple (λ, 7, tc) is realized if there
is a Boolean algebra with a dense set of atoms for which λ = number
of atoms, 7 = number of automorphisms, and fc = cardinality.

THEOREM 3. Let M be a model of set theory in which η<η — r]
and let N = Mp*{p). The foff wing hold in N:

(a) if(t)SV = ^<P then (λ, λ, ic) is realized in an almost
rigid algebra for any tc e [λ+, 2λ],

(b) if r] <; λ < p, λ <£ 7 ^ tc <* 2\ and (λ Φ K), then (λ, 7, fc) is
realized a not almost rigid algebra.

(c) if Ύ] ^ λ < p and, for some σ, X ^ tc < 7 = λ% then (λ, 7, K)
is realized.

Part (c) generalizes further, but to state it now would just have
made it even less accesible to the reader. It is stated in full
generality in §5.

We flesh out Theorem 3 by an example which gives Theorem 2
as an immediate corollary. Here's a sample of what happens when
you add fc$ωi+1 subsets of ω2 via &>2-closed conditions to a model of
GCH (here η = ωif p = Nβ l + 1):

From l(a) an almost rigid atomic Boolean algebra with fc$2

atoms may have size ^a for any αe[3, ωx + 1].
From l(b) there is a plethora of realized triples. For example,

there is an atomic Boolean algebra of size y$ωi with fc$17 atoms and
fc$ω automorphisms.

From l(c) there is an atomic Boolean algebra of size ^ ω with
^ ω atoms and fc$ω+1 automorphisms. This proves Theorem 2 since,
in N, 2«i < (*Uω = «φ + 1 < 2TK

Here's how to prove Theorem 1 from the constructions of
Theorem 3. Add at least ω2 Cohen reals to any model of set theory
so CH doesn't hold. By Theorem l(b) there is an atomic Boolean
algebra with countably many atoms and exactly ω1 automorphisms.
Inspecting the construction shows that some automorphism moves
some nonatomic element to an incompatible element. By Stone
duality this means the Stone space has exactly ω1 automorphisms,
at least one of which moves a nonisolated point.
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The paper is organized as follows: §1 gives preliminaries, mostly
set-theoretic. §2 constructs almost rigid algebras to prove
Theorem 3(a). §3 gives canonical forms for Boolean algebras used
in §4, which gives the simplest nonalmost rigid construction. §5
uses a direct limit of previous constructions to complete the proofs
of 3(b) and (c).

I thank Jim Loats for introducing me to these questions and
stimulating my interest in them.

1* Preliminaries* All algebras in this paper are Boolean algebras
with an infinite dense set of atoms. Thus without loss of generality
an algebra B is a subalgebra of some &*(A), where A is an infinite
set of ordinals, and contains all finite and cofinite subsets of A. We
say B is an algebra on A and occasionally identify the atom {a}
with the element a—this will be clear from the context.

A\ is the set of all permutations of A. For feAl, xc:A, we
write fix) = {f(a):aex}. Thus A\ is identified with the full set of
automorphisms of the algebra &*(A). If B is an algebra on A, Ψ
an automorphism of B, and feA\ is defined by f(a) — Ψ({a}), then
fix) = Ψ{x) for all xeB. Thus the automorphism group of an algebra
is identified with a subgroup of A\

Let Ύ] be an infinite cardinal. An ordinal a is ^-finite iff a < rj;
otherwise it is ^-infinite. A set A is ^-finite iff \A\<7], where
\A\ = cardinality of A. If A is not ^-finite it is ^-infinite.

[A]<7] is the collection of all 37-finite subsets of A.
Λ2 is the set of functions from A into 2; 2A = \A2\.
Ordinals are denoted by lower-case Greek letters. The letters

λ, 7, Kj p9 y, ζ, τ are reserved for cardinals.
All models in this paper are countable transitive models of ZFC.

We say the model N is generated by an incresing sequence of models
{Ma: a < p) iff for some {ya: a < p}aV, each Ma = M0[{yβ: β < a}]
and N = M0[{ya: a < p}]. If M is a model and P a partial order,
Mp is the Boolean valued model gotten by forcing with P over M.

Let A be ^-infinite. The ^-closed partial order on A, Pη(A), is
the set of 77-finite functions from A into 2 under the order of reverse
inclusion. Note that Pω(A) is just the usual Cohen partial order on
A. A set xdA is an )?-Cohen subset of A over a model M iff its
characteristic function is the union of an ikf-generic filter on
Pr{A) Π M.

