# NEARLY STRATEGIC MEASURES 

Thomas E. Armstrong and William D. Sudderth

Every finitely additive probability measure $\alpha$ defined on all subsets of a product space $X \times Y$ can be written as a unique convex combination $\alpha=p \mu+(1-p) \nu$ where $\mu$ is approximable in variation norm by strategic measures and $\nu$ is singular with respect to every strategic measure.

1. Introduction. For each nonempty set $X$, let $P(X)$ be the collection of finitely additive probability measures defined on all subsets of $X$. A conditional probability on a set $Y$ given $X$ is a mapping from $X$ to $P(Y)$. A strategy $\sigma$ on $X \times Y$ is a pair ( $\sigma_{0}, \sigma_{1}$ ) where $\sigma_{0}$ is in $P(X)$ and $\sigma_{1}$ is a conditional probability on $Y$ given $X$. Each strategy $\sigma$ on $X \times Y$ determines a strategic measure, also denoted $\sigma$, in $P=P(X \times Y)$ by the formula

$$
\sigma g=\iint g(x, y) d \sigma_{1}(y \mid x) d \sigma_{0}(x)
$$

where $g$ is a bounded, real-valued function on $X \times Y$. The collection $\Sigma$ of all strategic measures was studied by Lester Dubins [3], who proved that, if $X$ or $Y$ is finite, then every member of $P$ is rearly strategic in the sense that it can be approximated arbitrarily well in the sense of total variation by a strategic measure. However, Dubins also showed that if $X$ and $Y$ are infinite, then the collection $\bar{\Sigma}$ of all nearly strategic measures is a proper subset of $P$ and, moreover, there exist elements in $\Sigma^{\perp}\left(=\bar{\Sigma}^{\perp}\right)$, the set of measures in $P$ singular with respect to every measure in $\Sigma$. (As usual, the finitely additive probability measures $\mu$ and $\nu$ are mutually singular if, for every positive $\varepsilon$, there is a set $A$ such that $\mu(A)<\varepsilon$ and $\nu(A)>1-\varepsilon$.)

Here is our main result.
Theorem 1. $\quad \Sigma^{\perp \perp}=\bar{\Sigma}$.
This answers a question posed by Dubins in [3]. As Dubins pointed out, the following corollary is a consequence of Theorem 1 together with results of Bochner and Phillips [1].

Corollary 1. Every $\mu$ in $P$ can be written in the form

$$
\mu=p \sigma+(1-p) \tau
$$

with $\sigma \in \bar{\Sigma}, \tau \in \Sigma^{\perp}$, and $0 \leqq p \leqq 1$ where $p \sigma,(1-p) \tau$, and $p$ are unique.

The next section presents a proof of Theorem 1. The final section gives a generalization.
2. The proof of Theorem 1. Let $\mathscr{B}$ be the algebra of all subsets of $X \times Y$ and let $P=P(X \times Y)$ be the set of all finitely additive probability measures on $\mathscr{B}$. Equip $P$ with the topology induced by the total variation norm which is defined, for $\mu, \nu \in P$, by

$$
\begin{equation*}
\|\mu-\nu\|=\sup \{|\mu(B)-\nu(B)|: B \in \mathscr{B}\} \tag{1}
\end{equation*}
$$

Recall that $\nu$ is absolutely continuous with respect to $\mu$, written $\nu \ll \mu$, if, for every $\varepsilon>0$, there is a $\delta>0$ such that, for all $B \in \mathscr{B}$, $\mu(B)<\delta$ implies $\nu(B)<\varepsilon$. By a simple function $f$ is meant a realvalued function defined on $X \times Y$ which assumes only a finite number of values. A $\mu$-density is a bounded nonnegative function on $X \times Y$ whose $\mu$-integral is equal to one. The measure whose value at $B \in \mathscr{B}$ is $\int_{B} f d \mu$ is denoted $f d \mu$.

Lemma 1. The following three conditions on a closed subset $S$ of $P$ are equivalent.
(a) $\mu \in S, \nu \ll \mu \Rightarrow \nu \in S$.
(b) $\mu \in S, k>0, \nu \leqq k \mu \Rightarrow \nu \in S$.
(c) $\mu \in S, f$ a simple $\mu$-density $\Rightarrow f d \mu \in S$.

Proof. That $(a) \Rightarrow(b) \Rightarrow(c)$ is trivial. That $(c) \Rightarrow(a)$ follows from Bochner's finitely additive Radon-Nikodym theorem [2] and the assumption that $S$ is closed.

Proposition 1. For a closed, convex subset $S$ of $P$ to satisfy $S=S^{\perp \perp}$, it suffices that any (all) of the conditions of Lemma 1 be satisfied.

Proof. Let $M$ be the linear space spanned by $S$ in the space $L$ of all finite, finitely additive, signed measures on $\mathscr{B}$. The major part of the proof consists of the verification that $M$ is a closed vector lattice which satisfies (4) below. Several properties of $M$ will be established. For the first, make the harmless assumption that $S$ is not empty.
(2) For every $\mu \in M$, there exist $\lambda \in S$ and $k>0$ such that $|\mu| \leqq k \lambda$.

