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NEARLY STRATEGIC MEASURES

THOMAS E. ARMSTRONG AND WILLIAM D. SUDDERTH

Every finitely additive probability measure a defined on
all subsets of a product space Xx Y can be written as a
unique convex combination a=pμ+(l—p)v where μ is ap-
proximable in variation norm by strategic measures and v
is singular with respect to every strategic measure.

l Introduction* For each nonempty set X, let P(X) be the
collection of finitely additive probability measures defined on all
subsets of X. A conditional probability on a set Y given X is a
mapping from X to P(Γ). A strategy σ on Xx Y is a pair (σθ9 σt)
where σ0 is in P(X) and σt is a conditional probability on Y given
X. Each strategy a on Xx Y determines a strategic measure, also
denoted σ, in P — P(Xx Y) by the formula

og = I \g(x, y)dσ1(y\x)dσ0(x) ,

where g is a bounded, real-valued function on 1 x 7 The collec-
tion Σ of all strategic measures was studied by Lester Dubins [3],
who proved that, if I or 7 is finite, then every member of P is
nearly strategic in the sense that it can be approximated arbitrarily
well in the sense of total variation by a strategic measure. How-
ever, Dubins also showed that if X and Y are infinite, then the
collection Σ of all nearly strategic measures is a proper subset of
P and, moreover, there exist elements in Σ1(=ΣL), the set of mea-
sures in P singular with respect to every measure in Σ. (As usual,
the finitely additive probability measures μ and v are mutually
singular if, for every positive ε, there is a set A such that μ(A) < e
and v(A) > 1 - ε.)

Here is our main result.

THEOREM 1. Σlx = Σ.

This answers a question posed by Dubins in [3]. As Dubins
pointed out, the following corollary is a consequence of Theorem 1
together with results of Bochner and Phillips [1].

COROLLARY 1. Every μ in P can be written in the form

μ = pσ + (1 — p)τ

with σeΣ, τeΣL, and O^p^l where pσ, (l—p)τ, and p are unique.
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The next section presents a proof of Theorem 1. The final sec-
tion gives a generalization.

2* The proof of Theorem 1* Let & be the algebra of all
subsets o f l x Γ and let P = P(Xx Y) be the set of all finitely ad-
ditive probability measures on &. Equip P with the topology in-
duced by the total variation norm which is defined, for μ,veP, by

(1) llj" — A = supίIMB) - v{B)\:Be^} .

Recall that v is absolutely continuous with respect to μ, written
v<μ, if, for every ε > 0, there is a δ > 0 such that, for all 5 e ^ ,
μ(B) < δ implies v(B) < e. By a simple function f is meant a real-
valued function defined on Xx Y which assumes only a finite number
of values. A μ-density is a bounded nonnegative function on Xx Y
whose μ-integral is equal to one. The measure whose value at

5 e . ^ is \ fdμ is denoted fdμ.

LEMMA 1. The following three conditions on a closed subset S
of P are equivalent.

(a) μeS,v<tμ=*veS.
(b) μeS,k>0,v<,kμ=>ι>eS.
(c) μeS, f a simple μ-density ^fdμ e S.

Proof That (a) ==> (b) => (c) is trivial. That (c) => (a) follows
from Bochner's finitely additive Radon-Nikodym theorem [2] and the
assumption that S is closed. •

PROPOSITION 1. For a closed, convex subset S of P to satisfy
S = S11, it suffices that any (all) of the conditions of Lemma 1 be
satisfied.

Proof. Let M be the linear space spanned by S in the space L
of all finite, finitely additive, signed measures on &. The major
part of the proof consists of the verification that M is a closed
vector lattice which satisfies (4) below. Several properties of M
will be established. For the first, make the harmless assumption
that S is not empty.

(2) For every μeM, there exist xe S and k > 0 such that

\μ\ ^kx.

