NEARLY STRATEGIC MEASURES

THOMAS E. ARMSTRONG AND WILLIAM D. SUDDERTH

Every finitely additive probability measure α defined on all subsets of a product space $X \times Y$ can be written as a unique convex combination $\alpha = p\mu + (1-p)\nu$ where μ is approximable in variation norm by strategic measures and ν is singular with respect to every strategic measure.

1. Introduction. For each nonempty set X, let P(X) be the collection of finitely additive probability measures defined on all subsets of X. A conditional probability on a set Y given X is a mapping from X to P(Y). A strategy σ on $X \times Y$ is a pair (σ_0, σ_1) where σ_0 is in P(X) and σ_1 is a conditional probability on Y given X. Each strategy σ on $X \times Y$ determines a strategic measure, also denoted σ , in $P = P(X \times Y)$ by the formula

$$\sigma g = \displaystyle{\int} \int g(x,\,y) d\sigma_{\scriptscriptstyle 1}(y|x) d\sigma_{\scriptscriptstyle 0}(x)$$
 ,

where g is a bounded, real-valued function on $X \times Y$. The collection Σ of all strategic measures was studied by Lester Dubins [3], who proved that, if X or Y is finite, then every member of P is *nearly strategic* in the sense that it can be approximated arbitrarily well in the sense of total variation by a strategic measure. However, Dubins also showed that if X and Y are infinite, then the collection $\overline{\Sigma}$ of all nearly strategic measures is a proper subset of P and, moreover, there exist elements in $\Sigma^{\perp}(=\overline{\Sigma}^{\perp})$, the set of measures in P singular with respect to every measure in Σ . (As usual, the finitely additive probability measures μ and ν are mutually singular if, for every positive ε , there is a set A such that $\mu(A) < \varepsilon$ and $\nu(A) > 1 - \varepsilon$.)

Here is our main result.

Theorem 1. $\Sigma^{\perp\perp} = \overline{\Sigma}$.

This answers a question posed by Dubins in [3]. As Dubins pointed out, the following corollary is a consequence of Theorem 1 together with results of Bochner and Phillips [1].

COROLLARY 1. Every μ in P can be written in the form

$$\mu = p\sigma + (1-p)\tau$$

with $\sigma \in \overline{\Sigma}$, $\tau \in \Sigma^{\perp}$, and $0 \leq p \leq 1$ where $p\sigma$, $(1-p)\tau$, and p are unique.

The next section presents a proof of Theorem 1. The final section gives a generalization.

2. The proof of Theorem 1. Let \mathscr{B} be the algebra of all subsets of $X \times Y$ and let $P = P(X \times Y)$ be the set of all finitely additive probability measures on \mathscr{B} . Equip P with the topology induced by the total variation norm which is defined, for $\mu, \nu \in P$, by

(1)
$$\|\mu - \nu\| = \sup\{|\mu(B) - \nu(B)|: B \in \mathscr{B}\}.$$

Recall that ν is absolutely continuous with respect to μ , written $\nu \ll \mu$, if, for every $\varepsilon > 0$, there is a $\delta > 0$ such that, for all $B \in \mathscr{B}$, $\mu(B) < \delta$ implies $\nu(B) < \varepsilon$. By a simple function f is meant a real-valued function defined on $X \times Y$ which assumes only a finite number of values. A μ -density is a bounded nonnegative function on $X \times Y$ whose μ -integral is equal to one. The measure whose value at $B \in \mathscr{B}$ is $\int_{-\pi} f d\mu$ is denoted $f d\mu$.

LEMMA 1. The following three conditions on a closed subset S of P are equivalent.

- (a) $\mu \in S, \nu \ll \mu \Longrightarrow \nu \in S.$
- (b) $\mu \in S, k > 0, \nu \leq k\mu \Rightarrow \nu \in S.$
- (c) $\mu \in S$, f a simple μ -density $\Rightarrow fd\mu \in S$.

Proof. That $(a) \Rightarrow (b) \Rightarrow (c)$ is trivial. That $(c) \Rightarrow (a)$ follows from Bochner's finitely additive Radon-Nikodym theorem [2] and the assumption that S is closed.

PROPOSITION 1. For a closed, convex subset S of P to satisfy $S = S^{\perp \perp}$, it suffices that any (all) of the conditions of Lemma 1 be satisfied.

