V. D. Pathak

By $C^{(n)}[0,1]$ (henceforth denoted by $C^{(n)}$) we denote the Banach algebra of complex valued n times continuously differentiable functions on $[0,1]$ with norm given by

$$
\|f\|=\sup _{x \in[0,1]}\left(\sum_{r=0}^{n}\left(\frac{\left|f^{(r)}(x)\right|}{r!}\right) \text { for } f \in C^{(n)}\right.
$$

By an isometry of $C^{(n)}$ we mean a norm-preserving linear map of $C^{(n)}$ onto itself.

The purpose of this article is to describe the isometries of $C^{(n)}$ for any positive integer n. More precisely, we show that any isometry of $C^{(n)}$ is induced by a point map of the interval $[0,1]$ onto itself.

The isometries of $C^{(1)}$ (with the same norm as above) are determined by M. Cambern [1]. N. V. Rao and A. K. Roy [2] have also determined the isometries of $C^{(1)}$ with norm of $f \in C^{(1)}$ given by $\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$ and even for more general norms.

In the proof we shall follow the techniques of [1].

1. Let W denote the compact space $[0,1] \times[-\pi, \pi]^{n}$. We prove the following propositions.

Proposition 1.1. Given $\left(x, \theta_{1}, \cdots, \theta_{n}\right) \in W$, then there exists $h \in$ $C^{(n)}$ such that

$$
\sum_{r=0}^{n} \frac{\left|h^{(r)}(x)\right|}{r!}>\sum_{r=0}^{n} \frac{\left|h^{(r)}(y)\right|}{r!}
$$

for $y \in[0,1], y \neq x$, with $|h(x)|=h(x)>0,\left|h^{\prime}(x)\right|=e^{i \theta_{1}} h^{\prime}(x)>0$, $\left|h^{\prime \prime}(x)\right|=e^{i \theta_{2}} h^{\prime \prime}(x)>0, \cdots,\left|h^{(n)}(x)\right|=e^{i \theta_{n}} h^{(n)}(x)>0$.

Proof. Let f_{0} be the real valued, nonnegative continuous function on $[0,1]$ defined as follows

$$
f_{0}(y)=\left\{\begin{array}{ll}
0 & \cdots(y-x) \leqq-\frac{1}{2(n!)} \\
1+2(n!)(y-x) & \cdots
\end{array}\right)-\frac{1}{2(n!}<(y-x) \leqq 0 .
$$

For $1 \leqq r \leqq n$ define $f_{r}(y)$ as $f_{r}(y)=\int_{x}^{y} f_{r-1}(t) d t$. It can be easily verified that for $1 \leqq r \leqq n$, $f_{r}(y)$ is as follows:

$$
f_{r}(y)=\left\{\begin{array}{l}
-\sum_{j=1}^{r} \frac{1}{(j+1)!(2(n!))^{j}} \frac{(y-x)^{r-j}}{(r-j)!} \cdots(y-x) \leqq \frac{-1}{2(n!)} \\
\frac{(y-x)^{r}}{r!}+\frac{2(n!)(y-x)^{r+1}}{(r+1)!} \cdots-\frac{1}{2(n!)}<(y-x) \leqq 0 \\
\frac{(y-x)^{r}}{r!}-\frac{2(n!)(y-x)^{r+1}}{(r+1)!} \cdots 0<(y-x) \leqq \frac{1}{2(n!)} \\
\sum_{j=1}^{r} \frac{(-1)^{j-1}}{(j+1)!(2(n!))^{j}} \frac{(y-x)^{r-j}}{(r-j)!} \cdots \frac{1}{2(n!)}<(y-x) .
\end{array}\right.
$$

Now let

$$
g(y)=\frac{1}{(2 n-1)!}\left[\sum_{j=1}^{(n-1)} e^{i\left(\theta_{1}-\theta_{j}\right)} \frac{(y-x)^{j}}{j!}\right]+e^{i\left(\theta_{1}-\theta_{n}\right)} f_{n}(y) .
$$

Clearly, for $1 \leqq r \leqq n, f_{n}^{(r)}=f_{n-r}$. Therefore $g \in C^{(n)}$ and

$$
\left.g^{(r)}(y)=\frac{1}{(2 n-1)!} \sum_{j=r}^{(n-1)} e^{i\left(\theta_{1}-\theta_{j}\right)}(y-x)^{j-r}\right)+e^{i\left(\theta_{1}-\theta_{n}\right)} f_{n-r}(y) \text { for } 1 \leqq r \leqq n
$$

Thus

$$
g(x)=0, g^{(r)}(x)=\frac{1}{(2 n-1)!} e^{i\left(\theta_{1}-\theta_{r}\right)} \text { for } 1 \leqq r \leqq n-1
$$

and $g^{(n)}(x)=e^{i\left(\theta_{1}-\theta_{n}\right)}$. Therefore

$$
\sum_{r=0}^{n} \frac{\left|g^{(r)}(x)\right|}{r!}=\frac{1}{(2 n-1)!} \sum_{r=1}^{(n-1)} \frac{1}{r!}+\frac{1}{n!} .
$$

Now consider $\sum_{r=0}^{n}\left(\left|g^{(r)}(y)\right| / r!\right)$ for $y \in[0,1]$ and $y \neq x$.
Case 1. Let $(y-x) \leqq(-1 / 2(n!))$.
(1)

$$
\begin{aligned}
& \sum_{r=0}^{n} \frac{\left|g^{(r)}(y)\right|}{r!} \leqq \frac{1}{(2 n-1)!} \sum_{j=1}^{(n-1)} \frac{|y-x|^{j}}{j!}+\frac{1}{(2 n-1)!} \sum_{r=1}^{(n-1)} \frac{1}{r!} \\
& \quad \times\left\{\sum_{j=r}^{(n-1)} \frac{|y-x|^{j-r}}{(j-r)!}\right\}+\sum_{r=0}^{n} \frac{1}{r!}\left\{\sum_{j=1}^{(n-r)} \frac{|y-x|^{(n-r-j)}}{(j+1)!(2(n!))^{j}(n-r-j)!}\right\}
\end{aligned}
$$

