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CONDITIONS FOR BEING AN FGC DOMAIN

WILLY BRANDAL

A domain R is said to be FGC if every finitely generated
ϋί-module decomposes into a direct sum of cyclic submodules.
The main result is: if R is a domain with quotient field Q,
then R is FGC if and only if all of the following three
conditions are satisfied: (1) R is Bezout, (2) Q/R is an
injective i?-module, and (3) there does not exist a continuous
embedding of βN into spec R relative to the patch topology
of specϋ?. This result is also true if (3) is replaced: (30
every nonzero element of R is an element of only finitely
many maximal ideals of R. Using entire functions, there
exists an example of a domain satisfying (1) and (2), but
not satisfying (3). Also presented are some partial results
towards generalizing the main result to commutative rings.

Introduction* All rings will be commutative with identity. R
will always denote a ring. N will denote the set of all positive
integers. Giving AΓthe discrete topology, βN will denote the Stone-
Cech compactification of N. Use speci? to denote the set of all
prime ideals of R and m spec R to denote the set of all maximal
ideals of R. For aeR, use V(a) for {Pespeci?: aeP} and D(a) for
{Pe spec R: a $ P) — speci? — F(α). The patch topology of speci? is
the topology which has {V(a)}aeR\J {D(b)}beR as a subbasis of open
sets. R is a valuation ring if the set of all the ideals of R forms
a chain with respect to set inclusion (possibly R has zero-divisors).
R is a Bezout ring if every finitely generated ideal of R is cyclic.
We shall find it convenient to also use the following nonstandard
notation: if r 6 R, then m spec (r) = {Me m spec R: r e M) — V(r) Π
mspecϋ?. The main reference for this paper is [3], which includes
characterizations of FGC rings and discussions of βN and the patch
topology of speciϋ (although no homological algebra).

We next discuss the historical development of this subject to
motivate the results. An iϋ-module A is linearly compact if every
family of cosets of submodules of A, that has the finite intersection
property, has a nonempty intersection. A ring R is maximal if R
is a linearly compact ίJ-module. A ring R is almost maximal if
R/I is a maximal ring for all nonzero proper ideals I of R. In 1952
I. Kaplansky [5] proved that if R is a valuation domain, then R is
FGC if and only if R is almost maximal. In 1959 E. Matlis [6]
proved that if R is a valuation domain with quotient field Q, then
R is FGC if and only if QjR is an injective iϋ-module. One can
restate these results as follows. If R is domain with only one
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maximal ideal, then R is FGC if and only if R is a valuation domain
and R is almost maximal. If R is a domain with only one maximal
ideal and Q is the quotient field of R, then R is FGC if and only
if R is a valuation domain and Q/R is an injective iϋ-module.

The I. Kaplansky result has already been generalized to domains,
and in fact to commutative rings [3, Theorem 9.4 and Main Theorem
9.1]. For example, if R is a domain, then R is FGC if and only if
R is a Bezout domain and R is almost maximal. One may view this
paper as a generalization of the E. Matlis result. For several years
we had conjectured the obvious generalization: if R is a domain
with quotient field Q, then R is FGC if and only if R is a Bezout
domain and Q/R is an injective iϋ-module. After several years of
unsuccessful attempts at proving this conjecture, a counterexample
was discovered. We want to thank P. Eakin and W. Heinzer for
the conversation which led to this example. This example quickly
led to the main result.

The first section gives the proof of the main theorem. The
second section gives the example which indicates why condition (3)
or (30 is necessary for the main theorems. The third section gives
some partial results towards generalizing from domains to commuta-
tive rings.

1* The domain case* Of importance in this section is the
following definition, first introduced by E. Matlis. A domain R is
h-local if every nonzero prime ideal of R is a subset of only one
maximal ideal of R and every nonzero element of R is an element
of only finitely many maximal ideals of R. A major portion of the
proofs given here really amounts to verifying the A-local conditions.
See [3] and [2] for a general discussion of /̂ -local domains. We
shall also need the following of E. Matlis [7, Theorem 3.3]: if R
is an /k-local domain and A is an i?-module, then inj dim^ A —
sup {inj dimBvAM: Me m spec R). To make the proof of the main
results more readable, it will be broken up into a series of lemmas.

LEMMA 1.1. IfxeβN, then there exists a continuous embedding
j : βN-^ βN such that x g j(βN).