Proof. Let M be the linear space spanned by S in the space L of all finite, finitely additive, signed measures on \mathscr{B} . The major part of the proof consists of the verification that M is a closed vector lattice which satisfies (4) below. Several properties of M will be established. For the first, make the harmless assumption that S is not empty.

(2) For every $\mu \in M$, there exist $\lambda \in S$ and k > 0 such that $|\mu| \leq k\lambda$.

To see this, write $\mu = a_1\mu_1 - a_2\mu_2$ where $a_i \ge 0$ and $\mu_i \in S$. Let $k = a_1 + a_2$. If k = 0, then $\mu = 0$ and (2) is trivial. If k > 0, set

252

 $\lambda = k^{-1}(a_1\mu_1 + a_2\mu_2)$. By the convexity of $S, \lambda \in S$. Clearly, $|\mu| \leq k\lambda$. The following partial converse to (2) is an easy consequence of condition (b) of Lemma 1.

(3) If μ is a nonnegative, nonzero element of L and if $\mu \leq k\lambda$ for some $\lambda \in S$ and k > 0, then $\|\mu\|^{-1}\mu \in S$ and, hence, $\mu \in M$.

It is now possible to check the following.

$$(4) \qquad \mu \in M, \nu \in L, |\nu| \leq |\mu| \Longrightarrow \nu \in M.$$

For by (2), $\nu^+ \leq |\nu| \leq |\mu| \leq k\lambda$ for some k > 0 and $\lambda \in S$. By (3), $\nu^+ \in M$. Similarly, $\nu^- \in M$. Hence, $\nu = \nu^+ - \nu^- \in M$.

To see that M is a lattice, use (2) and the convexity of S to see that the supremum of two elements of M is dominated in absolute value by a scalar multiple of an element of S. Then use (4).

To check that M is closed in the total variation norm topology of L, let $\mu_n \in M$ and suppose μ_n converges to μ , a nonzero element of L. Assume first that the μ_n are nonnegative. Then, for nlarge, $\|\mu_n\| \ge 2^{-1} \|\mu\| > 0$. By (2), each μ_n is dominated by a scalar multiple of some element of S and so, by (3) the measures $\nu_n =$ $\|\mu_n\|^{-1}\mu_n$ belong to S. Clearly, ν_n converges to $\nu = \|\mu\|^{-1}\mu$. Since, by hypothesis, S is closed, $\nu \in S$. Hence, $\mu \in M$. The general case follows by taking positive and negative parts. So M is indeed a closed vector lattice which satisfies (4). This implies that $M = M^{\perp \perp}$, which is the content of Theorem 2 of Bochner and Phillips [1]. Consequently,

$$S^{\scriptscriptstyle \perp \perp} \subset P \cap M^{\scriptscriptstyle \perp \perp} = P \cap M \subset S$$
 .

The first inclusion and the equality are obvious. The final inclusion follows from properties (2) and (3).

COROLLARY 2. For a subset S of P to satisfy $\overline{S} = S^{\perp \perp}$, it suffices that these two conditions hold: (i) $\mu, \nu \in S \Rightarrow (\mu + \nu)/2 \in \overline{S}$, (ii) $\mu \in S$, f a simple μ -density $\Rightarrow fd\mu \in \overline{S}$.

Proof. Condition (i) implies that \overline{S} contains the convex hull of S and, hence, is the closure of the convex hull of S and, in particular, a convex set. From condition (ii) it easily follows that condition (c) of Lemma 1 holds when S is replaced there by \overline{S} . Proposition 1 now applies.

The conditions of Proposition 1 and Corollary 2 are not only sufficient, but as can be shown, necessary. In addition, the arguments presented show that these results hold for a general Boolean algebra of sets and not only for the algebra \mathscr{B} of special interest here.

The rest of this section is devoted to the verification of conditions (i) and (ii) of Corollary 2 when S is the set Σ of strategic measures $X \times Y$. The argument is given in three lemmas. To state the first, associate to each $\alpha \in P(X \times Y)$ its marginal $\alpha_0 \in P(X)$ where $\alpha_0(E) = \alpha(E \times Y)$ for all $E \subset Y$.

LEMMA 2. Suppose Z is a finite set, $\alpha \in P(X \times Z)$, and $\varepsilon > 0$. Then there is a strategy β on $X \times Z$ such that $\beta_0 = \alpha_0$ and $\|\alpha - \beta\| < \varepsilon$.