For $n=1,2$, it can be easily verified that right hand side of (1) is less than $\sum_{r=0}^{n}\left(\left|g^{(r)}(x)\right| / r!\right)$. When $n \geqq 3$, denoting $(n!/(n-j)!j!)$ by C_{j}^{n}, (1) gives

$$
\begin{aligned}
& \sum_{r=0}^{n} \frac{\left|g^{(r)}(y)\right|}{r!} \leqq \frac{1}{(2 n-1)!} \sum_{j=1}^{(n-1)} \frac{1}{j!}+\frac{1}{(2 n-1)!} \sum_{r=1}^{(n-1)} \frac{(n-1)}{r!} \\
&+\frac{1}{2(n!)} \sum_{r=0}^{(n-1)} \frac{1}{r!} \sum_{j=1}^{(n-r)}\left\{\frac{1}{j(j+1)(n-r-1)!} C_{j-1}^{n-r-1} \frac{1}{(2(n!))^{j-1}}\right\}
\end{aligned}
$$

Now

$$
\begin{array}{r}
\frac{1}{(2 n-1)!} \sum_{r=1}^{(n-1)} \frac{(n-1)}{r!} \leqq \frac{(n-1)}{(2 n-1)!} \sum_{r=1}^{(n-1)} \frac{1}{2^{r-1}}<\frac{2(n-1)}{(2 n-1)!}<\frac{1}{4(n!)} \\
\text { for all } n \geqq 3 .
\end{array}
$$

Thus we have

$$
\begin{equation*}
\text { for } \quad n \geqq 3, \frac{1}{(2 n-1)!} \sum_{r=1}^{(n-1)} \frac{(n-1)}{r!}<\frac{1}{4(n!)} \text {. } \tag{2}
\end{equation*}
$$

Also

$$
\begin{aligned}
& \frac{1}{2(n!)} \sum_{r=0}^{(n-1)} \frac{1}{r!} \sum_{j=1}^{(n-r)}\left\{\frac{1}{j(j+1)(n-r-1)!} C_{j-1}^{n-r-1} \frac{1}{(2(n!))^{j-1}}\right\} \\
& \quad \leqq \frac{1}{2(n!)} \sum_{r=0}^{(n-1)} \frac{1}{r!} \frac{1}{2(n-r-1)!}\left\{\sum_{j=1}^{(n-r)} C_{j-1}^{n-r-1} \frac{1}{(2(n!))^{j-1}}\right\} \\
& \quad=\frac{1}{(2(n!))} \cdot \frac{1}{2(n-1)!} \sum_{r=0}^{(n-1)} C_{r}^{n-1}\left(1+\frac{1}{2(n!)}\right)^{(n-1-r)} \\
& \quad=\frac{\left\{\left(1+\frac{1}{2(n!)}\right)+1\right\}^{n-1}}{2(2(n!))(n-1)!} \leqq \frac{\left(\frac{9}{4}\right)^{n-1}}{2(2(n!))(n-1)!}<\frac{81}{64} \cdot \frac{1}{2(n!)} .
\end{aligned}
$$

Thus

$$
\begin{align*}
& \frac{1}{2(n!)} \sum_{r=0}^{(n-1)} \frac{1}{r!} \sum_{j=1}^{(n-r)}\left\{\frac{1}{j(j+1)(n-r-1)!} \cdot C_{j-1}^{n-r-1} \cdot \frac{1}{(2(n!))^{j-1}}\right\} \tag{3}\\
& \quad<\frac{3}{4} \cdot \frac{1}{n!} .
\end{align*}
$$

By (2) and (3) it follows immediately that for all $y \in[0,1]$ and $y \neq x$

$$
\sum_{r=0}^{n} \frac{\left|g^{(r)}(y)\right|}{r!}<\sum_{r=0}^{n} \frac{\left|g^{(r)}(x)\right|}{r!}
$$

Case 2. Let $-(1 / 2(n!))<(y-x)<0$

$$
\begin{aligned}
\sum_{r=0}^{n} \frac{\left|g^{(r)}(y)\right|}{r!} \leqq & \frac{1}{(2 n-1)!} \sum_{j=1}^{(n-1)} \frac{|y-x|^{j}}{j!}+\frac{1}{(2 n-1)!} \sum_{r=1}^{(n-1)} \frac{1}{r!}\left\{\sum_{j=r}^{(n-1)} \frac{|y-x|^{j-r}}{(j-r)!}\right\} \\
& +\sum_{r=0}^{n} \frac{1}{r!}\left|\frac{(y-x)^{n-r}}{(n-r)!}+\frac{2(n!)(y-x)^{n-r+1}}{(n-r+1)!}\right|
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{(2 n-1)!} \sum_{j=1}^{(n-1)} \frac{(-1)^{j}(y-x)^{j}}{j!}+\frac{1}{(2 n-1)!} \sum_{r=1}^{n-1} \frac{1}{r!} \\
& +\frac{1}{(2 n-1)!} \sum_{r=1}^{(n-2)} \frac{1}{r!}\left\{\sum_{j=r+1}^{(n-1)} \frac{(-1)^{j-r}(y-x)^{j-r}}{(j-r)!}\right\} \\
& +\sum_{r=0}^{n} \frac{(-1)^{n-r}}{r!}\left\{\frac{(y-x)^{n-r}}{(n-r)!}+\frac{2(n!)(y-x)^{n-r+1}}{(n-r+1)!}\right\} \\
= & \frac{1}{(2 n-1)!} \sum_{r=1}^{(n-1)} \frac{1}{r!}+\frac{1}{n!}+\sum_{s=1}^{(n-1)}(y-x)^{s}\left\{\frac{(-1)^{s}}{s!(2 n-1)!}\right. \\
& \left.+\frac{(-1)^{s}}{s!(n-s)!}+\frac{2(n!)(-1)^{s-1}}{s!(n-s+1)!}+\sum_{r=1}^{n-1-s} \frac{(-1)^{s}}{s!r!}\right\} \\
& +(y-x)^{n}\left\{\frac{(-1)^{n}}{n!}+\frac{2(n!)(-1)^{n-1}}{n!}\right\}+\frac{(-1)^{n}(y-x)^{n+1}}{(n+1)!} \\
= & \sum_{r=0}^{n} \frac{\left|g^{(r)}(x)\right|}{r!}+\sum_{s=1}^{(n-1)} \frac{(-1)^{s}(y-x)^{s}}{s!}\left\{\frac{1}{(2 n-1)!}\right. \\
& \left.+\sum_{r=1}^{(n-s)} \frac{1}{r!}-\frac{2(n!)}{(n-s+1)!}\right\} \\
& +\frac{(-1)^{n}(y-x)^{n}}{n!}\{1-2(n!)\}+\frac{(-1)^{n}(y-x)^{n+1}}{(n+1)!} \\
< & \sum_{r=0}^{n} \frac{\left|g^{(r)}(x)\right|}{r!}
\end{aligned}
$$

