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NEARLY STRATEGIC MEASURES

THOMAS E. ARMSTRONG AND WILLIAM D. SUDDERTH

Every finitely additive probability measure o defined on
all subsets of a product space XX Y can be written as a
unique convex combination a=py+(1—p)» where p is ap-
proximable in variation norm by strategic measures and v
is singular with respect to every strategic measure.

1. Introduction. For each nonempty set X, let P(X) be the
collection of finitely additive probability measures defined on all
subsets of X. A conditional probability on a set Y given X is a
mapping from X to P(Y). A strategy ¢ on Xx Y is a pair (o, 0,)
where o, is in P(X) and o, is a conditional probability on Y given
X. Each strategy o on X x Y determines a strategic measure, also
denoted o, in P= P(Xx Y) by the formula

o9 = {Jota, oo ,

where ¢g is a bounded, real-valued function on Xx Y. The collec-
tion X of all strategic measures was studied by Lester Dubins [3],
who proved that, if X or Y is finite, then every member of P is
rearly strategic in the sense that it can be approximated arbitrarily
well in the sense of total variation by a strategic measure. How-
ever, Dubins also showed that if X and Y are infinite, then the
collection 3 of all nearly strategic measures is a proper subset of
P and, moreover, there exist elements in X*(=3*), the set of mea-
sures in P singular with respect to every measure in 3. (As usual,
the finitely additive probability measures g and v are mutually
singular if, for every positive ¢, there is a set A such that p(4) < ¢
and v(4) > 1 —¢.)
Here is our main result.

THEOREM 1. it = 3.

This answers a question posed by Dubins in [3]. As Dubins
pointed out, the following corollary is a consequence of Theorem 1
together with results of Bochner and Phillips [1].

COROLLARY 1. Ewery p in P can be written in the form
t=ps+ (01— px
with o2, €3, and 0<p=1 where po, (1—p)r, and p are unique.
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The next section presents a proof of Theorem 1. The final sec-
tion gives a generalization.

2. The proof of Theorem 1. Let <2 be the algebra of all
subsets of Xx Y and let P= P(Xx Y) be the set of all finitely ad-
ditive probability measures on <& Equip P with the topology in-
duced by the total variation norm which is defined, for %, ve P, by

(1) l#t — vl| = sup{|(B) — »(B)|: Be Z} .

Recall that v is absolutely continuous with respect to f, written
vy, if, for every e > 0, there is a 6 > 0 such that, for all Be <7,
H#(B) < 6 implies v(B) < e¢. By a simple function f is meant a real-
valued function defined on X x Y which assumes only a finite number
of values. A p-demsity is a bounded nonnegative function on XX Y
whose p-integral is equal to one. The measure whose value at

Be 7 is S fdp is denoted fdp.

LEMMA 1. The following three conditions on a closed subset S
of P are equivalent.

(a) peS,vKpu=vel.

(b) preS, k>0,vy<kr—=veS.

() peS, f a simple p-density — fdpeS.

Proof. That (a)=(b)=(c) is trivial. That (c)= (a) follows
from Bochner’s finitely additive Radon-Nikodym theorem [2] and the
assumption that S is closed. O

PROPOSITION 1. For a closed, convexr subset S of P to satisfy
S = St*, it suffices that any (all) of the conditions of Lemma 1 be

satisfied.

Proof. Let M be the linear space spanned by S in the space L
of all finite, finitely additive, signed measures on <. The major
part of the proof consists of the verification that M is a closed
vector lattice which satisfies (4) below. Several properties of M
will be established. For the first, make the harmless assumption

that S is not empty.

(2) For every pe M, there exist ne€S and k& > 0 such that
[¢e] < k.

To see this, write ¢ = a,¢, — a,tt, where a, = 0 and p,€S. Let
k=a,+a,. If k=0, then £ =0 and (2) is trivial. If & > 0, set
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N = k(a4 + aytt). By the convexity of S, neS. Clearly, |¢<Ekx.
The following partial converse to (2) is an easy consequence of
condition (b) of Lemma 1.

(3) If g is a nonnegative, nonzero element of L and if ¢ < k\ for
some v €8S and k& > 0, then [|¢||~'¢#e S and, hence, e M.

It is now possible to check the following.
(4) reM,vel,|v| < |p|=—vel.

For by (2),v" = |v| = |p¢| = kx for some k>0 and veS. By (3),
vte M. Similarly, v-e€ M. Hence, v = v+ —p-c M.

To see that M is a lattice, use (2) and the convexity of S to
gsee that the supremum of two elements of M is dominated in ab-
solute value by a scalar multiple of an element of S. Then use (4).

To check that M is closed in the total variation norm topology
of L, let ¢, € M and suppose p, converges to /£, a nonzero element
of L. Assume first that the g, are nonnegative. Then, for =
large, ||#.) = 27Y|¢ll > 0. By (2), each p, is dominated by a scalar
multiple of some element of S and so, by (3) the measures », =
Il 2e,l7* 1, belong to S. Clearly, v, converges to v = ||¢||-"x. Since,
by hypothesis, S is closed, veS. Hence, te M. The general case
follows by taking positive and negative parts. So M is indeed a
closed vector lattice which satisfies (4). This implies that M = M**,
which is the content of Theorem 2 of Bochner and Phillips [1]. Con-
sequently,

SttcPNM“*=PnNMcCS.

The first inclusion and the equality are obvious. The final inclusion
follows from properties (2) and (3). 0

COROLLARY 2. For a subset S of P to satisfy S = S**, it suf-
fices that these two conditions hold: (i) #t,veS= (#t + v)/2¢e8§, (ii)
resS, fa simple p-density — fdpeS.

