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TENSOR PRODUCTS OF BANACH BUNDLES

J. W. KITCHEN AND D. A. ROBBINS

This paper is concerned with projective and inductive
tensor products of bundles of Banach spaces. Let π: E -» S
and p:F-^T be bundles of Banach spaces over the locally
compact Hausdorff spaces S and T, with fibers {Es:seS}
and {Ft: t e T}, respectively. Let Γ0(π) and Γ0(p) be their
spaces of sections which disappear at infinity. We show the
existence of a bundle π®ρ:E®F->Sx T whose fibers are
{Es®Et:(s,t)eS x T}; if σeΓ0(π) and τβΓ0{p)9 then their
pointwise tensor σ ® τ defined by (σ ® τ)(s, t) = σ(s) ® τ(t) is
a section of the bundle π® p:E (g) F -> S X T. Further, we
show the existence of a bundle π®ρ:E®F->Sx T whose
fibers are{E s® Fc: (s, t)eSx T}, and demonstrate that Γ0(π)®
Γo(^) and Γoίπ®/)) are isometrically isomorphic.

The present paper continues the study begun in [5] of the
relationships between Banach modules and bundles of Banach spaces.
Specifically, it concerns tensor products of such objects.

Given two bundles of Banach spaces π: E —> S and p:F—>T
having locally compact base spaces we show that there is a bundle
of Banach spaces Θ:G —> S x T having the following properties:

( 1 ) for each pair (s, ί) in S x T the stalk Gst = 0-\{(8, ί)}) is

Es (g) Ft, where, as in [5], Es = π-\{s}) and Ft = p'\{t});
( 2 ) given two sections σ e Γ0(π) and r 6 Γ0(p) their pointwise

tensor product σ (•) r defined by

(σ ® τ)(8, ί) = σ(β) (8) τ(ί)

is a section of the bundle Θ:G —> S x Γ. (Here again the reader is
referred to [5] for notation and terminology.)

The bundle θ: G -> S x T is called the projective tensor product

of the given bundles and is denoted by πφ)p:E§<)F—>Sx T.
Tensor products of Banach bundles relate to tensor products of

Banach modules in the following fashion. Suppose that A and B
are commutative Banach algebras with maximal ideals spaces S and
T. Suppose further that (M, A) and (Nt B) are Banach modules
which satisfy the (KR) condition. Then

(1) the Banach module (M ίg) N, A(§) B) also satisfies the (KR)
condition;

(2) the canonical bundle associated with (ikf(g)N, A (g) B) is
(bundle isomorphic to) the tensor product of the canonical bundles

151



152 J. W. KITCHEN AND D. A. ROBBINS

of the given modules;
( 3 ) for any elements xe M and y e N the Gelf and transform

of x(x) y is the pointwise tensor product of the transforms x and y.

The order in which these results are developed is possibly not
what one might expect. In the first section a study is begun of the
canonical bundle and Gelfand representation of the tensor product
module (M(§) N, A (g) B). In the the second section, the tensor
product bundle is defined essentially to be the canonical bundle of
(Γ0(π ) <g) Γ0(p), CQ(S) 0 C0(Γ)). Afterwards, the results of section one
are reinterpreted in terms of tensor products of bundles. Section
3 treats further properties of protective tensor products, while the
fourth and final section deals with inductive tensor products. Given
two bundles of Banach spaces π:E->S and p: F —• T with locally

compact base spaces, their inductive tensor product π (§) p: E §) F—>
S x T is constructed and it is shown that there is a natural isomor-
phism Γ0(ττ) ( | Γ0(p) ~ ΓQ(π (§ p).

1* Tensor products of Banach modules and their Gelfand
representations* In this section we shall begin to study the Gelfand
representation of a tensor product of Banach modules. We prove
first that the (KR) condition is preserved under the formation of
tensor products.

Suppose (M, A) is a Banach module, where A is a commutative
Banach algebra with maximal ideal space S. If s e S, we denote by
7S the maximal ideal associated with s and by Js the closed linear
span of the set {ax: aels, xe M}. As in [5], we also denote by (M*),
the set of all functionals F in M* for which the identity

F(ax) = d(s)F(x)

holds for all aeA and xe M. The module (M, A) is said to satisfy
the (KR) condition if for each seS, (J,)1, the annihilator of Js in
Λf*, is equal to (M*)8. Since the inclusion (M*)s c (J,)1 always holds,
the (KR) condition is equivalent to the inclusions (JS)

L c (M*)s for
all seS.

PROPOSITION 1.1. Let A and B be commutative Banach algebras
with maximal idal spaces S and T respectively. If (M, A) and (N, B)
are Banach modules which satisfy the (KR) condition, then the tensor
product module (M®N,A®B) also satisfies the (KR) condition.

