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NOTE ON BOUNDED //-SOLUTIONS OF A
GENERALIZED LIENARD EQUATION

ALLAN J. KROOPNICK

Two theorems are presented giving sufficient conditions
for all solutions to y"+c(t)f(y)y'-{-a(t)b(y)=Q to be bounded.
Furthermore, two other theorems are given guaranteeing
when these solutions are ZAsolutions. Asymptotic stability
is then discussed as well as several applications of these
results.

In this paper, sufficient conditions will be given so that all
solutions to a generalized Lienard equation,

(1) V" + c(t)f(y)y' + a(t)b(y) = 0

will be ZAsolutions (p ^ 1) on [0, oo). By an ZAsolution we shall

mean a solution to (1) such that M \y\pdt) < °°. This note shall

generalize some previous results (see [1] — [3]). We first need the
following theorem.

THEOREM I. Suppose a(t) and c(t) are continuous functions on
[0, oo) and let b(y) and f(y) be continuous on (—°°, +°°). Further-
more, suppose for some positive constant α0, a(t)7>aQ, α/(ί)<ΞO, c(ί)^0
for 0 ^ t < oo, and f(y) > 0. Finally, if B(y) = Γb(u)du->Jr oo as

Jo
\y\—>oo, then every solution of (1) exists on [0, oo) and \y(t)\, \y\t)\

are bounded as t —»oo.

Proof. By standard existence theory (1) has at least one solu-
tions satisfying y(0) = yOf y'(0) = yQ, and existing on some interval
[0, T), T > 0. Consider any such solutions of (1) on [0, T). Multiply
(1) by y' and integrate from 0 to t < T to obtain,

(2) JU'(ί)2 + [c(s)f(y)y'2ds + \ a(s)b(y)y'ds - \yl .
2 Jo Jo 2

Integrating (2) by parts we have

c(s)f(y)y'2ds + a{t)B(y{t))

(3) 2 \
- Γ a'(s)B{y{s))ds = ±yl + a(0)B(y0) (0 ^ t < T) .

JO 2A

For \y\, \y'\ large all terms on the LHS of (3) are positive except,
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S t

a\s)B(y)ds. We show that this term is bounded
0

from below. By our hypotheses, B(y) > — d2 for some real constant

d and ~[ta\s)B(y(s))ds > d2^a'{s)ds > ~a(0)d2. Since
Jo Jo

c(s)f(y(s))(y'(s)Yds 2; 0
0

and since a(t)B(y(t)) > ~a(Q)d2, (3) becomes

-2α(0)d2 < — y'\t) + a(t)B(y(t)) ~ —Γ a\s)B{y{s))ds

(3') 2 2 J °
^ -=rV\ + a(0)B(y0) (0 ^ t < Γ) .

By assumption JS(τ/) -^+00 as 12/1 —• °°, and the left and right sides
of the inequality (3') are a priori lower and upper bounds, independ-
ent of T. Therefore, a standard argument completes the proof of
global existence of solutions y such that | y(t) \ and | y\t) \ are bounded
on [0, 00).

REMARKS (1). If one also assumes yb(y) 2S 0, then all terms on
the LHS of (3) are positive making the proof considerably simpler.
(2) If the assumptions concerning a, c in Theorem I hold on an
interval [tQ, 00) for some tQ Φ 0, the conclusions are valid on the
interval [ί0, 00). The same remark applies to Theorems II, III, and
IV below.

We now proceed to our main theorems.

THEOREM II. Let the hypotheses of Theorem I hold. In addi-
tion, let there exist constants c0 > 0, f0 > 0, M > 0, p ^ 1 such that
c(t) ^ Co, c'(t) ^ 0 (0 ^ t < 00), and f(y)^f0, yb(y) ^ M\y\p (yeR).
Then Γ \y(t)\pdt < 00.

Jo

Proof. From (3) (which now holds on 0 < t < 00) we see that

£0/0 \ y\t)2dt ^ (l/2)2/o+ α(0)I?(2/0), so yf is square integrable. Multiply
Jo

(1) by y and integrate by parts from 0 to ί obtaining,

(4) y(t)y'(t) - [yf(s)2ds + \tc(s)f(y)yyfds + \*a(8)b(y)yds = yoyo .
Jo Jo Jo

S y

uf(u)du we have upon another integration by
0

parts,
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y(t)y'(t) - [y'isfds + e(t)F{y{t)) -
JO

( 5 )

S t
a(s)b(y)yds = yoyo + c(O)F(yo) .

0

As ί-^oo all terms on the LHS of (5) stay finite. Specifically, (5)
shows that

(6) Og a0M[*\y(8)\pd8^ K, (0 ̂  t < oo)
Jo

where Kx = \y,\ \yo\ + K2 + 3c(0) s u p ^ , ^ F(y) + (V(s)2ds and K
Jo

is the bound of \y\ and |^/'| on [0, oo). Since Kx is independent of
t, the result follows.