since all the other terms are negative. Verification in cases when $0<(y-x) \leqq(1 / 2(n!))$ and $(1 / 2(n!))<(y-x)$ is similar. From this it follows that the function $h \in C^{(n)}$ defined by $h(y)=1+e^{-i \theta_{1}} g(y)$ has the desired properties.

Proposition 1.2. For any $f \in C^{(n)}$

$$
\sum_{j=1}^{n}(-1)^{j-1} C_{j-1}^{n}\left(f^{n-j+1}\right)^{(k)}(x)(f(x))^{j-1}= \begin{cases}0 & \text { if } 1 \leqq k<n \\ n!\left(f^{\prime}(x)\right)^{n} & \text { if } k=n\end{cases}
$$

where $\left(f^{n-j+1}\right)^{(k)}(x)$ means the kth derivative of f^{n-j+1} at x.
Proof. We prove this proposition by induction on n. For $n=1$ it is obvious. Let it be true for $n=r$. Then we have

$$
\sum_{j=1}^{r}(-1)^{j-1} C_{j-1}^{r}\left(f^{r-j+1}\right)^{(k)}(x)(f(x))^{j-1}=0, \quad \text { for } \quad 1 \leqq k<r
$$

and

$$
\sum_{j=1}^{r}(-1)^{j-1} C_{j-1}^{r}\left(f^{r-j+1}\right)^{(r)}(x)(f(x))^{j-1}=r!\left(f^{\prime}(x)\right)^{r} .
$$

Now let $n=r+1$ and $k=r+1$.

Since $\left(f^{r-j+2}\right)^{\prime}(x)=(r-j+2)\left(f^{r-j+1}\right)(x) f^{\prime}(x)$

$$
\begin{aligned}
& \sum_{j=1}^{(r+1)}(-1)^{j-1} C_{j-1}^{r+1}\left(f^{r-j+2}\right)^{(r+1)}(x)(f(x))^{j-1} \\
&= \sum_{j=1}^{r+1}(-1)^{j-1} C_{j-1}^{r+1}(f(x))^{j-1}\left\{(r-j+2) \sum_{s=0}^{r} C_{s}^{r}\left(f^{r-j+1}\right)^{(r-s)}(x)\left(f^{\prime}\right)^{(s)}(x)\right\} \\
&= \sum_{j=1}^{r+1}(-1)^{j-1}(r+1) C_{j-1}^{r}(f(x))^{j-1}\left(f^{r-j+1}\right)^{(r)}(x) f^{\prime}(x) \\
&+\sum_{j=1}^{r+1}(-1)^{j-1}(r+1) C_{j-1}^{r}(f(x))^{j-1}\left\{\sum_{s=1}^{r} C_{s}^{r}\left(f^{r-j+1}\right)^{(r-s)}(x)\left(f^{\prime}\right)^{(s)}(x)\right\} \\
&=(r+1)\left\{\sum_{j=1}^{r}(-1)^{j-1} C_{j-1}^{r}(f(x))^{j-1}\left(f^{r-j+1}\right)^{(r)}(x)\right\} f^{\prime}(x) \\
&+(r+1) \sum_{j=1}^{r+1}(-1)^{j-1}(f(x))^{j-1} C_{j-1}^{r}\left\{\sum_{s=1}^{r} c_{s}^{r}\left(f^{r-j+1}\right)^{(r-s)}(x)\left(f^{\prime}\right)^{(s)}(x)\right\} \\
&=(r+1)!\left(f^{\prime}(x)\right)^{r+1}+(r+1) \sum_{s=1}^{r-1} C_{s}^{r}\left(f^{\prime}\right)^{(s)}(x) \\
& \times\left\{\sum_{j=1}^{r}(-1)^{j} C_{j-1}^{r}\left(f^{r-j+1}\right)^{(r-s)}(x)(f(x))^{j-1}\right\} \\
&+(r+1) \sum_{j=1}^{r+1}(-1)^{j-1} C_{j-1}^{r}(f(x))^{r}\left(f^{\prime}(x)\right)^{(r)} \\
&=(r+1)!\left(f^{\prime}(x)\right)^{r+1} .
\end{aligned}
$$