Proof. Let E be the set of all positive even integers. Then
{V(E), V(N - E)} is a partition of βN with both V{E) and V{N - E)
homeomorphic to βN. Thus the homeomorphism βN onto V{E) or
βN onto V(N — E) is the required embedding. •

LEMMA 1.2. // R is a valuation ring, then there does not exist
a continuous embedding of βN into spec R relative to the patch
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topology of spec R.

Proof. Let all topological statements for speci? be relative to
the patch topology. R is a valuation ring implies spec R is a chain
and the topology of speci? is the order topology, i.e., a subbasis of
open sets is {/e spec Λ: J £ P}P 6 S p o c Λ u {/e spec i2: P£/}p 6 S p e c Λ . The
order topology of a chain cannot have a subspace homeomorphic to
βN.

This paragraph just verifies the last statement. Suppose
i: βN-^ specie is a continuous embedding. Let Px = Πi(βN). Then
Pi^eiiβN). By Lemma 1.1, there exists a continuous embedding
i2: βN-> i(βN) such that Px £ i2(βN). Let P2 = Π UβN). Then P2 e
ί2(βN) and Px ̂  P2. In particular P2 £ P2 and Px, P2 6 i(βN). Induc-
tively one proceeds to get Pl9 P2, , PΛ, e i(βN) with PΛ £ PΛ + 1

for all we JV. Let C = {Pn}neN U {U^.vPJ. Then C is a closed sub-
set of i(βN). By [3, Theorem 7.6] every infinite closed subset of
βN has a subset homeomorphic to βN. Thus there exists a con-
tinuous embedding of βN into C. But then \N\ = |C| Ξ> |/3iV| = 2%
which is a contradiction. •

LEMMA 1.3. Suppose R is a Bezout domain such that there
exists a continuous embedding of βN into spec R relative to the
patch topology of spec R. Then there exists a nonzero element of R
which is an element of infinitely many maximal ideals of R.

Proof. Let all topological statements for spec 22 be relative to
the patch topology. Suppose i: βN—> speci? is a continuous embedd-
ing. By Lemma 1.1, we may assume {0} £ i(βN). By [3, Lemma
6.2], a basis of open sets of speciϋ is {D(a) Π V(b): a,beR} since R
is Bezout. Thus every closed subset of spec R is of the form
ΠjeΛViaj) U D(bά)) for some aj9 bάeR. Since βN is compact, i(βN)
is a closed subset of spec R. Thus there exist α, 6 e R such that
ί(βN) c V(a) U D(b) and {0} $ V(a) U Dφ). In particular a Φ 0 and
6 - 0 , so 2?(δ) = Z>(0) = 0 . Thus i{βN)aV(a). We claim that
mspec(α)| = co, i.e., α is the required nonzero element of R which

is an element of infinitely many maximal ideals of R. For suppose
not, and so suppose m spec (α) = {Ml9 •••, Mn). Since i{βN) dV{a),
we have α e P for all Pei(βN). Thus for some & with 1 ̂  & Ξg n.
we have | {P e i(βN): P c l , } | = o o , Let L(Λί,) = {P e spec Λ: P c MJ.
We claim that L(Mk) is a closed subset of spectiϋ. Because if Je
speci? — L(Mk), then there exists xeJ — Mk and so D(#) is a closed
subset of speciϋ with J<$D(x) and D(X)ZD L(Mk). This verifies that
L(Λffc) is a closed subset of specif. Therefore {Pei(βN): P c J I ί J =
L(Mk) Π i(/3iV) is an infinite closed subset of i(βN). By [3, Theorem
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7.6], there exists a continuous embedding of /3ΛΓinto L{Mk) Π i{βN).
But L(Mk) is homeomorphic to spec RM]c and RMk is a valuation domain.
This contradicts Lemma 1.2. Π

LEMMA 1.4. Suppose R is a Bezout domain, Q is the quotient
field of R, and Q/R is an injective R-module. Then there does not
exist a nonzero prime ideal of R which is a subset of two maximal
ideals of R.