Proof. This is a special case of Dubins [3, Proposition 1].

LEMMA 3. If $\sigma, \tau \in \Sigma$, then $(\sigma + \tau)/2 \in \overline{\Sigma}$.

Proof. Let $\varepsilon > 0$ and set $\mu = (\sigma + \tau)/2$. It suffices to find $\nu \in \Sigma$ such that

$$\|\mu - \nu\| \leq \varepsilon.$$

Define $\nu_0 = \mu_0$; that is, $\nu_0 = (\sigma_0 + \tau_0)/2$. To define ν_1 , first let $Z = \{0, 1\}$ and consider the strategy λ on $Z \times X$ which has $\lambda_0 = (\delta(0) + \delta(1))/2$, $\lambda_1(0) = \sigma_0$, and $\lambda_1(1) = \tau_0$. (Here $\delta(i)$ denotes the measure which assigns mass 1 to the singleton $\{i\}$.) Next consider the measure α on $X \times Z$ obtained from λ by reversing the cordinates; in other terms, for each bounded, real-valued function g on $X \times Z$, $\alpha g = \lambda \tilde{g}$ where $\tilde{g}(z, x) = g(x, z)$. Notice that

 $lpha_{\scriptscriptstyle 0}=(\sigma_{\scriptscriptstyle 0}+ au_{\scriptscriptstyle 0})/2=
u_{\scriptscriptstyle 0}$.

Apply Lemma 2 to obtain a strategy β on $X \times Z$ with

 $(6) \qquad \qquad \beta_0 = \alpha_0 , \quad \|\alpha - \beta\| < \varepsilon .$

Now define

$$u_1(x) = eta_1(x)(\{0\})\sigma_1(x) + eta_1(x)(\{1\}) au_1(x)$$

for each $x \in X$. It remains to verify (5).

To that end, let $A \subset X \times Y$ and define $g: X \times Z \rightarrow [0, 1]$ by

$$g(x, 0) = \sigma_1(x)(Ax)$$
, $g(x, 1) = \tau_1(x)(Ax)$,

where

$$Ax = \{y: (x, y) \in A\} .$$

It follows from (6) that

$$(7) \qquad \qquad |\alpha g - \beta g| \leq \varepsilon.$$

However,

$$\begin{array}{l} \alpha g = \lambda \widetilde{g} = \displaystyle \int \int g(x,\,z) d\lambda_{\scriptscriptstyle 1}(x\,|\,z) d\lambda_{\scriptscriptstyle 0}(z) \\ = \displaystyle \frac{1}{2} \displaystyle \int \sigma_{\scriptscriptstyle 1}(x) (Ax) d\sigma_{\scriptscriptstyle 0}(x) \, + \, \frac{1}{2} \displaystyle \int \tau_{\scriptscriptstyle 1}(x) (Ax) d\tau_{\scriptscriptstyle 0}(x) \\ = \displaystyle (\sigma(A) \, + \, \tau(A))/2 \\ = \displaystyle \mu(A) \;, \end{array}$$

and

$$\begin{split} \beta g &= \iint g(x,\,z) d\beta_1(z\,|x) d\beta_0(x) \\ &= \int [\beta_1(x)(\{0\})g(x,\,0) \,+\,\beta_1(x)(\{1\})g(x,\,1)] d\beta_0(x) \\ &= \int \nu_1(x)(Ax) d\nu_0(x) \\ &= \nu(A) \;. \end{split}$$

Because A is an arbitrary subset of $X \times Y$, the desired inequality (5) now follows from (7), (8), and (9).

The next lemma can be viewed as a variant of Bayes formula and its proof is hardly different from the proof in the countably additive case as given, for example, by Renyi [4, Example 5.1.1].

LEMMA 4. If $\sigma \in \Sigma$ and f is a σ -density, then $\nu = fd\sigma \in \Sigma$. Indeed, if $g(x) = \int f(x, y) d\sigma_1(y|x)$, then ν is the strategy (ν_0, ν_1) where $\nu_0 = gd\sigma_0$,

$$u_{\scriptscriptstyle 1}(x) = rac{-f(x,.)}{g(x)}\, d\sigma_{\scriptscriptstyle 1}(\,\cdot\,|x) \quad if \quad g(x) > 0$$
 ,

and $\nu_1(x)$ is an arbitrary probability measure on Y if g(x) = 0.