Proof. Recall that the maximal ideal space of A (g) B can be
identified with S x T in such a way that
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(α(g)6Γ(s, t) = a(s)b(t)

for all a e A, b e J5, 3 e S, and ί e Γ . Recall also that the way in which
M(x)N is a module over A ® I? is characterized by the identity:

(α (g) δ)(α ®V) = (α») (8) (δ#) ,

which holds for all α e A, b e B, x e M, and y eN.
Let (s,t)eS x Γ be arbitrary. We denote by I s ί the maximal

ideal in 4(g)β corresponding to (β, t) and by J s ί the closed linear
span of {cz: c e I8t, z e M(g) JV}. We must show that (Jsf)

1c((M(g) iSΓ)*)βt.
Suppose, then, that Fe (J8t)

λ. Because of the linearity and continuity
of F it suffices to show that

F((a (x) b)(x (X) y)) = (a® bT(s, t)F(x (x) y)

- a(s)b(t)F(x (X) j/)

for all a e A, b e B, x e M, and yeN.
We let RF be the element of Hom(.M, ΛΓ*) associated with F, that

is,

F(x ®y) = (y, RF(x)> ,

for all x e M and yeN. Similarly, we let R'F be the element of
Hom(JV, M*) associated with F, that is, F(x (x) y) = ζχ9 R'F(y)). If
belt and α e i , then (α (x) δ)"(s, ί) = ά(s)δ(ί) = 0, so (α ® 6) e I s ί and
thus

- F{ax® by) = F((a (x) b)(x ®y)) = 0

for all (x, y)eMx N. Thus, ^(αx) e (Jt)
L = (iV*), for all α e i and

x e ikf. Hence for arbitrary a e A, b e B, x e M, y e N we have

F(ax (x) by) = {by, RF(ax)) = b(t)(y, RF(ax)}

= b(t)F(ax ® y) .

Since (M, A) satisfies the (KR) condition, the module is essential,
and it then follows from (*) that

F(x <g) by) = δ(ί)F(x (g) y)

for all x 6 M, b e B, and yeN. Similarly, using R'F, one can show that

F(ax <8)y) = d(s)F(x (x) y)

for all a e A, x e M, and yeN. Finally, we have

F((a (x) b)(x ® 7/)) - î (αx ® δ») = b(t)F(ax <g) y)

- a(s)b(t)F(x ® y) ,



154 J. W. KITCHEN AND D. A. ROBBINS

for all a e A, b e B, x e M, y e N. •

Thus, if the modules (M, A) and (N, B) satisfy the hypotheses
of Proposition 1.1, then we can consider the canonical bundles and
Gelfand representations for the modules (M, A), (N, B), and (Λf(g)iV,
A®B). Let us denote by π: E -> S, p: F -> T, and θ:H-^Sx T
respectively the canonical bundles for these three modules. We will
show that the stalk Hst = θ~\{(s9 t)}) is isomorphic to the tensor
product of the stalks Es = π~\{s}) and Ft = p~\{t}). In doing so, we
make use of a lemma concerning bilinear maps on quotient spaces.

LEMMA 1.2. Suppose we are given the followiug:
(1) Banach spaces X, Y, and Z;
( 2 ) a bounded bilinear map f: X x Y -> Z;
(3) subsets MdX and NaY such that

/O, y) = 0 for all x e M and yeY

and

f(x, y) = 0 for all xeX and y eN .

Then, if we denote by Mf and Nr the closed linear spans of M
and N respectively, it follows that there exists a unique bounded
bilinear map

f:(X/Mf) x (Y/Nr) >Z

such that

f(x + M',y + N') = f(x, y) ,

for all x e X and y e Y. Moreover, f has the same norm as f.

The proof is straightforward and is therefore omitted.

PROPOSITION 1.3. Suppose that the hypotheses of Proposition 1.1
are satisfied. Let π: E —> S9 p: F —> T, and Θ:H-*S X T be the ca-
nonical bundles corresponding to the modules (M9 A), (N, B), and
(M®N, A(g)B) respectively. For each pair (s, t) in S x T there
exists an isometric isomorphism φst: E8® Ft—> Hst such that

(α <g) yΓ(8f t)

for all x e M and y eN.

Proof. We define a map / : M x N —> Hst by setting
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f(χ, y) = (x (x) vY(s, t).

Then / is clearly a bilinear map with norm one or less. Moreover,
for all a e A, b e B, x e M, and y e N we have

f(ax, by) — (ax ® by)~(8, t)

= ((a <g> δ)(α? <g> y ) Γ ( β , ί)

- a(s)b(t)(x 0 yT(s, t) .

It is clear, then, that f(ax, by) = 0 if either a e Is or b e It. Because
(M, A) and (ΛΓ, JB) are essential modules, it follows that

f(ax, y) = 0 for all ae Is, xe M, y GN

and

/(#, 6τ/) = 0 for all b e It, x e M, y e N .

By the previous lemma, it follows that there is a unique bilinear map

/: EsxFt = (M/J.) x (N/Jt) > Hst

such t h a t Il/H = | | / | | ^ 1 and

f(x(s), y{t)) = fix + Js,y + Jt) = /(», ») = (a? (X)!/)"(«, «) ,

for all xe M, y eN. By the universal mapping property of tensor
products it follows, finally, that there is a linear map φ: Es ® Ft —>
ίί s ί such that \\φ\\ = Il/H ^ 1 and

^(ί(β) (8) y(t)) = /(ί(β), y(«)) = (a ® »Γ(«, ί)

for all xeM,ye N.
We next define a map α/r: £Γsί ->E8®Ft which will turn out to

be the inverse of φ. We do this in stages. First we define a map
g: Mx N-*Es(§Ft by setting

g(x, y) = x(s) (X) y(t) .