Proof. Suppose the result is not true, and so suppose Pespeciϋ
and Mly M2 e m spec R with {0} Φ Pa M, Π M2 and Mι φ M2. Then
PRP c RMl Π RM2

We first claim that if A is an J?-module such that Q z> A z> R
with AMχ Φ Q or AM2 Φ Q, then there exists xoeR — {0} such that
xo(A/R)Mi = {0} for both i = 1, 2. To verify this, we without loss of
generality suppose AMγ φ Q. Since RMχ is a valuation domain, there
exists reR- {0} such that (l/r)RMί-oAMl. Then P r A c P r A ; ¥ l c P i ? M l c
P β P c RMl Π i?i/2. In particular, there exists xQeR — {0} such that
x0A c J B ^ Π RMZ , and this is the required xQ

Let us use K for Q/#. We claim that if K = Kλ@K2 for R-
submodules Kx and iί 2 of K, then for some i e {1, 2} we have
(K%)Mj = {0} for both j = 1, 2. To verify this, suppose K = K, φ if2.
Then Q/RMl = KMχ = (K^)Mι φ (i£2)ilfl. But i2i/χ is a valuation domain
and so Q/RMι is indecomposable as an i^¥l-module. Hence (Kτ)Mι ^ {0}
for some i e {1, 2}. Without loss of generality we suppose that
( i Q ¥ l = {0}. There exists an i?-submodule A of Q such that
Kx — A/R. Then A¥ l Φ Q and so by the last paragraph there exists
an xQeR~{0} such that xo{K^)M2 = {0}. As above jfiΓ̂  = ( ϋ Γ J ^ φ
(K2)M2 and X"jf2 is indecomposable as an i2i¥2-module. xo(K1)M2 ~ {0}
implies (K2)M2 = KM2. Thus we must have (Kt)M2 = {0}, verifying the
claim.

Choose mx e Mλ — M2 and m2e M2 — Mλ. Since i? is a Bezout
domain, there exist m, deR such that ϋ?m = Rm1 + i?m2 and Rd =
i?mx Π i2m2. Define # = (m/cZ) + R, yλ = (mjd) + i2, and y2 =
(mjd) + R. Then #, 2/x, and y2 are nonzero elements of K, and
Rx = J?^! 0 iû /2 c i ί . Since Q/R = K is an injective ^-module, there
exist iϋ-submodules Kt of K such that Ry% c ^ and if = Kγ 0 iΓ2.
But RMlyx £ {0} and i?Jflτ/2 £ {0}, so ( i Q ^ ^ {0} and ( iQ J f i ^ {0}. This
contradicts the last paragraph. •

LEMMA 1.5. Let R be a ring and suppose Y is a subset of
m spec R with at least two elements. Then there exist y, zeR
satisfying V(y) ΠYΦ 0 , V(z) ΠYΦ 0, and (V(y) Π Y) Γ\ (V(z) n

Y) = 0 .
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Proof. Suppose this is not true. Define P = {r e R: V(r) Π
Y Φ 0}. From the assumption that the lemma is not true and
V(a + b) Z) V(a) n V(b), we infer t h a t a,beP implies a Λ-beP. Also

aeP and reR implies ar e P, 0 6 P, and 1 £ P. Thus P is a proper
ideal of R. Since Y has at least two elements, there exists Me Y
such that Mςt P. Choose x e l - P . Then F(a) Π Γ ^ 0 , so x e P.
This contradicts x £ P. •

LEMMA 1.6. Let R be a Bezout ring and suppose Y is an
infinite subset of mspeci?. Then there exists {xn}neNa R such that
{V(xn) Π Y}neN is a family of distinct nonempty pair wise disjoint
sets.

Proof. IfxeR with 0 < | V(x) Π Y\ < °° and M e V(x) Π Γ, then
there exists x' eR such that V(xf) Γ)Y = {M}. Define JP7 = {Me Γ:
there exists xei? with V(x) f] Y = {M}}. If JP is an infinite set,
then the desired conclusion of the lemma follows. So we will assume
that F is a finite set. It follows that if x e R with V(x) Π(Y-F)Φ0,
then \V(x)ΓιY\ - \V(x)Π(Y-F)\ = - .

