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ISOMETRIES OF C(w)[0, 1]

V. D. PATHAK

By C(7l)[0, 1] (henceforth denoted by C(7l)) we denote the
Banach algebra of complex valued n times continuously differ-
entiable functions on [0, 1] with norm given by

11/11

By an isometry of C(n) we mean a norm-preserving linear
map of CCn) onto itself.

The purpose of this article is to describe the isometries
of C(w) for any positive integer n. More precisely, we show
that any isometry of CCn) is induced by a point map of the
interval [0, 1] onto itself.

The isometries of C(1) (with the same norm as above) are deter-
mined by M. Cambern [1]. N. V. Rao and A. K. Roy [2] have also
determined the isometries of C(1) with norm of / e C(1) given by
|]/1| = 11/11̂  + 11/'I loo and even for more general norms.

In the proof we shall follow the techniques of [1].

1* Let W denote the compact space [0, 1] x [ — π, ττ]\ We prove
the following propositions.

PROPOSITION 1.1. Given (x, θlf , θn) e W, then there exists h e
C{%) such that

for ye[O, 1], y Φ x, with \h(x)\ = h(x) > 0, \h'(x)\ = βiβ%'(x) > 0,
\h"(x)\ = eiβ%"(x) > 0, , \htn\x)\ = eu«h<n\x) > 0.

Proof. Let f0 be the real valued, nonnegative continuous function
on [0, 1] defined as follows

0 (y - x) S - λ

My) =

1 + 2{n\){y -x) —jL- < (y - x) S 0

1 - 2(nl)(y - x) 0 < (y - x) ^ L

2(n\)
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2(n\)

<{y-χ).
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S y
fr-ι(t)dt. It can be easily

X

verified that for 1 ^ r ^ n, fr(y) is as follows:

fr(v) = i

-e-1

(v

r

1 = 1

r !

r !

(-D

1

2(1

2(ί

( r -

(

(y — x)*"^5

M ) !
< (2/ - a;) ^ 0

U (j + 1)! (2(n! ))ί (r - j)! 2(w!)
< (y - x) .

Now let

g(y) = ()

Σ
Clearly, for 1 ^ r ^ n, fίr) = fn_r. Therefore g e C{n) and

1 ( ^ "
flr(r>(y) =

(2n - 1)! o=r (j - r)!
for 1 ^ r ^

Thus

g(x) = 0, g{r\x) =
- D !

and Q{n)(x) = e

iil>l~On\ There fore

-ffr) for 1 ^ r ^ n - 1 ,

Σ«•=<> r ! (2% - 1)! « =i r ! %!

Now consider Σ*=o (Iff(Γ)(2/) I/*'!) for ί/e[0, 1] and y Φ x.

Case 1. Let (y - x) ^ (-l/2(»!)).

( 1 )
+ - 1)! & r\

\y - x\in-r~j)

j + I); (2(n\))j(n - ?• - j)\

For w = 1, 2, i t can be easily verified t h a t r i g h t hand side of (1) is

less t h a n ΣJL 0 (\g{r)(x)\/r\). When w ^ 3 , denot ing (n\/(n - j)ljl) by

C;, (1) g ives
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4-

(2n- 1)1 P$- jl (2n - 1)! ^
(w-1) 1 (Λ-r) C -((

V
- r - 1 ) !

CjiΓ1-

Now

2(n -
- 1)! έ i r ! ~~ (2n - 1)! ^ί 2r-2

Thus we have

( 2 ) for n > 2 , L ( g ' < »

Also

- 1)!

for all ^ ̂  3 .

Thus

- 1)! .-i r!

1 (w-1) 1 1

(%!)

- r - ΐ)\
((n-r)

! 2(n - r - 1)!