Fact 1.1 (preservation of ^-Cohen objects). Let M be a model
in which A! is ^-infinite and suppose x is an 57-Cohen subset of A!
over M.

(1) A — x is an ^-Cohen subset of Ar over M.
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(2) if A 6 M is an ^-infinite subset of A', then x Π A is an
)?-Cohen subset of A over M.

(3) if /: A' —> A is in ikf, / is onto, each f~\(x) is ^-finite, and
A is ^-infinite, then f(x) is an )?-Cohen subset of A over M.

We remind the reader of some elementary facts about forcing
with Pη(ρ) over a model M (we understand this to mean forcing
with Pη(p) Π M):

Fact 1.2 (model structure). Let N = ikfV^.
( i ) JV adds no new ^-finite sets of ordinals to those in M.
(ii) if 7]<η = >7 in M, cardinals are not collapsed.
(iii) if AAeΛf and \A\ = p in M then P9(/e>) is isomorphic to

(iv) homogeneity: letxeNbe an ^-Cohen subset of A dp over
M. Then is )?-Cohen over ikPV^.

(v) flexible iteration: let \X-ζ\^p and rj <^ λ. Then forcing
with P?(/o) gives a model generated by an increasing sequence of
models {Ma: a < ζ} where M = MQ and each Ma+ι has an element
which is an τ?-Cohen subset of λ over Mα. Furthermore, if η τ < ζ
then any subset of τ in N is in some Ma. (Note that ΛΓ is generated
by many different sequences.)

An immediate application of 1.2 (iv) is that forcing with Pv(p)
once is the same as forcing with it twice, that is, if P — Pv(p) then
Mp is isomorphic to (Mp)p. Thus we may assume M — (ikf*)p for
some M*, N = Mp, and hence for all τ, (2T)M = (2T)^. In particular,
in the hypothesis of Theorem 3 we may assume that the cardinalities
of power sets are preserved: for all r, (2T)M = (2τ)N. This gives rise
to the following convenient assumption, which will be used in most
of the later propositions:

CA: P = Pη{p) for some η and p; M is a model in which η<r} = η;
N - Mp; and for all τ, (2τ)M = (2τ)N.

Our proofs will be given in the framework of CA, although
other iterated models with enough 37-Cohen objects would do for
most of our constructions.

There is a useful combinatorial definition of 57-Cohen sets, whose
invocation in this paper will be called the usual Cohen argument
(TUGA): x is an 77-Cohen subset of A over M iff its characteristic
function meets every M-coded dense open subset of the space Π\<y(A2),
which is the space whose underlying set is A2 and whose basis is
all Ug = {f:fz)g} where gePv{A). We will use TUCA mostly in
the following two forms:

Assume M is a model, A is ^-infinite in M, x is an ^-Cohen sub-
set of A over M.

I (finite form). If SeM is an ^-infinite collection of finite 1-1
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functions from some n < ω into A and a an, then S has a subset
Sf of the same cardinality as S, S' eM[x], where for all i < n and
all seS', iea iff s(i) ex.

II (infinite form). If SeM is an ^-infinite collection of ^-finite
functions from A into 2 with disjoint domains, then S has a subset
S' of the same cardinality as S, S 'eJ l ί [4 so that if feS' and ae
dom/ then a ex iff f{ά) = 0.

We will also use the following density argument: Assume CA,
where N is generated by {Ma: a < ζ} as in (v) and each Ma+1 adds
an )?-Cohen subset of τ, xa, to Ma. Suppose η < c/(ζ). Then if / is
an ^-finite function from τ into 2, {a < ζ: for all β e dom f(f(β) =
0 iff β e Xa)} is cofinal in ζ.

2* Almost rigid algebras* The task here is to construct an
algebra B on λ so that if g e λ! moves infinitely many atoms then
there is a generic x e B so #(#) g JB. In order to manipulate the ele-
ments of our algebra we need the following

Canonical form. Let B be an algebra generated by a family
of sets £f and for xeS^ let Bx be the subalgebra of B generated
by Sf — {x}. Then every element of B has the form (6 Π x) U (c ~ »)
for some ί>, ce Bx.

PROPOSITION 2.1. Assume CA. Let ΎJ ^ λ < p and suppose /ce
[λ+, 2X]. Then there is an almost rigid algebra of size K with λ
atoms.