Now let $n=r+1$ and $k<(r+1)$. Then

$$
\begin{aligned}
& \sum_{j=1}^{r+1}(-1)^{j-1} C_{j-1}^{r+1}\left(f^{r-j+2}\right)^{(k)}(x)(f(x))^{j-1} \\
&= \sum_{j=1}^{r+1}(-1)^{j-1} C_{j-1}^{r+1}(r-j+2)(f(x))^{j-1}\left\{\sum_{s=0}^{k-1} C_{s}^{k-1}\left(f^{r-j+1}\right)^{k-1-s}(x)\left(f^{\prime}\right)^{(s)}(x)\right\} \\
&=(r+1) \sum_{s=0}^{k-2} C_{s}^{k-1}\left(f^{\prime}\right)^{(s)}(x)\left\{\sum_{j=1}^{r}(-1)^{j-1} C_{j-1}^{r}(f(x))^{j-1}\left(f^{r-j+1}\right)^{(k-1-s)}(x)\right\} \\
&+(r+1) \sum_{j=1}^{r+1}(-1)^{j-1} C_{j-1}^{r}(f(x))^{k-1}\left(f^{\prime}\right)^{(k-1)}(x) \\
&= 0
\end{aligned}
$$

Hence the proposition follows by mathematical induction.
2. If X is any compact Hausdorff space, we will denote by $C(X)$ the Banach algebra of continuous complex functions defined on X with norm $\left\|\|_{\infty}\right.$ determined by $\| g \|_{\infty}=\sup _{x \in X}|g(x)|$ for $g \in C(X)$.

Given $f \in C^{(n)}$, we define $\tilde{f} \in C(W)$ by

$$
\begin{aligned}
& \tilde{f}\left(x, \theta_{1}, \cdots, \theta_{n}\right)=f(x)+e^{i \theta_{1}} f^{\prime}(x)+\frac{e^{i \theta_{2}}}{2!} f^{\prime \prime}(x)+\cdots+\frac{e^{i \theta_{n}}}{n!} f^{(n)}(x) \\
&\left(x, \theta_{1}, \cdots, \theta_{n}\right) \in W
\end{aligned}
$$

The following lemma is then obvious.

Lemma 2.1. The mapping $f \rightarrow \tilde{f}$ establishes a linear and normpreserving correspondence between $C^{(n)}$ and the closed subspace S of $C(W), S=\left\{\widetilde{f}: f \in C^{(n)}\right\}$.

Next given $\left(x, \theta_{1}, \cdots, \theta_{n}\right) \in W$, we define a continuous linear functional $L\left(x, \theta_{1}, \cdots, \theta_{n}\right)$ on $C^{(n)}$ by

$$
L_{\left(x, \theta_{1}, \cdots, \theta_{n}\right)}(f)=\widetilde{f}\left(x, \theta_{1}, \cdots, \theta_{n}\right), \quad f \in C^{(n)}
$$

In view of Proposition 1.1 the proof of the following lemma is analogous to the proof of Lemma 1.2 in [1].

Lemma 2.2. An element of $C^{(n) *}$ is an extreme point of the unit ball U^{*} of $C^{(n)^{*}}$ if and only if f^{*} is of the form $e^{i \eta} L_{\left(x, \theta_{1}, \ldots, \theta_{n}\right)}$ for some $\eta \in[-\pi, \pi],\left(x, \theta_{1}, \cdots, \theta_{n}\right) \in W$.

We now suppose that T is an isometry of $C^{(n)}$. The adjoint T^{*} is then an isometry of $C^{(n)^{*}}$, and thus carries extreme points of U^{*} onto itself.

Lemma 2.3. The image by T of the constant function 1 of $C^{(n)}$ is a constant function $e^{i \lambda}, \lambda \in[-\pi, \pi]$.

Proof. For each extreme point $e^{i \eta} L_{\left(x, \theta_{1}, \cdots, \theta_{n}\right)}$ of U^{*},

$$
\left|\left(e^{i \eta} L_{\left(x, \theta_{1}, \cdots, o_{n}\right)}\right)(1)\right|=1
$$

Thus for each extreme point $\left|T^{*}\left(e^{i \eta} L_{\left(x, \theta_{1}, \cdots, \sigma_{n}\right)}\right)(1)\right|=1$. Therefore, $\left|L_{\left(x, \theta_{1}, \ldots, \theta_{n}\right)}(T(1))\right|=1$. Thus for a fixed $x, \mid(T(1))(x)+e^{i \theta_{1}}(T(1))^{\prime}(x)+$ $\cdots+\left(e^{i \theta_{n}} / n!\right)(T(1))^{(n)}(x) \mid=1$ for all $\left(\theta_{1}, \cdots, \theta_{n}\right) \in[-\pi, \pi]^{n}$. Choosing $\theta_{1}, \theta_{2}, \cdots, \theta_{n}$, so that

$$
\arg ((T(1))(x))=\arg \left(e^{i 0_{1}}(T(1))^{\prime}(x)\right)=\cdots=\arg \left(\frac{\left(e^{i \theta_{n}}\right.}{n!}(T(1))^{(n)}(x)\right)
$$

we get

$$
|(T(1))(x)|+\left|(T(1))^{\prime}(x)\right|+\cdots+\frac{\left|(T(1))^{(n)}(x)\right|}{n!}=1
$$

Again by choosing $\theta_{1}, \cdots, \theta_{n}$, so that

$$
\arg ((T(1))(x))=\pi+\arg \left(e^{i \theta_{1}}(T(1))^{\prime}(x)\right)=\cdots=\pi+\arg \left(e^{i \theta_{n}}(T(1))^{(x)}(x)\right)
$$

we get

$$
\left||(T(1))(x)|-\left\{\left|(T(1))^{\prime}(x)\right|+\cdots+\frac{\left|(T(1))^{(n)}(x)\right|}{n!}\right\}\right|=1 .
$$

Thus either

$$
\left\{|(T(1))(x)|=1 \quad \text { and } \quad\left|(T(1))^{\prime}(x)\right|+\cdots+\frac{\left|(T(1))^{(n)}(x)\right|}{n!}=0\right\}
$$

or
(4) $\quad\left\{|(T(1))(x)|=0 \quad\right.$ and $\left.\quad\left|(T(1))^{\prime}(x)\right|+\cdots+\frac{\left|(T(1))^{(n)}(x)\right|}{n!}=1\right\}$.