1

(2(n\)) 2(n~ 1)1 £ΞJ

Λ \
Un-i-r)

2{2{n!))(n - 1)! ==2(2(^!))(^ - 1)! ^ 64 ' 2(n\)'

n-l) Ĵ  («-r)

r =0 T ί J=l - r - 1)1

By (2) and (3) it follows immediately that for all y e [0, 1] and y Φ x

C a s e 2 . L e t - ( l / 2 ( % ! ) ) < ( y - x)< 0

- 1)! /Ξi
1 y 1
- l)t & rl j - τ)\

n -I

+ Σ —
- «)—' , 2(nl)(y- xy-rΛ

(n — r)\ in — r + 1)!
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Σ(2% - 1)! Pi jl (2w - 1)! £3 r !

1)! iέί r! l A (j - r)!
- ( y - xy-r\

- r)! f

Q(y-a;)'-+1l
n - r + 1)! J

Λ ( l ) | ( y a ; )
^ r ! \(n-r)\ (n - r + 1)!

i V' i + _!. + V ( v _ x).\ (-
x).(2w - 1)! - i r ! w! ήΐ l 2 / ; tβ!(2» - 1)!

+ (-D* + 2(nl)(-iy-ί

 + "|7S (-I)'+ + |
s\(n — s)! s! (ί?. — s + 1)! »-=i s i r '

-VL + 2(9tiχ-i)*-M +

(n + 1)1

— s + 1)!

{ 1 2{nl)} +

n\ (n + 1)!

since all the other terms are negative. Verification in cases when
0 < (y - a?) <: (l/2(w!)) and (1/2(^1)) < (y - x) is similar. From this
it follows that the function h e C{n) defined by h(y) = 1 + e~iθιg{y) has
the desired properties.

PROPOSITION 1.2. For cm?/ feC{n)

[0 if l<k <n

(̂  !(/(»))* if k = n

where (fn-j+ιYk)(x) means the fcth derivative of fn~j+1 at x.

Proof. We prove this proposition by induction on w. For w = 1
it is obvious. Let it be true for n = r. Then we have

and

Σ (-ly-'cur^'^K^if^y-1 - rκf(χ)y.

Now let n — r + 1 and k = r + 1.
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Since (/'-'+')'(*) = (r - j + 2) (/-ί+1)(a0/'(a0

= Σ (-ly-'CjiiCfCa!))'-1)^ - j + 2 ) Σ C;(/- '+1)<'-'(aj)(/')t >(ίB)t'

= Σί-D-Xr + i)c;..1(f{x)y-i(fr-i+V\χ)f\χ)

+ Σi-iy-'ir +
3=1

(r {

\Y+1 + (r

X

r+l

+ (r +

= (r + l)

Now let w = r + 1 and fc < (r + 1). Then

r+1

3=1

— ( /
— \'

+

- 0

Hence the

M

s = 0

(r + l)Σ(

•

proposition

f(r-y+ί

-W'(«:

-ly-vj

follows

oy-

){g

by

U=o

/ 1 \3 — lCr ( f('
\ •LJ {~Ί'-i\J \'

\x)f-\fj^\x

mathematical

*)y-\r-«

•)

induction

2. If X is any compact Hausdorff space, we will denote by
C(X) the Banach algebra of continuous complex functions defined on
X with norm || |U determined by HflrlU = sup^ex \g(x)\ for geC(X).

Given feC{n), we define feC(W) by

The following lemma is then obvious.
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LEMMA 2.1. The mapping f —> f establishes a linear and norm-
preserving correspondence between C{n) and the closed subspace S of

Next given (xf θl9 , θn) e W, we define a continuous linear
functional L(x, θlf , θn) on C{n) by

L { x , θ l , . . . , θ n ) ( f ) - f(x, θu . , θ n ) , f e C ™ .

In view of Proposition 1.1 the proof of the following lemma is
analogous to the proof of Lemma 1.2 in [1].

LEMMA 2.2. An element of C{n]* is an extreme point of the unit
ball U* of C(%)* if and only if f* is of the form eίr}L{x,ov...,on) for some
Ve[-π,π], (x, θl9 - 9θn)e W.

We now suppose that T is an isometry of C{n). The adjoint T*
is then an isometry of Cin)% and thus carries extreme points of C7*
onto itself.

LEMMA 2.3. The image by T of the constant function 1 of C{n)

is a constant function eίλ, λ e [ — π, π].