Proof. By 1.2 (v), N is generated by an increasing sequence of
models {Ma: a < λ+} where each Ma+1 has in it an ^-Cohen subset xa

of λ over Maf and each subset of λ in N is in some Ma. Since
(2λ)M — (2λ)N we let Bo e Mo be an algebra on λ of size tz so that every
infinite b e Bo has size λ. For a < λ+ let Ba be the algebra generated
by {xβ: b < a}. Notice that Ba e Ma+1 and Ba a Ma. Let B = U«<^+ Ba.
We show that JB is amost rigid.

Fix gex\ n JV where gr moves infinitely many atoms. We are
done if we can find a β so r̂(x̂ ) g B. For some fixed a, g eMa. So
if /5 ^ α, (/(ίfy) e Λf̂ +1, hence if g(xβ) e B, then g(xβ) e Bβ+1.

Suppose g moves infinitely many atoms, bnt fewer than rj of
them. By induction on the Bβ's and using the infinite case of TUCA,
every infinite element of B has size λ. So if any g(xβ) e B then
g(xβ) = xβ.

Let A c λ be infinite where g~\A) n A = 0 . By assumption, A
is ^-finite. Letting / be the function which is constantly 0 on A and
constantly 1 on g~\A)f by the density argument there is some β ^ a
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so that for all aeA, aexβif£a0g(xβ). But then g(xβ) Φ xβ and we
are done.

Now suppose g moves an ^-infinite set of atoms. Let d e Ba+1.
By the canonical form

d = (δ Π αβ) U (c ~ *«)

where δ, c e Ba. Let i?e ikfα be a set of size η so that g(E) Π E = 0.
There are four cases needed to show that g(xa) Φ d.

Case 1. δ f] c Π ί/CEO is ^-infinite. Then there is an ^-infinite
collection in M{a) of pairs <<5, g(δ)} where g(δ) e b f] c Π g(E). By the
finite case of TUCA there are^ many of these pairs for which δ $ xa9

so δ Π c D #(.#) ~ flr(cθ is ^-infinite. But d Π b Π c Γ) flr(JS7) = 6 D c Π flr(^),
so (Z ~ βr(ίcα) is ^-infinite, and g(xa) Φ d.

Case 2. (b ~ c) Π g{E) is ^-infinite. Then there is an ^-infinite
collection in M(a) of pairs <δ, #(δ)> where flr(5) e (6 — c) Π flr(-E). By
the finite case of TUCA there are 77-many of these pairs for which
g(δ) e (b — c) Π g{E) and δ £ xa. So (b ~ c) Γ) g{E) ~ g(xa) is ^-infinite.
But (d — c) Π #(i?) = (6 ^ c) Π sr(£r), so d — flf(a;α) is 77-infinite, and
g(xa) Φ d.

Case 3. (c ~ 6) Γ! flf(^) is ^-infinite. Then there is an ^-infinite
collection in Ma of pairs <<?, ̂ r(δ)> where flr(δ) e (c ^ δ) Π flr(J^). By the
finite case of TUCA there are 37-many pairs <<?, g(δ)} where d exa

and g(δ) e (c - δ) Π flf(£?). So (c - δ) Π sr(JS?) Π flr(a?«) is infinite. But
d Π (c ^ δ) is contained in λ ~ g(xa), so c/(α?J - d is infinite, and
g{xa) Φ d.

Case 4. g{E) - (δ U c) is ^-finite. By the infinite form of TUCA,
if g{E) ~ (δ U c) is 77-infinite, so is g(xa) ~ d.

Thus g(xa)£Ba and we have proved Proposition 2.1. By the
remarks after 1.2, this also proves Theorem 3(a).

3* More canonical forms* In trying to construct algebras
which are not almost rigid we want to carefully control the set of
automorphisms. This task is complicated by the fact that adding to
an algebra generally adds to its automorphism group, as the following
lemma implicit in [3] makes clear.

LEMMA 3.1. Let B be an algebra and suppose there is an in-
finite b e B and an automorphism f of B where f(b) Π δ — 0 . //
ce B is a subset of δ, then fc is an automorphism of B, where
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foifit) =

f(a) if aec
f-\a) if aef(c)
a otherwise .

By 3.1 an automorphism moving infinitely many atoms usually
carries along with it a whole family of automorphisms, whose
members are essentially the same. In the next section we will con-
struct algebras for which these are the only automorphisms. For
ease of proof we require the original function f to be especially
well-behaved.