Clearly, g is bilinear and \\g\\ ^ 1. I t follows t h a t t h e r e is a unique

linear map g: M® N-^ Esφ) Ft such t h a t |[§Ί| = \\g\\ ^ 1 and

g(x (g) ?/) = 0(α, 3/) - ί(a) ®

In addition, the function g has the following property:

( * ) g(cz) = 6(8, t)g(z)

for all ceA(§)B and all zeM(g)N. Because of the linearity and
continuity of g, it suffices to check (*) when c is of the form a (x) b
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and z is of the form x (5?) yf and that is easily done:

8((<L (g) b)(x (g) y)) — g(ax (x) by)

= ax(s) (X) by(t) = a(s)b(t)x(s) <g) y(t)

= (α (x) 6Γ(s, *)£(& (x) y) .

From (*), it follows that g(cz) = 0 whenever c(s, ί) = 0, that is, ce
J s ί. Thus, g(z) = 0 whenever 2; belongs to J s ί, the closed linear span
of {cz:celst, ze itf(x) N}. Hence there is a unique linear map

ψ: Hst = (Λf (g) ΛΓ)/Jsί >Es<g)Ft

s u c h t h a t | |α/r| | = \\g\\ ̂  1 a n d

f ((« <g) l/)"(β, ί)) = f (x <g) 1/ + Jst) = ?(« (g) 1/) = flc(β) <g> ί(*) ,

for all xe M and y eN.
The rest is easy. One checks that ψ°φ and ̂ °f are the identity

on E, (g) Fί and £Γsί respectively. Thus, the map φ: E8®Ft—> Hst is

bijective and ψ is its inverse. Furthermore, since φ and ψ are both

norm decreasing, they are, in fact norm preserving. •

2* The construction of protective tensor products of bundles*
We now apply Proposition 1.3 to construct the tensor product of
Banach bundles.

THEOREM 2.1. Let π: E-+ S and p: F'—>• T be bundles of Banach
spaces for which the base spaces S and T are locally compact Haus-
dorjf. Then there exists a unique bundle of Banach spaces φ: G —>
S x T with the following properties:

(1) for each pair (s, t) in S x T the stalk Gst = θ~X{(s, t)}) is

E8®Ft, where Es - π~\{s}) and Ft = p-\{t});

(2) θ: G -» S x T is bundle isomorphic to the canonical bundle

for the module (Γ0(π) (g) Γ0(p), C0(S) ®C0(T)); more preciselyf if

Θ':H—>Sx T is the canonical bundle for the latter module then

there exists a norm preserving bundle isomorphism φ: G —> H such

that

Φ(σ(s) <g) τ(ί)) = (σ (g) τT(s, t)

for all σ e Γ0(π), τ e Γ0(ρ), seS,teT.

(3) the tensor map (g): E x F-+G, which assigns to each pair

(x, y) in E x F its tensor x®y in the stalk Eπ{x)® Fp{y), is con-

tinuous.

Proof. We can identify the given bundle π:E-+S with the
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canonical bundle the module (Γ0(π), CQ(S)) in such a way that the
Gelfand representation of the module is simply the identity map.
(See [5], §3.) The same is true, of course, for the bundle p: F —> T.
If we denote by θ'\ H-+ S x T the canonical bundle for the module

then for each pair (s, t) in S x T Proposition 1.3 assures us of the
existence of a unique isometric isomorphism φst: Es(>ζ) Ft—> Hst such
that

ΦsMs) (X) τ{t)) = φ.t(σ(8) (x) τ{t)) = (σ (x) τ Γ (s, t)

for all σeΓ0(π) and τeΓ0(p). If we now let G be the disjoint union
of the family of Banach spaces {Es (§) Ft: s e S, t e T}, then we have
a bisection φ: G -^ H whose restrictions to stalks are the maps φst.
We topologize G by transplanting the topology from H to G via the
map φ-1. Then #: G —> S x Γ becomes a bundle of Banach spaces (0
being the natural surjection), φ becomes an isometric bundle isomor-
phism, and (2) is obviously satisfied.

Thus, if we identify G and H via φ, then the Gelfand transform
of σ (x) τ is simply the pointwise tensor product σ ® τ as defined in
the introduction, that is,

(σ (X) τΓ(s, t) = σ(s) (x) r(ί) - (α.® r)(β, t) .

In proving continuity of the tensor map (x): E x F ^ G we shall make
this identification.

Let (a?, 2/) be an arbitrary element of E x F. We will show that
(x) is continuous at (x, y). Set s = π(x) and t — p(y) and choose
sections σeΓ0(π) and τeΓ0(p) such that σ(s) = x, τ(ί) = y, \\σ\\ —
\\x\\9 and | | τ | | = \\y\\. (See [5], Corollary 1.2.) Then the section
(σ 0 τy = a ® τ passes through x®y, that is,

(σ ® τ)(s, t) - σ(«) ® τ(ί) = a (x) y .