Let Yo = Y — F. We recursively define χ'n, x" and Yn for n e N
such that x'n, x" e R, V(x'n) Π ΓΛ_χ Φ <2, Yn = F « ) ΓΊ Γw_! is an infinite
set, and ( F « ) Π 7..0 Π ( F « ' ) Π Y..0 = 0 . For n = 1, by Lemma
1.5, there exist x[, x[' eR such that V(x[) Γ\Y0Φ 0 , V(xϊ) f)Y0Φ 0 ,
and (F(a?ί) ΓΊ Γo) Π (V(xϊ) Π Γo) - 0 . Let Γx = F(a?Π Π Fo. By the first
paragraph Yx is an infinite set. Suppose x'n~i> x"-i and Yn^ have been
defined as required. By Lemma 1.5, there exist x'n,x"eR such that
W n Γ , . ^ 0 , F « ) Π Y - ^ 0 , and ( F « ) Π Y^)Π(F(^) n I V O -
0 . Let FΛ = V{x«) Π Fn_i. Since i2 is a Bezout ring, there exists
gneR such that JBflrΛ = Y2^Rx". Thus ΓΛ - F K J n ^ = F« ')Π
• Π F(xΓ) Π 7 0 = V(gn) Π Γo, which is an infinite set by the first
paragraph. This completes the construction of the x'n9 x

fi and Yn.
It follows that { F « ) Π (Y — F)}neN is a family of distinct non-

empty pairwise disjoint sets. Choose PneV(x'n)Γ\(Y—F). Since
F is a finite set, there exists ynePn such that yn£M for all MeF.
Since R is a Bezout ring, there exists xneR such that Rxn = Rxf

% +
Ryn. Then {#Λ}*etf is the required set. •

THEOREM 1.7. Let R be a domain with quotient field Q. Then
R is an FGC domain if and only if all of the following three con-
ditions are satisfied:

(1) R is a Bezout domain,
(2 ) Q/R is an injective R-module, and
(3) there does not exist a continuous embedding of βN into

spec R relative to the patch topology of spec R.
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Proof. Suppose R is an FGC domain. By [3, Theorems 9.4 and
2.9] R is an almost maximal Bezout domain, and so R is Λ-local and
locally almost maximal. For Mem speciϋ, RM is an almost maximal
valuation domain, and so Q/RM is an injective jffM-module by [6].
By [7, Theorem 3.3] Ίnj dimR Q/R = sup {injdimRM(Q/R)M: MemspecR} =
sup {inj dim^ Q/RM: Me m specj?} = 0, and so Q/R is an injective
i?-module. Since R is fc-local, there does not exist a nonzero element
of R which is an element of infinitely many maximal ideals of R.
Using Lemma 1.3, we infer that condition (3) is satisfied. This
verifies that if R is an FGC domain, then the three conditions are
satisfied.

Conversely, we suppose the three conditions are satisfied, and
we must prove that R is an FGC domain. For the first step, we
show that there does not exist a nonzero element of R which is an
element of infinitely many maximal ideals of R. Suppose this is not
true, i.e., suppose there exists roeR — {0} such that (m spec (r0) | = °o.
By Lemma 1.6 there exists {x%}neN c R such that {V(xn) Π m spec (ro)}neN

is a family of distinct nonempty pairwise disjoint sets. R is a
Bezout ring implies there exists yneR such that Ryn — Rxn + Rx0,
and so V(yn) Π m spec R = V(xn) Π m spec (r0).

Choose Mn e V{yn)Πm specR. For r eR define Sr = {neN: r e Mn},
and define Sf = {Sr e &*(N): r eR}, where &*(N) is the set of all
subsets of N. We claim that £f = &*(N). Because suppose BaN.
Define J = Σ«ê -B(̂ o/l/») Note that yn\r0 in R, so / is an ideal of
R. Define /: I-+Q/R by /(Σϊ=i rΛn/i/,)) = Σ.eα,.,,}^ rt((l/i/0 + R),
for Vi e R. It can be shown that / is a well-defined i2-homomorphism.
By condition (2), Q/R is an injective i?-module, so there exists
q e Q - {0} such that /(r) = r{q + R) for all r e L Since R is a
Bezout domain, there exists teR such that Rt = R Γ\ Rroq. It
follows that B = Ste,9^ and hence S^7 = &*(N) are claimed.