Therefore, for any $x \in[0,1],|(T(1))(x)|=1$ or $|(T(1))(x)|=0$. But since $|T(1)|$ is a continuous function on $[0,1]$ we have

$$
|(T(1))(x)| \equiv 0 \quad \text { or } \quad|(T(1))(x)| \equiv 1
$$

Now $|(T(1))(x)| \equiv 0$ implies that $(T(1))(x) \equiv(T(1))^{\prime}(x) \equiv(T(1))^{\prime \prime}(x) \equiv$ $\cdots \equiv(T(1))^{(n)}(x) \equiv 0$ which contradicts (4).

Hence $|(T(1))(x)| \equiv 1$ from which it follows that $(T(1))^{\prime}(x) \equiv 0$ and hence

$$
T(1) \equiv e^{i \lambda} \quad \text { for some fixed } \quad \lambda \in[-\pi, \pi]
$$

We denote $T^{*}\left(L_{\left(x, \theta_{1}, \cdots, o_{n}\right)}\right)$ by

$$
e^{2 \lambda\left(x, \theta_{1}, \cdots, \theta_{n}\right)} L_{\left.\left(y\left(x a_{1} \cdots o_{n}\right), \psi_{1(x} o_{1} \cdots o_{n}\right), \cdots, \psi_{n(x} o_{1} \cdots o_{n}\right)}
$$

The above Lemma 2.3, shows that $\lambda\left(x, \theta_{1}, \cdots, \theta_{n}\right) \equiv \lambda$ for all $\left(\theta_{1}, \cdots, \theta_{n}\right) \in$ $[-\pi, \pi]$. For

$$
\left(T^{*}\left(L_{\left(x, \theta_{1}, \cdots, \theta_{n}\right)}\right)\right)(1)=e^{i \lambda\left(x, \theta_{1}, \cdots, \theta_{n}\right)} L_{\left.\left(y\left(x, \theta_{1}, \cdots, \theta_{n}\right), \psi_{1\left(x, \theta_{1}\right.}, \cdots, \theta_{n}\right) \cdots \psi_{n}\left(x, \theta_{1}, \cdots, \theta_{n}\right)\right)}(1),
$$

so that $L_{\left(x, \theta_{1}, \cdots, \theta_{n}\right)}(T(1))=e^{i \lambda\left(x, \theta_{1}, \cdots, \theta_{n}\right)}$ and thus $L_{\left(x, \theta_{1}, \cdots, \theta_{n}\right)}\left(e^{i \lambda}\right)=e^{i \lambda\left(x, \theta_{1}, \cdots, \theta_{n}\right)}$. Hence $\lambda\left(x, \theta_{1}, \cdots, \theta_{n}\right) \equiv \lambda$.

Lemma 2.4. If $x \in[0,1]$, then for all $\left(\theta_{1}, \cdots, \theta_{n}\right) \in[-\pi, \pi]^{n}$,

$$
y_{\left(x, \theta_{1}, \cdots, \theta_{n}\right)}=y_{(x, 0, \cdots, 0)} .
$$

Proof. For fixed $x \in[0,1]$, we consider the map $\rho:[-\pi, \pi]^{n} \rightarrow[0,1]$ given by

$$
\rho\left(\theta_{1}, \theta_{2}, \cdots, \theta_{n}\right)=y_{\left(x, \theta_{1}, \cdots, \theta_{n}\right)}
$$

It is easy to verify that this mapping is continuous. Hence the image of $[-\pi, \pi]^{n}$ in $[0,1]$ is a connected subset of $[0,1]$. It is, in fact, a singleton. For otherwise we could find g in $C^{(n)}$ such that $g \equiv g^{\prime} \equiv \ldots \equiv g^{(n)} \equiv 0$ on an open subinterval $I \subset \rho\left([-\pi, \pi]^{n}\right)$ while for some $y_{\left(x, \varphi_{1}, \ldots, \varphi_{n}\right)} \notin I$,

$$
\mid g\left(y_{\left(x, \varphi_{1}, \cdots, \varphi_{n}\right)}\right)+e^{\left.i \psi_{1(x} \varphi_{1}, \cdots, \varphi_{n}\right)} g^{\prime}\left(y_{\left(x, \varphi_{1}, \ldots, \varphi_{n}\right)}\right)
$$

$$
\begin{aligned}
& +e^{\left.i \psi_{2\left(x, \varphi_{1}\right.}, \ldots, \varphi_{n}\right)} \cdot \frac{1}{2!} g^{\prime \prime}\left(y_{\left(x, \varphi_{1}, \ldots, \varphi_{n}\right)}\right)+\cdots \\
& \left.+e^{i \psi(n-1)\left(x, \varphi_{1}, \ldots, \varphi_{n}\right)} \cdot \frac{1}{(n-1)!} g^{(n-1)}\left(y_{\left(x, \varphi_{1}, \ldots, \varphi_{n}\right)}\right) \right\rvert\, \\
& <\left\lvert\, \frac{1}{n!} g^{(n)}\left(y_{\left(x, \varphi_{1}, \ldots, \varphi_{n}\right)} \mid .\right.\right.
\end{aligned}
$$