Consider now a neighborhood of x®y. We may assume that
it is of the form

W~ = {zeG:\\z-(σ® τ)(θ(z))\\ < ε, θ(z) e W) ,

where W is a neighborhood of (s, ί). Inside TF is a neighborhood of
the form U x V, where U is a neighborhood of s and F is a neigh-
borhood of t. We then set

<%' = {x'eE:\\x'- σ(π(x'))\\ < e l f π(α') 6 ί7}

and
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r = {y'zF:\\y'- τ(p{y'))\\ < ε2, p(y')eV} ,

where ελ = ε/2(\\y\\ + 1) and ε2 - l/2min(l, ε/(||x|| + 1)). Then ^xT
is a neighborhood of (x, y). Suppose, then, that (x\ y')e <& x ψ\
If we set s' = π(xr) and tf = p{yf), then sr e U and V e V, so that
θ(x' (x) yf) = (s', ί') belongs to TΓ. Furthermore,

and

\\x'

H i / ' -
| M | ε 2 < ε .

Hence xr (g) T/' belongs to the neighborhood <W" of %®y. This proves
continuity of the tensor map at (x, y). Π

The bundle θ: G -> S x Γ will be called the protective tensor
product of the given bundles π:E->S and p:F-*T, and we will
henceforth denote it by π(k)p:E(§)F—>SxT. Note that if we have
two sections σeΓ0(π) and τeΓ0(p), then, as we observed in the
previous proof, their pointwise tensor product a ® τ, defined by

(σ ® τ)(s, ί) = <7(s) <g) r(ί) ,

is a section of the tensor product bundle. Moreover, because of the
continuity of the tensor map (x): E x F -» i? (g) ί7, it follows that the
pointwise tensor product of two local sections (possibly unbounded)
is a local section of the tensor product bundle.

We can now reinterpret Proposition 1.3.

THEOREM 2.2. Let A and B be commutative Banach algebras
with maximal ideal spaces S and T respectively. Suppose that (M, A)
and (N, B) are normed modules which satisfy the (KR) condition.
Then the module (M (R) N, A (§) B) also satisfies the (KR) condition
and the canonical bundle for this product module can be naturally
identified with the protective tensor product of the canonical bundles
of the given modules. So identified, the Gelfand transform of an
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element in M(§)N of the form x®y is simply the pointwise tensor
product of the transformations x and y.

Note that the Gelf and representation ": M(g) N— > Γ0(π (§) p) need
not be surjective. For example, let S and T be infinite compact
Hausdorff spaces. Then C(S) and C(T) are (may be identified with)
spaces of sections of bundles π: E —> S and p:F—>T, all of whose
stalks are C. With this identification, the sectional Gelfand re-
presentation of an element in C(S) (§) C(T) of the form / (x) g is
simply the function fgeC(S x T), where (fg)(s, t) = f(s)g(t). Thus,
the range of the Gelfand representation is the proper subspace of
C(S x T) consisting of all functions expressible as the sum of series
of products fg.

Nor need the Gelfand representation ": M (g) N-+ Γ0(π (g) p) be
injective, even when both ": M—> Γ0(π) and ": N—> Γ0(p) are injective.
To see this, let A and B be commutative semisimple Banach algebras
with identities such that A (g) B is not semisimple. (See [6].) The
sectional Gelfand representation of the module (A (§) B, A®B) is
(may be identified with) the classical Gelfand representation of A®B,
and so the sectional Gelfand representation is not injective.

3. Further results* The first theorem in this section of the
paper is analogous to results in Gelbaum [3]. Since the proofs are
also similar, they are omitted.

THEOREM 3.1. Suppose that (M, A) and (N, B) are modules which
satisfy the hypotheses of Theorem 2.2.

(1) For all xe M and y eN the support of (x (x) yT is the
Cartesian product of the supports of x and y.

( 2 ) // the sets {x e M: supp x is compact} and {y e N: supp y is
compact} are dense in M and N respectively, then the set {z e M®
N: supp z is compact} is dense in M(§)N.

If M and N are Banach modules over a commutative Banach
algebra A, then one can form their A-tensor product, M(&AN, which
is defined to be the quotient space (Λf(g) N)/K, where K is the smallest
closed subspace containing all elements of the form (ax) (x) y — x (8)
(ay) (where a e A, x e M, and y e N). Given x e M and y eN, x ®^ y
is defined to be the coset x (x) y + K. Clearly, for all a e A, x e M,
and yeN

(ax) ®Λy = x®A (ay)

moreover, M(&A N can be made into a Banach A-module in just one
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way so that both sides of the preceding equation are equal to
a(x ®^ y). (See Rieffel [7].) For such modules we have the following
analogue of Theorem 2.2.

THEOREM 3.2. Let A be a commutative Banach algebra with
maximal ideal space S. Suppose that (M, A) and (N, A) are
Banach modules which satisfy the (KR) condition and denote by
π: E-+ S and p: F-> S their respective canonical bundles. Then the
module (M(ξξ>A N, A) also satisfies the (KR) condition and its canonical
bundle can be identified with the product bundle π®p:E(S)F-^
S x S restricted to the diagonal ofSx S. More precisely, if θ: if—>
S denotes the canonical bundle of (MQAN, A), then for each seS
there is an isometric isomorphism φs: Hs-> Es® Fs such that

for all x e M and y eN.