REMARK. Theorem II is still true under the assumptions e0 ^
c(t) ^ ĉ Co, cx > 0) and c'eL^O, co) because

( 7 ) ^ sup F(y)[°\c\s)\ds .
-Kζy^K Jo

This implies all terms on the LHS of (5) are bounded so that
inequality (6) still holds although Kx will be different.

The last two theorems use the well-known Gronwall-Bellman
inequality.

THEOREM III. The hypotheses are the same as Theorem I except
that α'(ί) ^ 0(0 <; t < oo). Furthermore, if yb(y) ^ 0(yeR), then all
solutions to (1) are bounded as t—>^.

Proof. From (3) we obtain the following inequality,

( 8 ) 0 S a(t)B(y(t)) g K + [a'(s)B(y(s))ds
Jo

where K = a0B(y0) + (1/2)$). (8) may be rewritten as

( 9 ) 0 ^ a(t)B(y(t)) ^ K + Γ ̂ Mα(s)5(7/(s))ώs '.
Jo α(s)

Applying the Gronwall-Bellman inequality to (9) yields,

(10) a{t)B{y{t)) ^ ds) K
a(s) I α(0)

or

(11) B(y(t)) ^ J£- .
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Since B(y) —» °° as 11/1 —> °°, #(£) must stay finite on 0 ^ t < 00.

REMARK. If one does not assume a\t) <; 0 (or α'(ί) ^ 0) for
0 ^ t < 00, but only that 0 < α0 <; α(ί) < 00, and α'eL^O, °o), one
can still obtain the conclusion that y(t) remains bounded, for from
(8) one has

(12) a(t)B(y(t)) ^K+ J L Γ | α'(s) | a(s)B(y(s))ds .
α 0 Jo

Thus by the Gronwall-Bellman inequality

(13) a(t)B(y(t)) ^ κ(exv ( — Γ | a\s) \ds))< 00 .

By strengthening the hypotheses of Theorem III slightly, we
are able to show that all solutions are in Lp[0, °°). This is the
substance of our final theorem.

THEOREM IV. The hypotheses are the same as Theorem III. In

addition, let there exist positive constants c0 and f0 such that c(t)^

c0 and f(y) ^ fQ9 c'(t) ^ 0, yb(y) ^ M\y\p (for some positive constants

M and p^ί)f and if a(t)^AQ where AQ is a fixed positive constant,

then \°\y\pdt < 00.
Jo

Proof. From (3) we see that if a(t) is bounded from above,
a\s)B(y)ds is bounded and, therefore, yf is bounded since

0

all other terms in (3) are bounded. The remainder of the proof is
identical to Theorem II and the remark after theorem is still true.

REMARKS. Had we only required yb(y) ^ 0, then Theorems II

and IV would yield [°y(t)b(y(t))dt < 00.
Jo

Actually, more may be proven. Under the hypotheses of
Theorem II, the solutions to (1) are asymptotically stable (cf. Lemma
2.2 and Remarks 2.1 and 2.2 of [2]). In order to see this, write
(1) as the following two dimensional system,

(14) V[ = *
Vr2 = -c(t)f(yx)y2 - αφδd/i) .

Now consider the following Liapunov function V(t, yu y2) — (l/2)yl+
a(t)B(yx). Differentiating we have dV/dt=y2y'2 + a'(t)B(y1) + a(t)b(y1)y[ =
a\t)B{yύ - c{t)f(yx)y\ < 0 for (yu y2) Φ (0, 0) implying the solutions
are asymptotically stable.
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EXAMPLE 1. Consider the differential equation

(15) y" + —y = 0 (0<t0<^t<oofna, positive integer) .

The substitution y — x{t) exp (t) transforms (15) into

(16) a?" + 2x' + (l + 4 ) x = ° (0 < *o ̂  * < °°)

Therefore, applying Theorem II and Remark 2 following Theorem I,
any solution to (15) is the product of the exponential function and
a function in L2[a, oo) (α > 0) since xb(x) = x2.

EXAMPLE 2. It is well-known that the solutions to the homo-
geneous Duffing equation

(17) y" + cy' + ay(l + dy2) = 0 {a,e9d> 0)

are asymptotically stable. By Theorem II the solutions are in both
L2[0, oo) and L4[0, oo) since yb(y) = y\l + dy2) ^ y2 and yft(y) ^ % 4 .

EXAMPLE 3. Emden's equation

o

(18) i/" + —y* + i/* = 0 (w a positive integer)
a?

has important applications in astrophysics. When n is an odd
positive integer, all solutions to (18) are bounded on 0 < x0 <£ x < oo
using Theorem I and Remark 2 following Theorem I.

The author would like to thank the referee for several helpful
suggestions concerning this paper.
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