Proof, For each ex t reme point eίηL{X}Ov...,o%) of Z7*,

Thus for each extreme point \T*{eiηL^ov.- ,oJ)(X)\ = 1. Therefore,
\L{x,ov...,On)(T(l))\ = 1. Thus for a fixed x, \(T(l))(x) + eiθiT(l))\x) +
. . . + (eίθ*ln\){T(l))[n\x)\ = 1 for all (θ19 , θn) e[-π, π]\ Choosing
K Θ2> * * *, 0»ι so that

we get

(α?) I

Again by choosing θ19 , θn, so that

arg((Γ(l))(x)) = π + arg(β^1(T(l))'(x)) = = π

we get

- 1
nl

Thus either
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= 1 and | (Γ(l))'(a) | + . . + I ( Γ ( 1 ) ) W ( ^ ) I = 0

or

( 4 ) \\(T(l))(x)\ = 0 and

Therefore, for any x e [0, 1], |(Γ(l))(aO| = 1 or |(Γ(l))(α?)| = 0. But
since ] T(l) ] is a continuous function on [0, 1] we have

|(Γ(l))(aO|=0 or |(Γ(l))(x)| = 1 .

Now \(T(l))(x)\ = 0 implies that (T(l))(x) = (T(l))'(x) = (T(l))"(x) =
• ΞΞ (T(l))(%)(£) = 0 which contradicts (4).

Hence |(Γ(1))(OJ)| = 1 from which it follows that (T(ϊ))'(x) = 0
and hence

Γ(l) = eiλ for some fixed λ e [-TΓ, π] .

We denote T*(L ( £ c Λ,..,^ }) by

The above Lemma 2.3, shows that X(x, θίy , θn)= X for all(^, , θn) e
[ —7Γ, 7r]. For

so that L(jBΛ,...,^)(21(l)) = e" ( β ^ " ^ ) and thus L{β,θι,...ίθn)(etx) = eil^'~^\
Hence X(x, θlf , θn) = λ.

LEMMA 2.4. If x e [0, 1], then for all (θ19 , 0J e [ -π, π]%>

y(χ,Qi, , θ n ) — y(x,o,- ,o)

Proof. For fixed x e [0,1], we consider the map ^ [ — π , 7r]%—>[0,1]
given by

It is easy to verify that this mapping is continuous. Hence the
image of [ —π, π]% in [0, 1] is a connected subset of [0, 1]. It is, in
fact, a singleton. For otherwise we could find g in C u ) such that
g = gf ΞΞΞ . . . = g{n) = 0 on an open subinterval Iap([ — π, π]n) while
for some y[x,Ψv...>Ψn) £ I,
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d.-.s.,,)

(n - 1)!'

For instance, one may take

ίθ

where yλ is least upper bound of I and y^]ψv...,Ψn) sufficiently near
to yx. Thus for an infinite number of (θlf θ2, . . . , 9 n ) e [ - j , π]n with

y(x,0v---,en)
 e ^>

L{x,ev...,en){T{g)) = T*Llx,θl,...,θn)(g)

— el'^(y{χ,f>1,..-,θn),iriiχ,o1,...,θn),'' ,irn{x,ov...,β/n))(U)

= 0

while

e* 0 .

Since p is continuous, /O"^/) is open in [ — π, π]% and therefore for
each ΐ = 1, 2, , w there exist an infinite number of 0/s such that

( 5 ) ^(..^.....^(Γίflr)) = 0 while L{x,Ψv...,Ψn){T{g)) Φ 0 .

Therefore (T(g))(x) + eiθ*{T(g))\x) + . + (ew M!)(Γ(ί/))(n)(») = 0.
For any j with 1 ̂  j ^ w, by keeping #* constant for i ^ j and

varying ^ we can see that (T(g)Yj\x) = 0. Thus L(βl9,lf...fί,w,(T(g)) - 0
which contradicts (5).

Hence y{x,θl,...,θn) = 2/(ai,o,—,o) for all (^, , 0Λ) G[-TΓ, π]%.