Define ίo:N—>specR by io(n) = Mn for neN. Giving N the
discrete topology, % is continuous relative to the patch topology of
speciϋ. But speci? is compact Hausdorff relative to the patch
topology [3, Theorem 6.4], so by the universal property of βN there
exist a continuous i: βN —> spec R such that i\N •= i0. We claim
that i is a one-to-one function. Suppose zL,z2eβN and z1 Φ z2.
There exists AaN such that zι e V(A) and z2e V(N — A). By the
last paragraph, there exists rur2eR such that Sn = A and Sr2 =
N-A. Then ifo) e F(rx), ΐfe) 6 F(r2), F(rx) n F(r2) Π io(iSΓ) - 0 ,
and so ί(zx) Φ i(z2). This verifies that i is a one-to-one function.
This contradicts condition (3), and so we have shown that there does
not exist a nonzero element of R which is an element of infinitely
many maximal ideals of R. Condition (2), Lemma 1.4, and this last
statement implies that R is an Λ-local domain.
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Condition (2) means that inj dim^ Q/R = 0. By [7, Theorem 3.3],
R is /t-local implies 0 = inj dim^ Q/R = sup {inj dim^ (Q/R)M: Me
mspeci?}. Thus for all Mem specR, (Q/R)M = QIRM is an injective
RM-mod\ύe. By the local case [6], RM is an FGC domain, and hence
RM is almost maximal. Thus R is fe-local, locally almost maximal,
and Bezout. By [3, Theorem 2.9 and Theorem 9.4] R is FGC. •

THEOREM 1.8. Let R he a domain with quotient field Q. Then
R is an FGC domain if and only if all of the following three con-
ditions are satisfied:

(1) R is a Bezout domain,
( 2) Q/R is an injective R-module, and
(3') every nonzero element of R is an element of only finitely

many maximal ideals of R.

Proof. If R is an FGC domain, then (1) and (2) follow from
Theorem 1.7 and (3') follows from [3, Theorem 9.4 and Theorem 2.9]
or from the previous proof. Conversely, suppose (1), (2) and (3')
are satisfied. By Lemma 1.3, condition (3) of Theorem 1.7 is satisfied,
and so by Theorem 1.7 R is FGC. •

We briefly comment on some alternative forms of the last two
theorems. In [1, Theorem 2.3], for R a valuation domain with
quotient field Q, there are eleven equivalent conditions for R to be
FGC (including R is almost maximal and Q/R is an injective i?-
module). One of these is the condition that every .K-homomorphic
image of Q is an injective i?-module. Looking at the proofs given
above it should be clear that both Theorems 1.7 and 1.8 are true if
condition (2) is replaced by:

( 2') every JS-homomorphic image of Q is an injective i?-module.
Another of the equivalent conditions in [1, Theorem 2.3] is that

H is a maximal ring, where H is the completion of R in the R-
topology (or equivalently H = Hom^ (Q/R, Q/R)). However the con-
dition that H is a maximal ring cannot replace condition (2) in
Theorems 1.7 or 1.8 since by [1, Theorem 4.9], if H is a maximal
ring then R has only finitely many maximal ideals, and of course
there do exist FGC domains with infinitely many maximal ideals
(for example, the ring of integers).

2* An example. We wish to illustrate that the main Theorems
1.7 and 1.8 require conditions (3) or (3'), since there is an example
of a domain satisfying conditions (1) and (2), but not (3) or (3').
The example deals with the ring of entire functions. For the
necessary algebraic facts about entire functions, the reader is referred
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to the exercises on p. 146-148 of R. Gilmer's text [4].

EXAMPLE 2.1. There exists a Bezout domain R with quotient
field Q such that Q/R is an injective i?-module, yet R is not an FGC
domain.

Proof. Let E be the set of all entire functions. With the
standard operations E is a Bezout domain. Let Q be the quotient
field of E, and so Q is the field of meromorphic functions. Let
S = {feE:f(n) Φ 0 for all neN}. Then S is a multiplicatively
closed subset of E. Define R = Es. Then R is a Bezout domain
with quotient field Q and R conists of all the meromorphic functions
that have no poles on the set N. We claim that this is the required
R.

For neN define Pn = {feE:f(n) = 0}. Then Pn is a maximal
ideal of E. For neN define Mn = RPn. Then Mn is a maximal
ideal of R for all neN. In order to show that Q/R is an injective
ϋ?-module, we suppose J is a nonzero ideal of R and g: I-+Q/R is a
i2-homomorphism. We must show that there exists q e Q such that
g(f)=f(q + R) for all/eJ.