To see this, write μ = aλμλ — a2μ2 where at ^ 0 and μt e S. Let
Jc = a, + a2. If k = 0, then μ = 0 and (2) is trivial. If k > 0, set
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X = k-\a^ + a2μ2). By the convexity of S,XeS. Clearly, \μ\<LkX.
The following partial converse to (2) is an easy consequence of

condition (b) of Lemma 1.

(3) If μ is a nonnegative, nonzero element of L and ifμ^kX for
some xeS and k > 0, then WμW^μeS and, hence, μeM.

It is now possible to check the following.

( 4 ) μeM, veL, \v\^\μ\ => veM.

For by (2), v+ <> \v\ <> \μ\ ^ kX for some k > 0 and XeS. By (3),

v+ e M. Similarly, v~ e M. Hence, v — v+ — v~ e M.
To see that M is a lattice, use (2) and the convexity of S to

see that the supremum of two elements of M is dominated in ab-
solute value by a scalar multiple of an element of S. Then use (4).

To check that M is closed in the total variation norm topology
of L, let μneM and suppose μn converges to μ, a nonzero element
of L. Assume first that the μn are nonnegative. Then, for n
large, \\μn\\ i> 2-1||μ|| > 0. By (2), each μn is dominated by a scalar
multiple of some element of S and so, by (3) the measures vn =
ll^nll""1^ belong to S. Clearly, v% converges to v = II ^ll"1^- Since,
by hypothesis, S is closed, veS. Hence, μeM. The general case
follows by taking positive and negative parts. So M is indeed a
closed vector lattice which satisfies (4). This implies that M = M11,
which is the content of Theorem 2 of Bochner and Phillips [1]. Con-
sequently,

S^dPnM11 = PnMczS .

The first inclusion and the equality are obvious. The final inclusion
follows from properties (2) and (3). •

COROLLARY 2. For a subset S of P to satisfy S = S 1 1 , it suf-
fices that these two conditions hold: (i) μ, ι> e S => (μ + v)/2 e S, (ii)
μe S, f a simple μ-density => fdμ e S.

Proof. Condition (i) implies that S contains the convex hull of
S and, hence, is the closure of the convex hull of S and, in parti-
cular, a convex set. From condition (ii) it easily follows that con-
dition (c) of Lemma 1 holds when S is replaced there by S. Pro-
position 1 now applies. •

The conditions of Proposition 1 and Corollary 2 are not only
sufficient, but as can be shown, necessary. In addition, the argu-
ments presented show that these results hold for a general Boolean
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algebra of sets and not only for the algebra & of special interest
here.

The rest of this section is devoted to the verification of condi-
tions (i) and (ii) of Corollary 2 when S is the set Σ of strategic
measures 1 x 7 . The argument is given in three lemmas. To state
the first, associate to each aeP(Xx Y) its marginal aQeP(X) where
ao(E) = a(Ex Y) for all Ed Y.

LEMMA 2. Suppose Z is a finite set, aeP(XxZ), and ε > 0.
Then there is a strategy β on XxZ such that β0 = a0 and

Proof. This is a special case of Dubins [3, Proposition 1]. •

LEMMA 3. If σ,τeΣ, then (σ + τ)/2 e Γ.

Proof. Let ε > 0 and set μ = (σ + r)/2. It suffices to find veΣ
such that

( 5 ) \\μ-v\\£6.

Define v0 = μo; that is, v0 = (σ0 + τo)/2. To define vlf first let
Z = {0, 1} and consider the strategy λ on ZxX which has λ0 =
(8(0) + δ(l))/2, \(0) = σ0, and λx(l) = r0. (Here 8(i) denotes the mea-
sure which assigns mass 1 to the singleton {i}.) Next consider the
measure a on XxZ obtained from λ by reversing the cordinates;
in other terms, for each bounded, real-valued function g on XxZ,
ag = Xg where g(z, x) = g(x, z). Notice that

<x0 = (σ0 + τo)/2 = v0 .