Finally, we define a point map τ of [0, 1] to [0, 1] by

Consideration of (ϊ7-1)* shows that τ is onto, and, applying
Lemma 2.4, one-one.

THEOREM 2.5. Lβί Γ 6β an isometry of C{n). Then, for f eC{n),

^ ; = T(ΐ). Moreover, τ is one of the two functions F, 1 — F
where F is the identity mapping of [0, 1] onto itself.
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Proof. Given xe[0, 1] and θe[ — π, π], consider the function g
of the Proposition 1.1 constructed for (x, θ, •••,#). Clearly, g does
not depend on θ; g{x) = 0; g'(x),g"(x), — ,g{n)(x) are positive reals
and Σ?=i(ί/(r>(»)/^!)>Σ?s=o(lί/(r)(2/)l/r!) for all y e [0, 1], 2/ Φ x. There-
fore,

Hall - g\x) + ̂ -0"O*O + +^n)W

- e-ί0L{Xiθ,...}θ)(g)

— e •L'iτix),φUxθ,...,θ),—,irnM,...,θ))\J. \y))

T h u s w e h a v e f o r a l l θ e [ — π, π]

( 6 )

. . . +J^+*{xθ,...e)(T-χg)Y*\τ(x))].

Since

2/e[0,i]r=0 7'J

by (6) we have

Again since g is independent of θ,

(T-\g))(τ(x)), (T-\g)Y(τ(x))t

are independent of θ but

A(θ) =

depends on θ for otherwise (6) cannot be true. In other words, A(θ)
is not constant. Now by (6) A(θ) must be on a circle with center
as { — {T~\g)){τ{x))} and radius equal to ||flr||.

On the other hand A(θ) must be on or within the circle with
center as origin and radius equal to ρ = Σ^=i(\(T~1(g)yr)(x)\/rl) = \\g\\ —
\(T-\g))(τ(x))\. This implies that (T-1 (g))(τ(x)) = 0 for otherwise
A(β) has to be a constant (see Figure 2.1) which is false.
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Therefore, we have

FIGURE 2.1.

= arg

= arg

Thus for all θ e [~ττ, π],l^k^n,l^j^

Also by (6)

Since the left hand side is independent of θ, we have

λ — θ + ψj(x,θr ',θ) = λ + ψV(χ,Of...fθ))

Hence for all ^ e [ — TΓ, π], 1 ^ i ^ n

Now let / be any element of C{n) such that f{x) = 0 then for all
θe[-π, π]
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L

so that (T-X/^rCx)) = 0. For an arbitrary feCίn), define g(y) =
- /(*), 2/ 6 [0, 1] then g(x) = 0 and so

0 = (T-\g))(τ(x)) = (T-\f))(z(x)) - f(x)(T-\ί))(z(x))

- e-"f(x) .

Thus, replacing / by T(f), it follows that for all x e [0, 1] and

Now if, for 0 ^ r ^ n — 1, Fr is the mapping of [0, 1] onto itself
given by Fr(x) = xr+1 (where Fo is the identity map F), we have

(T(Fr))(x) = e^ C

Therefore (T(Fr))(x) = (T(Fr_1))(x) φ). Now

Σ τr(Γ(F r)) («(*) = L(..o,..,o,(ϊ (Fr))

Thus for 0 ^ r ^ w - 1

Σ -^mFr)yki(x) = e» Σ
fc = l A;! 3=1

Taking r — 0 in (7), we get

v —
fc=i fc!

Taking r = 1, we get
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2 —
r = l fcϊ

Hence

= Σ -i-(T(Fi)yk)(x) - CKr(aj)) Σ -}-(T(F)yk\x)

Thus by successive iterations we get for 1 ^ r ^ n

Therefore,

Applying Proposition 1.2 to the function τ which clearly belongs to
G{n) we get

Thus τ\x) is an tith root of a complex number of absolute value one.
But since τ\x) is real valued and continuous we have τ\x) = 1

or τ'{x) = — 1 and, therefore, τ{x) = F or 1 — F.
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