For each neN choose fne I such that RMnf% — RM%! This is
possible since RM% is a discrete rank one valuation domain. Choose
qneQ such that g(fn) = qn + R. By possibly replacing qn by 1 + gΛ,
we may assume that R3ίnqn z> RMnfn- Suppose the Laurent series
expansion of qjfn about z — n is Σί°=r% β»,ί(s ~ nY f° r some nonposi-
tive integer τn and αWft are complex numbers. By the Mittag-Leffler
theorem, there exists q e Q — {0} such that for all neN, the Laurent
series expansion of q at z = w has as its principal part Σΐ~i % ̂ %ΛZ~ nY>
and g has no other poles. We claim that this is the required q, i.e.,
9(f) = f(Q + R) for all fel. Because if fe I and g(f) = qf + R then
the principal part of the Laurent series expansion about z = n of
fq is the same as for q\ and so fq — qf e R. This completes the
proof that Q/R is an injective i2-module.

Let feR be defined by f(z) = sin (π z) for any complex number
z. Then feMn for all weiV and so there exists a nonzero element
of R which is an element of infinitely many maximal ideals of R.
By definition, R is not /̂ -local. Thus by [3, Theorem 9.4 and Theorem
2.9] R is not FGC. •

The example given above satisfies conditions (1) and (2) of
Theorem 1.8, but not condition (3'). It follows from Theorems 1.7
and 1.8 that for this R there exists a continuous embedding of βN
into specϋί relative to the patch topology. The reader may check
that for this example, βN is homeomorphic to m spec R, relative to
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either the patch topology or the Zariski topology of speci?.
For those readers familiar with the group of divisibility of a

domain, we suspect that the group of divisibility of R in the above
example is order isomorphic to ZN, where Z is the set of integers
and ZN has the product ordering.

COROLLARY 2.2. Suppose R is a Bezout domain with quotient
field Q such that Q/R is an injective R-module. Then examples
show that R may be h-local or R may not be h-local. If R is h-
local, then R is an FGC domain. If R is not h-local, then there
exists a nonzero element of R which is an element of infinitely
many maximal ideals of R, and there exists a continuous embedding
of βN into spec R relative to the patch topology of spec R.

Proof. The ring of integers is an /t-local Bezout domain R with
quotient field Q such that Q/R is an injective iϋ-module. The Example
2.1 is a non-Mocal Bezout domain R with quotient field Q such that
Q/R is an injective JS-module. If R is fc-local then by Theorem 1.8
R is FGC. If R is not fc-local, then R is not FGC by [3, Theorem
9.4 and Theorem 2.9], and so by Theorems 1.7 and 1.8 the last
statement of the corollary is true. •

3* Partial results for commutative rings* We wish to comment
on attempts to generalize Theorems 1.7 and 1.8 to commutative rings,
with most of the results being of a negative nature. By [3, Main
Theorem 9.1], if R is a direct sum of the ring of integers with
itself, then R is an FGC ring, and clearly there exists a nonzero
element of R which is an element of infinitely many maximal ideals
of R. Thus condition (3') of Theorem 1.8 needs to be changed in
order to hope to generalize this theorem. Also one needs something
to replace "quotient field" in condition (2) of Theorems 1.7 and 1.8.

Recall that by our convention rings are commutative with
identity. If R is a ring, then, a regular element of R is a nonzero
nonzero-divisor of R. The total ring of quotients of R is Rs where
S is the set of all regular elements of R. Just as for domains, if
R is a ring and Q is its total ring of quotients, then there is a
standard embedding of R into Q and via this embedding one con-
siders R as an iϋ-submodule of Q. Hence one can consider the R<
module Q/R.

We first consider the obvious two choices for conditions (2) and
(3'), namely use "total ring of quotients of R" for Q and use
"regular element" for nonzero element of R.

EXAMPLE 3.1. There exists a ring R with total ring of quotients
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Q such that
(1) R is a Bezout ring,
(2 ) Q/R is an injective ϋϊ-module, and
(3') every regular element of R is an element of only finitely

many maximal ideals of R,
and yet R is not an FGC ring.

Proof, Let R be a countably infinite product of fields. Then
every regular element of R is a unit of R, so QjR = {0}. Then R
satisfies conditions (1), (2), and (3'). Since R has infinitely many
minimal prime ideals, R is not FGC by [3, Theorem 8.5]. •

A Boolean ring is a ring R with x2 = x for all x e R. We wish
to thank R. Weigand for pointing out that a countably infinite
Boolean ring has the properties described in the next example.