DEFINITION 3.2. A function fe A\ is nice if it is its own inverse
and is nowhere the identity, lΐ feA\ is nice and b a A we define
fbeA\ by

f{a) if aebUf(b)
a otherwise .

Then fb is also a self-inverse element of A\ and is defined con-
sistently with 3.1.

For the remainder of this section fix A a set of ordinals and
some nice feA[ We say an algebra B on A is closed under /iff
for each b e B, fb is an automorphism of B.

Suppose S^ generates an algebra C on A and B is the closure
of C under /. Echoing the canonical form of §2 we say Cx is the
algebra generated by £f — {x}. Abusing this notation we say Bx

is the closure of Cx under /. By elementary set theory, B = {/β(6):
b,ceB}. So by the canonical form of §2 and the distributivity of
/ over Boolean operations, each element of B is the finite union of
terms where each term has one of the following forms (in all forms
beBx):

Form 1. b
Form 2. b f] x
Form 3. b ~ x
Form 4. 6 Π fix)
Form 5. b ~ f{x)
Form 6. δ n x ί l / W
Form 7. b Π x ~ fix)
Form 8. 6 n {fix) ~ x)
Form 9. b ~ {x U f{x)) .

If c is such a term we call b the .B^-part of the term and write
b = c*.

By further elementary calculations we may also assume that
each element of B is some U;<σδ; where
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(a) either b% — 0 or bt has form i.
(b) if % <; 5 and j ^ β then 6* D 6* = 0 .
(c) bx is disjoint from all other 6*.
(d) 62*n&8* = 0 .
(e) 6* Π&5* = 0 .

(f) nuw = 0.
This leads to the f — x canonical form: if b e B then b = U^« &<

where each nonempty bt has form i, and properties (a) through (f)
hold. We write 6* = (J^Λ* N o t e t h a t &cδ*.

4* Essentially one nontrivial automorphism* If j? is an
algebra on A and / e i ! in nice, we define ^{f,b) ~ {fh\b e B).
The task of this section is to construct an algebra B whose auto-
morphism class is exactly some J^if, B).

PROPOSITION 4.1. Assume CA. Let η <; λ < p and suppose
7 6 [λ+, 2λ\. Let / e λ ! Π M be nice. Then in N there is an algebra
B on X of size 7 whose automorphism group is exactly J^(f, b).
Hence (λ, 7, 7) is realized.

Proof. As in 2.1 we may assume iVis generated by {Ma: a < λ+}
where M = Mo and for all a < λ+ there is xa e Ma+1 which is an ψ
Cohen subset of λ over Ma. Let JS0 6 Mo be an /-closed algebra on
λ of size 7 where each infinite b e Bo has size λ. For a < λ+ let Ba

be the smallest /-closed algebra containing Bo U {xβ: b < α} and let
B — U«<̂ + B<χ- Then B has size 7. We show that its automorphism
class is exactly ^ * ( / , 5).

By the preservation facts of § 1, the / — x canonical form, TUCA,
and induction on the Ba's, each infinite element of B has size λ.
Recall from §1 that if A, A! are disjoint 77-finite element of λ then
for cofinally many a < λ+, Aaxa and A f) %a — 0- So the argument
in 2.1 shows that if gex\ and g differs from some element of
J^(f, B) on exactly an 77-finite set, then g is not an automorphism
of B.

So fix gex\ — ̂ ~(f, B) and assume g differs from each element
of ^~{f, B) on an ^-infinite set. Then g eMa for some a, and as in
2.1 if g(xa) e B then g(xa) e Ba+1 — Ba. So let b e Ba+1 ~ Ba and suppose
b has the / — xa canonical form \Jt bx (where S^ c {xβ: β ^ a}). We
show g(xa) Φ b.

Define the function ψ on λ by

and let E = {δ: g(δ) Φ f(δ)}, F = {δ: g(δ) Φ δ}. Since / is nowhere the
identity, λ = E U F. There are two cases: E ΓΊ F is ^-infinite and
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E n F is ^-finite.

Case 1. jEni*7 is ^-infinite. Note thatEf)FeMa. Ifg(EnF)~b*
is ^-infinite then by TUCA g(xa) ~ b is ^-infinite and we are done.
So assume &* Π g(E Π F) is ^-infinite. Then there is an ^-infinite
HeMa and a finite seMa so HaEΠ F, g(H)ab*f and ψ(g(δ)) — s
for all δeH.

Now the argument divides into subcases and subsubcases, all of
which exploit the fact that if δ e H then no two of δ, g(δ) or fg(δ)
are equal.