Apply Lemma 2 to obtain a strategy β on XxZ with

(6) β0 = oί0 , | |α - β\\ < ε .

Now define

for each xeX. It remains to verify (5).

To that end, let AaXxY and define g:XxZ-+[0, 1] by

g(x, 0) = a,(x)(Ax) , g(x, 1) = τx(x)(Ax) ,

where

Ax = {y: (x, y)eA} .

It follows from (6) that
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( 7 ) \otg- βg\ ^e .

However,

ag = λ# = \\g(x, z)d\(x\z)d\0(z)

^ 8 ^ =T) σ^x^Ax^dσo(χ) + ^\τι{x){Ax)dτQ{x)

= (σ(A) + τ(A))/2

= μ(A) ,

and

βg = fy(%, z)dβ1(z\x)dβ0(x)

, 0) + βi(χ)({i})g(χ, i)]dβQ(χ)

Because A is an arbitrary subset of 1 x 7 , the desired inequal-
ity (5) now follows from (7), (8), and (9). •

The next lemma can be viewed as a variant of Bayes formula
and its proof is hardly different from the proof in the countably
additive case as given, for example, by Renyi [4, Example 5.1.1].

LEMMA 4. If σeΣ and f is a o'-density, then v = fdσeΣ. In-

deed, if g(x) = \f(x, y)dσ1(y\x)f then v is the strategy (v0, v±) where

Vo = gdσ0,

J(Bl^\x) if g(x)>0,
g(χ)

and vλ(x) is an arbitrary probability measure on Y if g(x) — 0.

Proof. Let B = {xeX: g(x) > 0}. It is easy to verify that
vQ(B) = 1. Now let φ be a bounded function on 1 x 7 and calcu-
late as follows:

vφ = ψp f)dσ

= ( \<P(x, V)£&J

)B) g(χ)
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Theorem 1 now follows from Corollary 2, Lemma 3, and Lemma 4.

3* Neatly disintegrable measures* Let T be a mapping which
assigns to each x e l a nonempty subset Tx of Y. A measure μe
P(Y) is T-disintegrable if there is a strategy σ on 1 x 7 such that

= 1 for all x and

for all 4 c 7 . Let D be the collection of all such T-disintegrable
measures.

THEOREM 2. ΏLL = 5.

COROLLARY 3. Every aeP(Y) can be written in the form

a = pμ + (1 - p)v

with μeD, veD1, and O^p^l where pμ, (1 — p)v, and p are
unique.

In the special case when Y — XxZ and Tx = {α^xi? for all x,
Theorem 2 easily reduces to Theorem 1 for the product space XxZ.

The proof of Theorem 2, like that of Theorem 1, is based on
Corollary 2. Let E be that subset of 1 x 7 given by E - {(x, y):
ye Tx) and let PE be the set of μ in P(Xx Y) such that μ{E) = 1.
That properties (i) and (ii) of Corollary 2 hold for D follows from
the fact that they hold for Σ together with the fact that D is the
image of ΣΓiPE under the affine mapping which sends a measure on
I x 7 t o its marginal on Y.

It should be remarked that the notion of disintegrability used
here is slightly more general than the usual one which is that a
measure μ in P{Y) is disintegrable under the mapping φ of Y onto
X if there is a σ0 e P(X) and, for each x e X, there is a ax(x) 6
P{φ~\x))y such that

for all AaY. The main difference is that the definition here does
not require that the sets {Tx} form a partition of Y as do the sets

ACKNOWLEDGMENT. After we had written this paper, Lester
Dubins sent us a copy of unpublished notes of Annibal Sant'anna.
These notes, written several years ago when Sant'anna was a



NEARLY STRATEGIC MEASURES 257

graduate student at U. C. Berkeley, contain results which represent
a genuine contribution towards an affirmative answer to the ques-
tion raised by Dubins whether Σ11 is Σ.
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