EXAMPLE 3.2. There exists a ring R with total ring of quotients
Q such that

(1) R is a Bezout ring,
(2) Q/R is an injective i?-module, and
(3) there does not exist a continuous embedding of βN into

specJ? relative to the patch topology of speclϋ,
and yet R is not an FGC ring.

Proof. L e t R = {AczN: | A\< oo or \N- A\< oo}. Make R into

a Boolen ring by the usual definition of addition and multiplication:
A + B = (A U B) - (A n B) and AB = A Π B for A, 5 e R. The only
regular element of R is the identity, N9 so Q/J? = {0}. Since R is a
countable set and \βN\ = 2C, it follows that i2 satisfies conditions (1),
(2), and (3). For neN define Pn = {A e R: n g A}. Define P . = {A e i2:
IAI < oo}. Then speci? = {JPX6^U{°°}>

 a n ( i aU prime ideals of ϋ? are
minimal prime ideals of R. By [3, Theorem 8.5], an FGC ring has
only finitely many minimal ideals, so R is not FGC. •

The above two examples show that either of the set of three
conditions is not sufficient to imply that R is an FGC ring. The
following shows that these conditions are not necessary.

EXAMPLE 3.3. There exists a ring R with total ring of quotients
Q such that R is an FGC ring and Q/R is not an injective iϋ-module.

Proof. Let Z be the additive group of integers, and let Z2 be
ordered lexicographically. Let Ro be the long power series ring
relative to the field of complex numbers and the group Z2 (see [3,
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§11]). Then Ro is a maximal valuation domain [3, Proposition 11.5]
and so Ro is an FGC domain [3, Main Theorem 9.1]. Let PQ be the
nonzero nonmaximal prime ideal of RQ. Define R — R0/PQ. Then R
is maximal valuation ring, and so R is an FGC ring. If P = PQ/P$,
then P is the minimal prime ideal of R. Letting Q be the total
ring of quotients of R, there exists a surjective i2-homomorphism
/: P-> Q/R. Since P(Q/R) = {0}, it follows that there does not exist
an element x e Q/R such that f(p) = px for all p e P. Thus by Baer's
criterion, Q/R is not an injective iϋ-module. •

The above three examples suggest that the "total ring of
quotients" is not the appropriate choice for replacing "quotient field"
if one wants to generalize the earlier theorems. Another choice is
to use the "injective envelope of iϋ" for the "quotient field."

EXAMPLE 3.4. There exists a ring R with E an injective envelope
of R such that

(1) R is a Bezout ring,
(2) E/R is an injective i?-module, and
(3) there does not exist a continuous embedding of βN into

spec R relative to the patch topology of spec R,
and yet R is not an FGC ring.

Proof. Use the same R as in the proof of Example 3.2. If /
is an ideal of R and there exists Ael with |A\ = oof then / is a
cyclic ideal of R. If I is an ideal of R and Ael implies \A\ < ^ ,
then there exists a subset SΣ of N such that / = {AcSj: |A| < c>o}.

Let E be the set of all subsets of N. One makes E an R-
module with the standard operations (same as used for R). One
checks that E is an essential extension of R. That E is an injective
ϋ?-module is checked by using Baer's criterion and considering the
two different types of ideals of R described above. Thus E is an
injective envelope of R. Again one checks that E/R is an injective
i?-module by using Baer's criterion and considering the two different
types of ideals of R. Thus R has the required properties. •

Of course the R in the last proof also satisfies the condition:
(3') every regular element of R is an element of only finitely many
maximal ideals of R. Thus if one uses the "injective envelope of
.ft" to replace the "quotient field of R", then either of the set of
three conditions is not sufficient to imply that R is an FGC ring.
The following example shows that these conditions are not necessary.

EXAMPLE 3.5. There exists a ring R with E an injective enve-
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lope of R is an FGC ring and E/R is not an injective i?-module.

Proof. Use the same R as in the proof of Example 3.3, with Q
being the total ring of quotients of R. One easily checks that Q
is an essential extension of R, and using Baer's criterion, one can
check that Q is an injective iϋ-module. Thus Q is an injective of
R. Taking E = Q, one gets the desired conclusion. •

As a summary, if one wants to generalize Theorems 1.7 or 1.8
to commutative rings, then neither "the total ring of quotients of R"
cr "an injective envelope of R" is an appropriate choice for "the
quotient field of R."
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