For instance, one may take

$$
g(y)= \begin{cases}0 & y \leqq y_{1} \\ \left(y-y_{1}\right)^{(n+1)} & y>y_{1}\end{cases}
$$

where y_{1} is least upper bound of I and $y_{\left(x, \varphi_{1}, \ldots, \varphi_{n}\right)}$ sufficiently near to y_{1}. Thus for an infinite number of $\left(\theta_{1}, \theta_{2}, \cdots, \theta_{n}\right) \in[-\pi, \pi]^{n}$ with $y_{\left(x, \theta_{1}, \cdots, \theta_{n}\right)} \in I$,

$$
\begin{aligned}
L_{\left(x, \theta_{1}, \cdots, \theta_{n}\right)}(T(g)) & =T^{*} L_{\left(x, \theta_{1}, \cdots, \theta_{n}\right)}(g) \\
& =e^{i \lambda} L_{\left(y\left(x, \theta_{1}, \cdots, \theta_{n}\right)\right.}, \psi_{1\left(x, \theta_{1}, \cdots, \theta_{n}\right), \cdots, \psi_{\left.n\left(x, \theta_{1}, \cdots, \theta_{n}\right)\right)}(g)} \\
& =0
\end{aligned}
$$

while

$$
\begin{aligned}
& L_{\left\langle x, \varphi_{1}, \cdots, \varphi_{n}\right)}(T(g)) \\
& \quad=e^{i \lambda} L_{\left(y_{\left(x, \varphi_{1}\right.}, \cdots, \varphi_{n}\right), \psi_{1\left(x, \varphi_{1}, \cdots, \varphi_{n}\right)}, \cdots, \psi_{n\left(x, \varphi_{1}, \cdots, \varphi_{n}\right)}(g) \neq 0 .} .
\end{aligned}
$$

Since ρ is continuous, $\rho^{-1}(I)$ is open in $[-\pi, \pi]^{n}$ and therefore for each $i=1,2, \cdots, n$ there exist an infinite number of θ_{i} 's such that

$$
\begin{equation*}
L_{\left(x, \theta_{1}, \cdots, \theta_{n}\right)}(T(g))=0 \quad \text { while } \quad L_{\left(x, \varphi_{1}, \cdots, \varphi_{n}\right)}(T(g)) \neq 0 \tag{5}
\end{equation*}
$$

Therefore $(T(g))(x)+e^{i 0_{1}}(T(g))^{\prime}(x)+\cdots+\left(e^{i \theta_{n}} / n!\right)(T(g))^{(n)}(x)=0$.
For any j with $1 \leqq j \leqq n$, by keeping θ_{i} constant for $i \neq j$ and varying θ_{j} we can see that $(T(g))^{(j)}(x)=0$. Thus $L_{\left(x, \varphi_{1}, \ldots, \varphi_{n}\right)}(T(g))=0$ which contradicts (5).

Hence $y_{\left(x, \theta_{1}, \cdots, \theta_{n}\right)}=y_{(x, 0, \cdots, 0)}$ for all $\left(\theta_{1}, \cdots, \theta_{n}\right) \in[-\pi, \pi]^{n}$.
Finally, we define a point map τ of $[0,1]$ to $[0,1]$ by

$$
\tau(x)=y_{(x, 0, \cdots, 0)} .
$$

Consideration of $\left(T^{-1}\right)^{*}$ shows that τ is onto, and, applying Lemma 2.4, one-one.

Theorem 2.5. Let T be an isometry of $C^{(n)}$. Then, for $f \in C^{(n)}$,

$$
(T(f))(x)=e^{i \lambda} f(\tau(x))
$$

with $e^{i \lambda}=T(1) . \quad$ Moreover, τ is one of the two functions $F, 1-F$ where F is the identity mapping of $[0,1]$ onto itself.

Proof. Given $x \in[0,1]$ and $\theta \in[-\pi, \pi]$, consider the function g of the Proposition 1.1 constructed for $(x, \theta, \ldots, \theta)$. Clearly, g does not depend on $\theta ; g(x)=0 ; g^{\prime}(x), g^{\prime \prime}(x), \cdots, g^{(n)}(x)$ are positive reals and $\sum_{r=1}^{n}\left(g^{(r)}(x) / r!\right)>\sum_{r=0}^{n}\left(\left|g^{(r)}(y)\right| / r!\right)$ for all $y \in[0,1], y \neq x$. Therefore,

$$
\begin{aligned}
\|g\| & =g^{\prime}(x)+\frac{1}{2!} g^{\prime \prime}(x)+\cdots+\frac{1}{n!} g^{(n)}(x) \\
& =e^{-i \theta} L_{(x, \theta, \ldots, \theta)}(g) \\
& =e^{-i \theta} T^{*} L_{(x, \theta, \cdots, \theta)}\left(T^{-1}(g)\right) \\
& =e^{i(\lambda-\theta)} L_{\left(\tau(x), \psi_{1(x)}, \ldots, \theta\right)}, \cdots, \psi_{n(x, \theta, \cdots, \theta))}\left(T^{-1}(g)\right) .
\end{aligned}
$$

Thus we have for all $\theta \in[-\pi, \pi]$

$$
\begin{align*}
\|g\|= & e^{i(\lambda-\theta)}\left[\left(T^{-1}(g)\right)(\tau(x))+e^{i \gamma_{1}(x \theta, \cdots, \theta)}\left(T^{-1}(g)\right)^{\prime}(\tau(x))\right. \tag{6}\\
& \left.+\cdots+\frac{1}{n!} e^{i \gamma_{\| n}(x \theta, \cdots \theta)}\left(T^{-1}(g)\right)^{(n)}(\tau(x))\right] .
\end{align*}
$$

Since

$$
\begin{aligned}
\|g\| & =\left\|T^{-1}(g)\right\| \\
& =\operatorname{Sup}_{y \in[0,1]} \sum_{r=0}^{n} \frac{\left|\left(T^{-1}(g)\right)^{(r)}(y)\right|}{r!},
\end{aligned}
$$

by (6) we have

$$
\|g\|=\left|\left(T^{-1}(g)\right)(\tau(x))\right|+\left|\left(T^{-1}(g)\right)^{\prime}(\tau(x))\right|+\cdots+\frac{1}{n!}\left|\left(T^{-1}(g)\right)^{(n)}(\tau(x))\right| .
$$