The next series of results concerns tensor products of bundles
and their sections. We begin with a variant of Tietze's Extension
Theorem.

LEMMA 3.3 (Tietze's Extension Theorem for Sections). Let
π: E —» S be a bundle of Banach spaces, where S is a compact Haus-
dorff space. Let K be a closed subset of S. Then every local section
σ: K -+ E can be extended without increase of norm to a global section
σ:S-+E.

Proof. Let M be the set consisting of restrictions to K of global
sections of the bundle π:E->S. If σeM, and if feC(K), then σ
is the restriction of some global section σ, while / is the restriction
of some / e C(S) (by the usual Tietze Extension Theorem). It follows
that fa is the restriction to K of the global section fσ, so that
fσeM. Thus, M is a C(i<0-submodule of Γ(π \ K), where Γ(π \ K)
denotes the sections of the restricted bundle π {K: E Π π^iK) -> K.
Moreover, since π: E—>Sis a full bundle, so is the restricted bundle,
so that M is dense in Γ(π [ K) by the Stone-Weierstrass theorem for
sections. (See, for example, [4].)

To show that M is actually all of Γ(π {K) and to complete the
proof it suffices to prove the following: if σeM, then there exists
a σeΓ(π) such that σ = σ [K and | |σ| | = | |σ| |. (That M is closed
and hence all of Γ(π [ K) will then follow from the completeness of
the spaces Γ(π [K) and Γ(π).) To extend σeM appropriately we
proceed as follows: We first select any section σ e Γ(π) (with possibly
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larger norm than σ) with σ \ K = σ. For each positive integer n we
set

Then Vn is an open neighborhood of K, and we may choose a con-
tinuous function fn: S —> [0, 1] such that fn has the value 1 on if and
the value zero off V%. We set

oo

/ = Σ 2~Λ/» a n d ? — f&

It may then be easily verified that f is a global section extending
σ and that ||f(s)|| < \\σ\\ whenever s lies outside K. Thus, ||f || =

Ikll •

(Compare this lemma with a weaker version in Fell [2].)

THEOREM 3.4. Suppose that π: E —» S and p: F-> T are bundles
of Banach spaces, where S and T are compact Hausdorff. Then each
section of the product bundle π(§)p:E®F-+Sx T can be uniformly
approximated by sums of sections of the form σ®tf where σ e Γ(π)
and τ eΓ(p).

Proof. Let M be the closure in Γ(π (g) p) of finite sums of
sections of the form σ ® τ. Clearly, M is a closed subspace of
Γ(π(k)p). It is, moreover, a C(S x T)-submodule: for if ωeM and
h e C(S x T), then ω can be approximated by sections of the form
Σfe &h ® fk &n<i h can be approximated by functions of the form
Σ/Λ ®0i, where fdeC(S) and g3-eC(T) for each j , and where
(Λ ® ^)( s , )̂ = fj(s)9j(t)- Hence hω can be approximated by sections
of the form

so that /̂ ft) e M. The conclusion now follows again by the bundle
version of the Stone-Weierstrass theorem. •

COROLLARY 3.5. Suppose that π: E —> S and p: F -» T are
bundles of Banach spaces, where S and T are locally compact
Hausdorff spaces. Then every section in ΓQ(π®p) can be uniformly
approximated by sums of sections of the form σ ® τ, where σ e Γ0(π)
and τ e Γ0(p).
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Proof. It suffices to prove the theorem for compactly supported
sections in Γ0(π§ζ)p), since they are dense in Γ0(π<§)p).

Consider, then, a section ω e Γ0(π (§) p) which is supported on a
compact set K. We may assume that K = S'xT', where S' and T
are compact. (We can take S' and Tr to be the coordinate projections
of the original set K onto S and T respectively.) Let ε > 0 be
arbitrary. By the theorem we can find sections σt: S' —• E and
τt: T -> F such that

on the set S'x T'. By the Tietze extension (applied to the one-point
compactifications of S and T) we may extend the σ/s and r/s to
sections on S and T which vanish at infinity. Because of upper-
semicontinuity of the norm it follows, then, that the inequality

will hold throughout some neighborhood of S' x T'. By a compactness
argument, we may assume that the neighborhood is of the form
S" x T" where S" and T" are compact. (Let V be the original
neighborhood of S x T. First fix s e S'. Each point of the compact
cross section Cs = {s} x T' has a neighborhood S x Γ c F , S and f
compact. It follows that Cs can be covered by the interiors of a
finite number of such neighborhoods, say S, x Tlf S2 x T2, , Sw x
ΓΛ. If we set

and Γs - U T
k
U

k=l
k,

then S8 x Γs is a neighborhood of Cβ which is inside F. We now let
s vary over S\ The interiors of the sets Ss x Ts provide an open
cover of Sr x T". Hence there are a finite number of these sets,
say SSι x TS1, SS2 x ΓS2, • - -, SSm x ΓSm, whose interiors cover S' x Γ'.
We now set

S"-U>SSfe and r = n r , k .
fe=l fc=l

Then S" and T" are compact and S ' x f c interior of S" x T" c F.)
Since ct) is zero outside S' x 7" it follows that

on (S" x Γ")\(S' x 7"). Now choose continuous functions / : S -* [0, 1]
and jr: Γ - [0, 1] such that / = 1 on S', / = 0 off S", flr = 1 on ϊ",
and ίr = 0 off T". Then it follows easily that

9) Σ σ< ® r t | | = ||ft) -
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at all points of S x T. •

We conclude this section by constructing a tensor product of
bundle maps.