Subcase l(a). s c 6 . If s = {1} then g^ab, and by TUCA
both b ~ g(H Π xa) and #(iϊ n xa) ~ b are ^-infinite, so g(xa) Φ b.

Assume s c {3, 5}. Then g{H) cδ 3 U 6β. Consider all triples
<P, 9@), fg(δ)} where δeH. Then by TUCA there is an ^-infinite
Hr c H so that δ, #(<5) and /^(δ) are all elements of xa if δ e if'. But
then if δeH', g(β)$b3f since δ 3 c ~ x α ; and g(δ)£b5f since &5c~/(#α)
and g(δ) = ffg{δ) ef(xa). So gf(aja) — b is 77-infinite.

Similarly, if we assume s c {2, 4} we conclude that b ~ g(xa) is
^-infinite, thus exhausting all the subsubcases of Subcase l(a).

Subcase l(b). s f]6 = 0. We do the subsubcase s a {6, Ί, 9}; the
others are handled similarly and are left to the reader.

Assume sc{6, 7, 9}, i.e., g(H) c6 6 U b7 U δ9. Consider all triples
<δ, g(δ), fg(δ)) where δeH. Then by TUCA there is an ^-infinite
H'aH so δexa, g(d)$xa, and fg(δ)exa for all δeiϊ ' . But then
9{δ)ef{xa) ~ xa if δeH'. By the /—a; canonical form, if its then
h Π [/(»«) - <I = 0 , so if δ e H' then g(δ) g 6. Furthermore, g(H')a
g(xa). So flr(scα) —̂  δ is infinite.

Case 2. E Π F is ^-finite. Let # Π F be the closure of E 0 F
under g, g~\ E Π F is an ^-finite element of Afα. Define E* = E ~
EnF, F* = F ~ Ef)F. Note that g is the identity on E*, g = /
on ί7*, and E* f) F* = 0 .

Subclaίm. Suppose A = j?* off an ^-finite set, or A = F* off an
^-finite set. Then A& B.

Proof of subclaim. If A 6 JS, so is λ — A. Wlog assume A =
F* off an ^-finite set. Then g = Λ off an ^-finite set, fAe^{δ, B).
This contradicts our hypothesis on #.

Returning to Case 2, if λ — 6* is ^-infinite then #(#) ̂ δ by
TUCA, so λ — &* is 77-finite. Hence there is an τ?-finite HeMa and
a finite s c 10 so that if δ e H then ψ(δ) — x, and both H Π ί/*,
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H Π F* are ^-infinite. (The second assertion follows from the sub-
claim—otherwise each Boolean combination of the b* ?s would be con-
tained mod )?-finite in exactly one of E* or F*. But then i?* mod
^-finite would be a finite union of sets in B, hence in B, which
contradicts the claim.)

By TUCA, s Φ {1}. And by TUCA the following sets are ψ
in finite:

( i ) {g(δ) eHf)E:8exa, g(δ) exan f(χa)}.
(ii) {g(δ) eHΠE .δexa, g(δ) exa~ f(xa)}.
(iii) {g(δ) eHΠE: g{δ) exa~ f(xa), δ exa).
(iv) {g(δ) eHnF:δexa, g(δ) e f(xa) ~ xa}.

Then by TUCA (i) shows that g(xa) ~ b is 57-infinite if s c {2, 4, 7, 8, 9};
(ii) shows that g(xa) — b is infinite if s c {3, 4, 6, 8, 9}; (iii) shows that
b ~ g(xa) is 57-infinite if 7 e s or s c {3, 5}; and (iv) shows that g(xa) ~ b
is ^-infinite if s c {2, 5, 6, 7, 9}. By the /—α? canonical form this
covers all possibilities, and Proposition 2.1 is proved.

The proof of Theorem 1 sketched in §0 is completed by noting
that each xa ~ f(xa) is an infinite element of B which is moved by
the automorphism / onto a disjoint element.

5. Direct limits* To complete the proof of Theorems 3(b) and
3(c) we will combine the algebras constructed via the methods of 2
and 4 using a direct limit.

DEFINITION 5.1. Let S be a collection of disjoint subsets of λ
and for AeS let BA be an algebra on A. The direct limit Y,AeSBA

is the algebra on λ generated by {b aX:b e\JAes BA}.
Note that AeS then Ae^AesBA.