Again since g is independent of θ,

$$
\left(T^{-1}(g)\right)(\tau(x)),\left(T^{-1}(g)\right)^{\prime}(\tau(x)), \cdots,\left(T^{-1}(g)\right)^{(n)}(\tau(x))
$$

are independent of θ but

$$
A(\theta)=\left\{e^{i \gamma_{1}(x, 0, \ldots, \theta)}\left(T^{-1}(g)\right)^{\prime}(\tau(x))+\cdots+\frac{1}{n!} e^{i \gamma_{n}(x, \theta, \cdots, \theta)}\left(T^{-1}(g)\right)^{(n)}(\tau(x))\right\}
$$

depends on θ for otherwise (6) cannot be true. In other words, $A(\theta)$ is not constant. Now by (6) $A(\theta)$ must be on a circle with center as $\left\{-\left(T^{-1}(g)\right)(\tau(x))\right\}$ and radius equal to $\|g\|$.

On the other hand $A(\theta)$ must be on or within the circle with center as origin and radius equal to $\rho=\sum_{r=1}^{n}\left(\left|\left(T^{-1}(g)\right)^{(r)}(x)\right| / r!\right)=\|g\|-$ $\left|\left(T^{-1}(g)\right)(\tau(x))\right|$. This implies that $\left(T^{-1}(g)\right)(\tau(x))=0$ for otherwise $A(\theta)$ has to be a constant (see Figure 2.1) which is false.

Figure 2.1.
Therefore, we have

$$
\begin{aligned}
\arg e^{\left.i \psi_{1(x, \theta)}, \ldots, \theta\right)}\left(T^{-1}(g)\right)^{\prime}(\tau(x)) & =\arg \cdot \frac{1}{2!} e^{i \psi_{2}(x, \theta, \cdots, \theta)}\left(T^{-1}(g)\right)^{\prime \prime}(\tau(x))=\cdots \\
& =\arg \cdot \frac{1}{n!} e^{i \psi_{n}(x, \theta, \ldots, \theta)}\left(T^{-1}(g)\right)^{(n)}(\tau(x))
\end{aligned}
$$

Thus for all $\theta \in[-\pi, \pi], 1 \leqq k \leqq n, 1 \leqq j \leqq n$

$$
\psi_{k(x, \theta, \cdots, \theta)}-\psi_{j(x, \theta, \cdots, \theta)}=\psi_{k(x, 0, \cdots, 0)}-\psi_{j(x, 0, \cdots, 0)} .
$$

Also by (6)

$$
\begin{aligned}
\|g\| & =e^{i(\lambda-\theta)}\left[\sum_{k=1}^{n} \frac{1}{k!} e^{i \psi_{k}(x, \theta, \ldots, \theta)}\left(T^{-1}(g)\right)^{(k)}(\tau(x))\right] \\
& =e^{i\left(\lambda-\theta+\psi_{j}(x, \theta, \cdots, \theta)\right)}\left[\sum_{k=1}^{n} \frac{1}{k!} e^{i\left(\psi_{k}(x, \theta, \ldots, \theta)-\psi_{j}(x, \theta, \cdots, \theta)\right)}\left(T^{-1}(g)\right)^{(k)}(\tau(x))\right] \\
& =e^{i\left(\lambda-\theta+\psi_{j}(x, \theta, \cdots, \theta)\right)}\left[\sum_{k=1}^{n} \frac{1}{k!} e^{i\left(\psi_{k}(x, 0, \ldots, 0)-\psi_{j}(x, 0, \cdots, 0)\right)}\left(T^{-1}(g)\right)^{(k)}(\tau(x))\right] .
\end{aligned}
$$

Since the left hand side is independent of θ, we have

$$
\left.\lambda-\theta+\psi_{j(x, \theta, \cdots, \theta)}=\lambda+\psi_{j(x, 0, \cdots, 0)}\right) .
$$

Hence for all $\theta \in[-\pi, \pi], 1 \leqq j \leqq n$

$$
\psi_{j(x, \theta, \cdots, \theta)}=\psi_{j(x, 0, \cdots, 0)}+\theta .
$$

Now let f be any element of $C^{(n)}$ such that $f(x)=0$ then for all $\theta \in[-\pi, \pi]$

$$
f^{\prime}(x)+\frac{1}{2!} f^{\prime \prime}(x)+\cdots+\frac{1}{n!} f^{(n)}(x)
$$

$$
\begin{aligned}
& =e^{-i \theta} L_{(x, \theta, \ldots, \theta)}(f) \\
& =e^{-i \theta} T^{*} L_{(x, \theta, \ldots, \theta)}\left(T^{-1}(f)\right) \\
& =e^{i(\lambda-\theta)} L_{\left(\tau(x), \psi_{1(x, \theta,}, \ldots, \theta\right), \ldots \psi_{n(x, \theta, \ldots, \theta)}\left(T^{-1}(f)\right)}=e^{i(\lambda-\theta)}\left[\left(T^{-1}(f)\right)(\tau(x))+\sum_{k=1}^{n} \frac{1}{k!} e^{i \psi_{k}(x, \theta, \cdots, \theta)}\left(T^{-1}(f)\right)^{(k)}(\tau(x))\right] \\
& =e^{i \lambda}\left[e^{-i \theta}\left(T^{-1}(f)\right)(\tau(x))+\sum_{k=1}^{n} \frac{1}{k!} e^{i \psi_{k}(x, 0, \ldots, o)}\left(T^{-1}(f)\right)^{(k)}(\tau(x))\right]
\end{aligned}
$$

so that $\left(T^{-1}(f)\right)(\tau(x))=0$. For an arbitrary $f \in C^{(n)}$, define $g(y)=$ $f(y)-f(x), y \in[0,1]$ then $g(x)=0$ and so

$$
\begin{aligned}
0=\left(T^{-1}(g)\right)(\tau(x)) & =\left(T^{-1}(f)\right)(\tau(x))-f(x)\left(T^{-1}(1)\right)(\tau(x)) \\
& =\left(T^{-1}(f)\right)(\tau(x))-e^{-i \lambda} f(x) .
\end{aligned}
$$