THEOREM 3.6. Suppose we have four Banaeh bundles, πt: E% —> Sif

and Pii Fi —> Sί9 i — 1, 2, where S1 and S2 are locally compact Haus-
dorff. Suppose also that we are given two bundle maps φ-c. πt —> pi9

i = 1, 2, as indicated in the diagram:

177 Φi ^ zrr

st .
Then there exists a unique bundle map φx <§) φ2: 7ϋ1^)π2—^p10 p2 as
indicated below

Si x S2

such that (φ, (g) φ2){Sl,S2) = (φ1)Sl (8) (&)β2, /or aίi (s^ s2) e Sλ x S2.
we are denoting by φs the restriction of the bundle map φ to the fiber
Es above s e S.)

Moreover, /or aίi sections σ̂  e i~Ό(̂ i), i = 1, 2, we feave (& ® ̂ 2) ©
)f and \\φ, (g)φ2\\ = | | ^ | | | | & | | .

Proof. A bundle map is determined locally by its action on
individual fibers, and locally the base spaces are compact. We may
thus assume without loss of generality that Sλ and S2 are, in fact,
compact.

Rather than define our bundle map directly, we begin by defining
the map which it induces on sections. Given a section ω e Γ(πι (g) ττ2),
define a selection (not necessarily continuous, yet) ώ: Sλ x S2—> Fλ(g)
F2 by setting

ώOi, s2) = [fe)S l (x) (Φ2)sj(ω(slf s2)) ,

for all (sly s2) eS1 x S2. It is clear that this selection ώ is bounded
by 11 & 11 11 & 11 ll^ll, and that the map α>—> w is linear. Thus, we obtain
a bounded linear map ~ from Γ(7Γ! (g) ττ2) to the Banaeh space of all
bounded selections of the bundle p1 (g) |02: Fλ0 F2-^ Sx x S2. In fact,
~ maps Γ(πι (g) π2) into Γ ί^ (g) ̂ 2), for, if ω = ̂  (g) α2, where ^ e
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Γfa), i = 1, 2, then

ώfe, s2) = [(&)βl (X) fe) J ^ f e ) (x) σ2(s2))

= &(0"i(8i)) (X) Φ*(σ2(82))

Thus, ώ = fe^J^fe^^^i^ft). In the general case, ω is a
uniform limit of sums of such tensor products, so that ώ is likewise
a uniform limit of sums of tensor products, and thus is in Γfa® p2).

It is then easy to check that the map ~: Γ{π1 (g) ττ2) —> Γ ^ (g) <o2)
is a sectional representation of Gelfand type of the module (Γ(π1 (g) π2),
C(S1)(g) C(S2)); the universal mapping property of the Gelfand repre-
sentation [see 5] then asserts the existence and uniqueness of a bundle
map φι (g) φ2: πt (g) π2 —> pt (g) p2 such that

ώ = (φ1 (g) φ2) o ώ = (φ, (g)φ2)oω

for every ω e Γ(πλ (g) ττ2). The rest is now easy. •

4. Inductive tensor products* Up to this point we have con-
sidered only protective tensor products (of both modules and bundles).
In this final section we turn our attention to other cross norms,
especially the inductive one. One particularly interesting fact about
inductive tensor products is that there is a natural isomorphism

C0(S) (g> C0(T) = CQ(S x T), where S and T are locally compact Haus-
dorff spaces. In the present section we prove a substantial gen-
eralization of this result. If π: E —> S and p: F —> T are any two
bundles of Banach spaces, where S and T are again locally compact

Hausdorff, then we show that there is a bundle π®p\ E®F—>Sx T,
which we shall call the inductive tensor product of the given bundles,
such that

(1) the stalk above any point (s, t) in S x T is Es (g) Ft;

( 2 ) the spaces ΓQ (π) (g) Γo (p) and Γo (π (g) p) are isometrically

isomorphic. More precisely, there is a unique linear map φ: Γ0(π) (g)

Γ0(ρ)-> Γ0(π(g) p) such that φ{σ (g) τ) = σ ® τ for all σeΓ0(π) and
τeΓ0(p); this map φ is an isometric isomorphism.

The map φ is (modulo bundle isomorphisms) the Gelfand repre-
sentation of Γ0(π) (g) Γ0(p) as a Banach module over C0(S) (g) C0(Γ).
In this respect the situation for inductive tensor products is nicer
than it is for projective ones. In the protective case we again have
a linear map φ: Γ0(π) (g) Γ0(p) —> ΓQ(π 0 p) such that φ{σ (g) r) = σ ® r,
and, again modulo bundle isomorphisms, ζ5 is the Gelfand represen-
tation of Γ0(π) (g) Γ0(|θ). In this case, however, φ is usually neither
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surjective nor norm-preserving (nor injective, for that matter). (See

§2.)