Proof. Condition (i) implies that S contains the convex hull of
S and, hence, is the closure of the convex hull of S and, in parti-
cular, a convex set. From condition (ii) it easily follows that con-
dition (c¢) of Lemma 1 holds when S is replaced there by S. Pro-
position 1 now applies. |

The conditions of Proposition 1 and Corollary 2 are not only
sufficient, but as can be shown, necessary. In addition, the argu-
ments presented show that these results hold for a general Boolean
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algebra of sets and not only for the algebra <# of special interest

here.
The rest of this section is devoted to the verification of condi-

tions (i) and (ii) of Corollary 2 when S is the set ¥ of strategic
measures XX Y. The argument is given in three lemmas. To state
the first, associate to each a € P(X x Y) its marginal a, e P(X) where
a(E) =a(ExY) for all ECY.

LEMMA 2. Suppose Z is a finite set, a € P(XXZ), and ¢ > 0.
Then there 1is a strategy B onm XXZ such that B, = a, and
lla — Bl <e.

Proof. This is a special case of Dubins [3, Proposition 1]. [
LEMMA 3. If 0,7€X, then (o + 7)/2¢€ 2.

Proof. Let ¢ >0 and set ¢t = (¢ + 7)/2. It suffices to find ve ¥
such that
(5) e —vl=ce.

Define y, = f,; that is, v, = (0, + 7,)/2. To define y,, first let
Z =1{0,1} and consider the strategy A on Zx X which has A, =
6(0) + 6(1))/2, \(0) = a,, and N\,(1) = z,. (Here (i) denotes the mea-
sure which assigns mass 1 to the singleton {i}.) Next consider the
measure « on XxZ obtained from ) by reversing the cordinates;
in other terms, for each bounded, real-valued funection ¢ on XX Z,
ag = \g where §(z, ) = g(x, 2). Notice that

ay = (0, + T))/2 = v, .
Apply Lemma 2 to obtain a strategy 8 on X xZ with
(6) B=a,, |la—pg|<e.
Now define
vi(@) = B@)({0)ay(x) + Bu@)({1N7:(®)

for each xe€ X. It remains to verify (5).
To that end, let ACc Xx Y and define g: Xx Z — [0, 1] by

9(x, 0) = o,(x)(Ax) , g(x, 1) = 7,(v)(Ax) ,

where
Ax = {y: (x, y) € A} .
It follows from (6) that
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(7) lag — Byl =e.

However,

ag =7 = [[o(@, DaralDdr)

LY
I

) = Lowodow + Lineaom

= (0(4) + (4))/2

= 4,
and
89 = {(9(z, ap,c i@

(o) = |B@Oalz, 0) + B@{LDe(a, DIA@)

= Svl(x)(Ax)dvo(w)

= y(4) .

Because A is an arbitrary subset of X x Y, the desired inequal-

ity (5) now follows from (7), (8), and (9). I:I

The next lemma can be viewed as a variant of Bayes formula
and its proof is hardly different from the proof in the countably
additive case as given, for example, by Renyi [4, Example 5.1.1].

LEMMA 4. If c€X and f is a o-density, then vy = fdo €. In-
deed, if g(x) = S f(x, ydo,(ylx), then v is the strategy (v,, v,) where
Y, = gdo,,

(@) = L&) 45,12y if g@) >0,
g(x)

and v,(x) is an arbitrary probability measure on Y if g(x) = 0.
Proof. Let B={xeX:g()>0}. It is easy to verify that

vo(B) = 1. Now let @ be a bounded function on Xx Y and calcu-
late as follows:

vp = (- 1)do

= § Ssv(x, I %D 46, (y)0) g @) do(z)
B g(x)

= {{ote, avwinane . O
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Theorem 1 now follows from Corollary 2, Lemma 8, and Lemma 4.

3. Nearly disintegrable measures. Let T be a mapping which
assigns to each x€ X a nonempty subset 7T, of Y. A measure pt¢e
P(Y) is T-disintegrable if there is a strategy ¢ on X x Y such that
o(x)(T,) =1 for all x and

(4) = {o@)AN T)doa)

for all AcY. Let D be the collection of all such 7-disintegrable
measures.

THEOREM 2. D't = D.

COROLLARY 3. FHvery ac P(Y) can be written in the form
a=pst+ (1—pp

with peD,veD*, and 0= p <1 where pt, (1 — p), and p are
unique.

In the special case when Y = XxZ and T, = {x} xZ for all =z,
Theorem 2 easily reduces to Theorem 1 for the product space XX Z.

The proof of Theorem 2, like that of Theorem 1, is based on
Corollary 2. Let E be that subset of XX Y given by E = {(, v):
yeT,} and let P, be the set of ¢ in P(Xx Y) such that y((&) = 1.
That properties (i) and (ii) of Corollary 2 hold for D follows from
the fact that they hold for ¥ together with the fact that D is the
image of ¥ N P; under the affine mapping which sends a measure on
XxY to its marginal on Y.

It should be remarked that the notion of disintegrability used
here is slightly more general than the usual one which is that a
measure g in P(Y) is disintegrable under the mapping @ of Y onto
X if there is a 0,6 P(X) and, for each xe X, there is a o,(x)¢
P(p~'(x)), such that

#4) = |o@ (A NP~ @)doa)

for all AcY. The main difference is that the definition here does
not require that the sets {7,} form a partition of Y as do the sets

{p~1(@)}.
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