Thus, replacing f by $T(f)$, it follows that for all $x \in[0,1]$ and $f \in C^{(n)}$,

$$
(T(f))(x)=e^{i \lambda} f(\tau(x))
$$

Now if, for $0 \leqq r \leqq n-1, F_{r}$ is the mapping of [0,1] onto itself given by $F_{r}(x)=x^{r+1}$ (where F_{0} is the identity map F), we have

$$
\left(T\left(F_{r}\right)\right)(x)=e^{i \lambda}(\tau(x))^{r+1}=e^{i \lambda}\left(\tau^{r+1}\right)(x), \quad 0 \leqq r \leqq n-1 .
$$

Therefore $\left(T\left(F_{r}\right)\right)(x)=\left(T\left(F_{r-1}\right)\right)(x) \cdot \tau(x)$. Now

$$
\begin{aligned}
\sum_{k=0}^{n} \frac{1}{k!}\left(T\left(F_{r}\right)\right)^{(k)}(x) & =L_{(x, 0, \ldots, 0)}\left(T\left(F_{r}\right)\right) \\
& =T^{*} L_{(x, 0, \cdots, 0)}\left(F_{r}\right) \\
& =e^{i \lambda} L_{\left(\tau(x), \psi_{1(x, 0, \cdots, 0)}, \ldots, \psi_{n(x, 0, \cdots, 0)}\left(F_{r}\right)\right.}^{n} \\
& =e^{i \lambda}\left[F_{r}(\tau(x))+\sum_{j=1}^{n} \frac{1}{j!} e^{i \gamma_{j}(x, 0, \ldots, 0)} F_{r}^{(j)}(\tau(x))\right] \\
& =e^{i \lambda}\left[(\tau(x))^{r+1}+\sum_{j=1}^{r+1} e^{\left.i \gamma_{j(x, 0,}, \ldots, 0\right)} C_{j}^{r+1}(\tau(x))^{r+1-j}\right] .
\end{aligned}
$$

Thus for $0 \leqq r \leqq n-1$

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{k!}\left(T\left(F_{r}\right)\right)^{(k)}(x)=e^{i \lambda} \sum_{j=1}^{r+1} e^{i \psi_{j}(x, 0, \cdots, 0)} C_{j}^{r+1}(\tau(x))^{r+1-j} . \tag{7}
\end{equation*}
$$

Taking $r=0$ in (7), we get

$$
\sum_{k=1}^{n} \frac{1}{k!}(T(F))^{(k)}(x)=e^{i\left(\alpha_{2}+\psi_{1}(x, 0, \cdots, 0)\right)} .
$$

Taking $r=1$, we get

$$
\sum_{r=1}^{n} \frac{1}{k!}\left(T\left(F_{1}\right)\right)^{(k)}(x)=C_{1}^{2}(\tau(x)) e^{i\left(\alpha+\gamma_{1}(x, 0, \ldots, 0)\right)}+e^{i\left(\lambda+\psi_{2}(x, 0, \ldots, 0)\right)} .
$$

Hence

$$
\begin{aligned}
& e^{i\left(\lambda+\psi_{2(x, 0,0, \cdots, 0))}\right.} \\
& \quad=\sum_{k=1}^{n} \frac{1}{k!}\left(T\left(F_{1}\right)\right)^{(k)}(x)-C_{1}^{2}(\tau(x)) \sum_{k=1}^{n} \frac{1}{k!}(T(F))^{(k)}(x) .
\end{aligned}
$$

Thus by successive iterations we get for $1 \leqq r \leqq n$

$$
\begin{aligned}
\left.e^{i\left(\lambda+\psi_{r}(x, 0,0, \ldots, 0)\right.}\right) & =\sum_{k=1}^{n} \frac{1}{k!}\left\{\sum_{j=1}^{r}(-1)^{j-1} C_{j-1}^{r}\left(T\left(F_{r-j}\right)\right)^{(k)}(x)(\tau(x))^{j-1}\right\} \\
& =e^{i \lambda} \sum_{k=1}^{n} \frac{1}{k!}\left\{\sum_{j=1}^{r}(-1)^{j-1} C_{j-1}^{r}\left(\tau^{r-j+1}\right)^{(k)}(x)(\tau(x))^{j-1}\right\} .
\end{aligned}
$$

Therefore,

$$
e^{i \psi_{n n}(x, 0, \cdots, \cdots)}=\sum_{k=1}^{n} \frac{1}{k!}\left\{\sum_{j=1}^{n}(-1)^{j-1} C_{j-1}^{n}\left(\tau^{n-j+1}\right)^{(k)}(x)(\tau(x))^{j-1}\right\} .
$$

Applying Proposition 1.2 to the function τ which clearly belongs to $C^{(n)}$ we get

$$
e^{i \psi_{n} n(x, 0, \cdots, 0)}=\left\{\tau^{\prime}(x)\right\}^{n} .
$$

Thus $\tau^{\prime}(x)$ is an nth root of a complex number of absolute value one.
But since $\tau^{\prime}(x)$ is real valued and continuous we have $\tau^{\prime}(x) \equiv 1$ or $\tau^{\prime}(x) \equiv-1$ and, therefore, $\tau(x) \equiv F$ or $1-F$.

References

1. M. Cambern, Isometries of certain Banach algebras, Studia Mathematica T., XXV, (1965), 217-225.
2. N. V. Rao and A. K. Roy, Lenear isometries of some function spaces, Pacific J. Math., 38 (1971), 177-192.

Received February 2, 1979 and in revised form April 27, 1979.
University of California
Santa Barbara, CA 93106
Current address: M. S. University Baroda-390 002 India