The final theorem in this section concerns modules (M, A) and

(N, B) which satisfy the (KR) condition. It describes a representation

of the module (M® N, A <g) B) by sections of the inductive tensor

product of the canonical bundles of the given modules.

PROPOSITION 4.1. Suppose that (M, A) and (N, B) are Banach
modules, where A and B are commutative. If a is any uniform
cross norm on M($ζ)N, then there is a unique way in which M(ξξ)aN
can be made into a Banach module over A(§) B so that

( * ) (α (X) b)(x (X) y) = (ax) (x) (by)

holds for all ae A, b e B, x e M, and y e N.

Proof. By the universal property of tensor products one can
show that there is a unique bilinear map P:(A0B) x (M® iV) —>
M(g)N such that P(a(g)b, x (x) y) = (ax) (x) (by) for all a e A, beB,
x e M, and y eN. We then write P(c, z) = cz.

Given aeA and beB, we define a linear map ψa>b: ikf(x) N"-*
Λί(x)JV by φa,b(z) = (a®b)z for all z in M(g)N. If we write z =
Έi%i®yί, then

a(φaM) = a((a (x) 6 ) ( Σ xt <8) yd)

= a(Σ(axt) ® (byt)) £ \\a\

= \\a\\\\b\\a(z).

(Since a is a uniform cross norm, we have more generally, a(Σι(S%i) Θ
(Tyt)) ^ | |S | | || T\\a(Σ Xt ® Vi) for all bounded linear maps S: M-> M
and T:N-»N.) It follows that ^α,6 can be uniquely extended to a
bounded linear map φay. M(g)aN-* M<g)α N with | |^β > 6 | | ^ | |α | | | |6 | | .
The map φ: A x B-* B(M®a N, M®aN) which sends (α, b) into
^α>& is a bounded bilinear map of norm one or less. Hence, there
is a unique linear map

φ: A (g) B > B(M®a N, M®a N)

such t h a t φ(a0b) = φa>h for all α e i and beB. Moreover, \\φ\\ —

^ 1. We now define a map

P': (Λ (8) B) x (M® α iV) > ikf ® α ΛΓ

by setting P'(c, z) = [0(c)](s). Then P' is visibly bilinear,

a(P'(c,z))^\\φ(c)\\a(z)^\\c\Γa(z),
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and P'(α ® 6, x (x) y) — 0α,6(# (x) 2/) = (α ® &)(# ® 2/) = (α&) ® (62/), i.e., P'
is an extension of P. We then agree to write P\c, z) = cz, etc. •

In the proof of the next theorem we will need a few facts about
the dual space of Γ0(π), where π: E-+ S is a bundle of Banach spaces
and S is locally compact. For each point seS, there is a natural
isometric embedding ~: (Eβ)* —• Γ0(π)* which is characterized by the
identity F(σ) = F(σ(s)) for all Fe(Es)* and σeΓ0(π). If we let

K = {F:Fe(Es)* for some βeS, ||JF|| ^ 1}

then K is a weak-* compact subset of Γ0(τr)*. Moreover, if we have
a convergent net of elements in S, say lim sα = s, and if, for each
a, Fa is an element of the unit ball of (E8a)*9 then there is a subnet
of {Fa} which converges weakly-* to a functional of the form F,
where F belongs to the unit ball of (Es)*. (For more details the
reader can consult the Appendix in [5].)

THEOREM 4.2. Let π:E-> S and ρ:F-*T be bundles of Banach
spaces, where S and T are locally compact Hausdorff. Then there

is a unique bundle of Banach spaces π (§) p: E(§) F—> SxT such that
(1) for each point ( s , t) in S x T the fiber above ( s , t) is

Es®Ft;

( 2 ) the tensor map (x): E X F-^ E ® F, which assigns to any

pair (x, y) e E x F its tensor product in Eπ{x) (§) Ep{y), is continuous;

(3) if σ:U-^E and τ:V->F are local sections of π and p

respectively, then σ (•) τ:U x V' —» E'(§) F is a local section of π ® p;
(4) there is a unique linear map φ: Γ0(π) ® ΓQ(p) —> Γ0(π §) p)

such that φ(σ (g)) = σ ® τ for all σ e Γ0(π) and τ e Γ0(p); the map is
an isometric isomorphism.

Proof. We let E® F be the disjoint union of the family of

Banach spaces {E8 ® Ft: s e S, t e T} and we let π (§) p: E (|) F-+ S x T
be the natural surjection. We denote by Σ the set of all^selections

σ:S x T-+E&F, i.e., for all s eS and t e T, σ(s, t)eEs(g) Ft. We
also denote by Σδ the set of bounded selections in Σ ; Σ 6 is a Banach
space with respect to the usual pointwise operations and sup norm:
| |σ| | = sup{||(j(s, i ) | | * :eeS, teT).