Proof. Let $B = \{x \in X : g(x) > 0\}$. It is easy to verify that $\nu_0(B) = 1$. Now let φ be a bounded function on $X \times Y$ and calculate as follows:

$$\begin{split} \nu \varphi &= \int (\varphi \cdot f) d\sigma \\ &= \int_{B} \int \varphi(x, y) \frac{f(x, y)}{g(x)} d\sigma_{1}(y|x) g(x) d\sigma_{0}(x) \\ &= \iint \varphi(x, y) d\nu_{1}(y|x) d\nu_{0}(x) \; . \end{split}$$

Theorem 1 now follows from Corollary 2, Lemma 3, and Lemma 4.

3. Nearly disintegrable measures. Let T be a mapping which assigns to each $x \in X$ a nonempty subset T_x of Y. A measure $\mu \in P(Y)$ is *T*-disintegrable if there is a strategy σ on $X \times Y$ such that $\sigma_1(x)(T_x) = 1$ for all x and

$$\mu(A) = \int \!\! \sigma_{\scriptscriptstyle 1}(x) (A \cap T_x) d\sigma_{\scriptscriptstyle 0}(x)$$

for all $A \subset Y$. Let D be the collection of all such T-disintegrable measures.

Theorem 2. $D^{\perp\perp} = \overline{D}$.

COROLLARY 3. Every $\alpha \in P(Y)$ can be written in the form

$$lpha = p\mu + (1-p)
u$$

with $\mu \in \overline{D}$, $\nu \in D^{\perp}$, and $0 \leq p \leq 1$ where $p\mu$, $(1 - p)\nu$, and p are unique.

In the special case when $Y = X \times Z$ and $T_x = \{x\} \times Z$ for all x, Theorem 2 easily reduces to Theorem 1 for the product space $X \times Z$.

The proof of Theorem 2, like that of Theorem 1, is based on Corollary 2. Let E be that subset of $X \times Y$ given by $E = \{(x, y): y \in T_x\}$ and let P_E be the set of μ in $P(X \times Y)$ such that $\mu(E) = 1$. That properties (i) and (ii) of Corollary 2 hold for D follows from the fact that they hold for Σ together with the fact that D is the image of $\Sigma \cap P_E$ under the affine mapping which sends a measure on $X \times Y$ to its marginal on Y.

It should be remarked that the notion of disintegrability used here is slightly more general than the usual one which is that a measure μ in P(Y) is disintegrable under the mapping φ of Y onto X if there is a $\sigma_0 \in P(X)$ and, for each $x \in X$, there is a $\sigma_1(x) \in P(\varphi^{-1}(x))$, such that

$$\mu(A)=\int\!\sigma_{\scriptscriptstyle 1}(x)(A\cap arphi^{\scriptscriptstyle -1}(x))d\sigma_{\scriptscriptstyle 0}(x)$$

for all $A \subset Y$. The main difference is that the definition here does not require that the sets $\{T_x\}$ form a partition of Y as do the sets $\{\varphi^{-1}(x)\}$.

ACKNOWLEDGMENT. After we had written this paper, Lester Dubins sent us a copy of unpublished notes of Annibal Sant'anna. These notes, written several years ago when Sant'anna was a graduate student at U. C. Berkeley, contain results which represent a genuine contribution towards an affirmative answer to the question raised by Dubins whether $\Sigma^{\perp\perp}$ is $\overline{\Sigma}$.

References

1. S. Bochner and R. S. Phillips, Additive set functions and vector lattices, Annals of Math., 42 (1941), 316-324.

2. L. E. Dubins, An elementary proof of Bochner's finitely additive Radon-Nikodym theorem, Amer. Math. Monthly, 76 (1969), 520-523.

3. ____, Finitely additive conditional probabilities, conglomerability, and disintegrations, Annals of Probability, 3 (1975), 89-99.

4. Alfred Renyi, Foundations of Prabability, Holden-Day, San Francisco, (1970.

Received February 26, 1979. Research supported by National Science Foundation Grants MCS74-05786-A02 (for Armstrong) and MCS77-28424 (for Sudderth).

UNIVERSITY OF MINNESOTA MINNEAPOLIS, MN 55455