LEMMA 5.2. Let B = Σ^es-B* as in 5.1. Then if each BA has
size tcA and exactly yA automorphisms, B has size Σ^es &A ^nd at
least ΓLes ΊA automorphisms.

Proof. Size is clear. For the lower bound in automorphisms:
suppose gA is an automorphism of BA, for each AeS. Then ΓLesSU
is an automorphism of B.

To make the lower bound on automorphisms an upper bound as
well, we will take the direct limit of algebras constructed in parallel
via the same Cohen objects. For orientation, we give an extremely
rough description of how this is done.

Assume CA. Start out in the ground model with a collection
of algebras {BA:AeS} as in 5.1, and to each algebra associated a
permutation fΛ of A. The sizes of the A'a and BAs may vary, as
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long as they are ^-infinite, and as long as all of their elements are
^-infinite. Then we take a collection of ^-Cohen generic abjects,
intersect them with the A's, and add these to our algebras, closing
under the fAs. Finally we take the direct limit. Imitation of
previous arguments will show that the only automorphisms are those
in the proof of 5.2, or variant moving a finite number of atoms.

We define the generic direct limit assumption.

GDL. Assume CA. Let η <; λ < p. Assume that the following
hold in the ground model M:

(1) S is a partition of λ into ^-infinite sets.
( 2 ) {fA: A e S} is a family of functions, where each fAeA\ and

either fΛ is nice or it is the identity.
(3) {B(A):AeS} is a collection of algebras, each B(A) is an

algebra on A, B(A) has size >λ.
( 4 ) for each A e S, tcA is the size of B(A) and j A is the number

of automorphisms of B(A).
(5) each infinite element of B{A) is ^-infinite.
Since by 1.2 (v), AT is the model generated by {Ma: a < λ+} where

xa e Ma±ι is an τ?-Cohen subset of λ over Ma9 in N there is, for each
A 6 S, BA = the smallest /^-closed algebra on A containing B(A) U
{xa ΠA:a< λ+}. In N, let B = Σ ^ e 5 BA.

That's the end of GDL. Note that every infinite element of B
is ^-infinite.

LEMMA 3.3. Assume GDL and suppose gexl N moves an TJ-

ίnfinite set of atoms out of some Ae S. Then g is not an automor-
phism of B.

Proof. For some a, g e Ma and H e Ma where H is an ^-infinite
subset of A and g(H) Π A = 0 . We claim that g(xa)$B.

For suppose b e B. If 6 is a subset of some finite union of
elements of S, then the argument of 4.1 Case 1 applies directly.
Otherwise, b Z) A! for some A' e S and since, by TUCA, g(xa) contains
no 77-infinite set in the ground model, we are done.

LEMMA 5.4. Assume GDL, suppose g does not fit the hypothesis
of 5.3, and g moves an infinite set of atoms out of some AeS.
Then g is not an automorphism of B.

Proof. For some a, g e l , and there is an infinite ^-finite Ha A,
HeMy with g(H) Π A = 0 . By the argument of 2.1, if g is an
automorphism of B then g(xβ f) A) = xβ Π A for all β ^ α, but the
density argument shows that for many β :> ag(xβ Π i ) ί l g(H) Φ 0 ,
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so g(xβ Π A) ~ (xβ Π A) Φ 0 and we are done.
Putting together 5.2, 5.3, and 5.4 gives us

COROLLARY 5.5. Assume GDL. B has exactly ΓLesT^ automor-
phisms.

Now we prove Theorem 3(b) and give a better version of 3(c).

Proof of 3(b). Assume CA and let λ, d, K be as in the hypothesis
of 3(b). Assume GDL where S = {A, AJ, |Ao| = \At\ = λ, ^ 0 is
constructed as in 4.1 with JAQ = /ĉ 0 = 7, and 2?^ is constructed as
in 2.1 to be almost rigid of size K. Corollary 5.5 completes the
proof.

Improved Theorem 3(c). Assume CA and let η ^ λ < p. For
each a <Xlet /cae [λ+, 2λ] and let 7a e [λ, tca]. Then where K = Σ α < ; yrα

αwd 7 = Π«<̂  7α, (λ, 7, Λ:) is realized.

Proof. Assume GDL where S = {Aα: α < λ}, and each BAa has
size Λ:α and exactly j a automorphisms. By 5.5 we're done.

Question. Recall the definition of a rich algebra in §0. Must
the number of automorphisms of a rich algebra be the cardinality
of an infinite product? In particular, is y$ω possible?
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