Using the universal property of tensor products one can show
that there is a unique linear map θ: Γ0(π) (x) Γ0(p) —> Σ such that
θ(σ®τ) = σ® τ for all σeΓQ(π) and τeΓQ(ρ). We will show that
θ maps Γ0(π) (S) Γ0(p) into Σb, and, more importantly, that θ is an
isometry. In so doing, we use a characterization of inductive cross
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norms found in [1], p. 63. It will also be convenient to borrow
a bit of notation from the same reference: we denote by OX the
closed unit ball of a Banach space X.

Consider, now, an arbitrary element in Γ0(π) (x) Γ0(p), say Σ a% (x)
Ti. Then

! I E ^ ® r t | ! - = sup
Gε OΓQ(P*)

= sup sup
se S GeOΓQ(p)*

(in

= s u p s u p WΣiMΛl
seύ' FeO(Es)*

= sup sup sup 11 Σ Fiσ^s)
seS teT FeO(Es)*

= sup sup II Σ 0i(s) (x) Ti(t)\\
se S teT

For the same element Σ σ% ® ?i i n Γa{π) (x) Γ0(p) we now define
a real-valued function / on S x Γ by setting

sup \Σι<σt(8),F}<τi(t),G}\.
FeO(Es)*,Ge ϋ(Fs)*

We will show that / is upper semicontinuous on S x T. Suppose
that / fails to be upper semicontinuous at some point (s, t) in S x Γ.
Then there exists an ε > 0 and a net {(sα, £α)} which converges to
(s, ί) such that f(sa, ta) ^ /(s, ί) + ε for all α. Choose Fae0(E,a)*
and Gae0(F8a)* such that

Σ ta\ Ga) I

Since the functionals ^ α belong to the weak-* compact subset K of
ΓQ(π)*, we may assume by passing to subnets if necessary, that {Fa}
converges weakly-* to some functional. Furthermore, the limit
functional will be of the form F for some FeO(E^)*. Similarly, we
may assume that lim Ga = G for some GeO(Ft)*. Then

(ί), G) I S f(s, t) ,

which is impossible.
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We can now apply an existence theorem on bundles due to
Hofmann, specifically Proposition 3.6 in [4]. It follows that there is

a topology on E(k)F which makes π®p\E®F—>Sx T a bundle
of Banach spaces and makes every selection of the form Σ σt ® τt a
section of the bundle. Moreover, it is easily argued that each of
these sections vanishes at ©o. Thus, we have a isometric linear map

θ: Γ0(π) <g> Γ0(p) > Γ0(π <g> p) .

By the same argument used to prove Corollary 3.5, one can show

that the image of θ is dense in ΓQ(π (§) p). It follows then that θ
can be uniquely extended to an isometric isomorphism

θ: Γ0(π) | ) Γ0(p) > Γ0(π ( § p) .

Properties (2) and (3) follow by previous arguments. The existence
theorem of Hofmann, which we invoked in the preceding paragraph,
does not guarantee the uniqueness of the topology on the fiber space.
But now we can see that this topology is unique, since the topology
is determined by the space of sections, which consists, in the case,
of all uniform limits of selections of the form Σ σ% ® τi- D

We note three corollaries of the theorem. The first two are
known. (See [1], p. 64.)

COROLLARY 4.3. Let S and T be locally compact Hausdorff spaces.
Then

C0(S)®C0(T) = CQ(Sx T).

More precisely, there is a unique isometric isomorphism θ: C0(S) (§)
C0(T)-*C0(Sx T) such that θ(f®g) = f®g, where (f®g)(s,t) =
f(s)g(t).

Proof, Apply the theorem to the constant C-bundles over S
and T.

COROLLARY 4.4. Let S be a locally compact Hausdorff space and
let X be any Banach space. Then

C0(S)®X

is isometrically isomorphic to C0(S, X), the space of continuous X-
valued functions on S which vanish at infinity.

Proof. Let one bundle be the constant C-bundle over S and
let the second bundle have X as its one and only fiber.
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COROLLARY 4.5. Let S and T be locally compact Hausdorff spaces
and let X and Y be Banach spaces. Then

CQ(S, X) d C0(T, Y) = C0(S x T, X®Y) .

Proof. Use the bundles whose fiber spaces are S x X and T x Y
with the product topologies.

THEOREM 4.6. Let (Λf, A) and (N, B) be Banach modules which
satisfy the (KR) condition and let π: E —> S and p: F —» T be their

respective canonical bundles. Then the module (M®N, A(g)B) also
satisfies the (KR) condition and there exists a unique linear map

Θ: M(g)N-> ΓQ(π (§) p) such that θ(x (x) y) = x (5) y for all xeM and
y e N. Moreover, θ is a nor in-decreasing sectional representation
of Gelfand type.

Proof. The map θ is simply the inductive tensor product of the
Gelfand representations ": M-^Γ0(π) and ": N—>Γ0(p), followed by the

natural isomorphism from Γo(π)0ΓQ(p) into Γo(π (§) p). It is a
straightforward matter to check that θ is of Gelfand type, i.e., that

θ(cz) = cθ(z) for all c 6 A (g) B and ze Af (g) N. (Because of continuity
and bilinearity it suffices to consider monomials c = a 0 b and z =

x®y, etc.) Finally, the proof that (If® N, A ® B) satisfies the
(KR) condition is the same as in the projective case.
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