To see this, write $\mu=a_{1} \mu_{1}-a_{2} \mu_{2}$ where $a_{i} \geqq 0$ and $\mu_{i} \in S$. Let $k=a_{1}+a_{2}$. If $k=0$, then $\mu=0$ and (2) is trivial. If $k>0$, set
$\lambda=k^{-1}\left(a_{1} \mu_{1}+a_{2} \mu_{2}\right)$. By the convexity of $S, \lambda \in S$. Clearly, $|\mu| \leqq k \lambda$.
The following partial converse to (2) is an easy consequence of condition (b) of Lemma 1.
(3) If $\mu$ is a nonnegative, nonzero element of $L$ and if $\mu \leqq k \lambda$ for some $\lambda \in S$ and $k>0$, then $\|\mu\|^{-1} \mu \in S$ and, hence, $\mu \in M$.

It is now possible to check the following.

$$
\begin{equation*}
\mu \in M, \nu \in L,|\nu| \leqq|\mu| \Longrightarrow \nu \in M \tag{4}
\end{equation*}
$$

For by (2), $\nu^{+} \leqq|\nu| \leqq|\mu| \leqq k \lambda$ for some $k>0$ and $\lambda \in S$. By (3), $\nu^{+} \in M$. Similarly, $\nu^{-} \in M$. Hence, $\nu=\nu^{+}-\nu^{-} \in M$.

To see that $M$ is a lattice, use (2) and the convexity of $S$ to see that the supremum of two elements of $M$ is dominated in absolute value by a scalar multiple of an element of $S$. Then use (4).

To check that $M$ is closed in the total variation norm topology of $L$, let $\mu_{n} \in M$ and suppose $\mu_{n}$ converges to $\mu$, a nonzero element of $L$. Assume first that the $\mu_{n}$ are nonnegative. Then, for $n$ large, $\left\|\mu_{n}\right\| \geqq 2^{-1}\|\mu\|>0$. By (2), each $\mu_{n}$ is dominated by a scalar multiple of some element of $S$ and so, by (3) the measures $\nu_{n}=$ $\left\|\mu_{n}\right\|^{-1} \mu_{n}$ belong to $S$. Clearly, $\nu_{n}$ converges to $\nu=\|\mu\|^{-1} \mu$. Since, by hypothesis, $S$ is closed, $\nu \in S$. Hence, $\mu \in M$. The general case follows by taking positive and negative parts. So $M$ is indeed a closed vector lattice which satisfies (4). This implies that $M=M^{\perp \perp}$, which is the content of Theorem 2 of Bochner and Phillips [1]. Consequently,

$$
S^{\perp \perp} \subset P \cap M^{\perp \perp}=P \cap M \subset S
$$

The first inclusion and the equality are obvious. The final inclusion follows from properties (2) and (3).

Corollary 2. For a subset $S$ of $P$ to satisfy $\bar{S}=S^{\perp \perp}$, it suffices that these two conditions hold: (i) $\mu, \nu \in S \Rightarrow(\mu+\nu) / 2 \in \bar{S}$, (ii) $\mu \in S, f$ a simple $\mu$-density $\Rightarrow f d \mu \in \bar{S}$.

Proof. Condition (i) implies that $\bar{S}$ contains the convex hull of $S$ and, hence, is the closure of the convex hull of $S$ and, in particular, a convex set. From condition (ii) it easily follows that condition (c) of Lemma 1 holds when $S$ is replaced there by $\bar{S}$. Proposition 1 now applies.

The conditions of Proposition 1 and Corollary 2 are not only sufficient, but as can be shown, necessary. In addition, the arguments presented show that these results hold for a general Boolean
algebra of sets and not only for the algebra $\mathscr{B}$ of special interest here.

The rest of this section is devoted to the verification of conditions (i) and (ii) of Corollary 2 when $S$ is the set $\Sigma$ of strategic measures $X \times Y$. The argument is given in three lemmas. To state the first, associate to each $\alpha \in P(X \times Y)$ its marginal $\alpha_{0} \in P(X)$ where $\alpha_{0}(E)=\alpha(E \times Y)$ for all $E \subset Y$.

Lemma 2. Suppose $Z$ is a finite set, $\alpha \in P(X \times Z)$, and $\varepsilon>0$. Then there is a strategy $\beta$ on $X \times Z$ such that $\beta_{0}=\alpha_{0}$ and $\|\alpha-\beta\|<\varepsilon$.

Proof. This is a special case of Dubins [3, Proposition 1].
Lemma 3. If $\sigma, \tau \in \Sigma$, then $(\sigma+\tau) / 2 \in \bar{\Sigma}$.
Proof. Let $\varepsilon>0$ and set $\mu=(\sigma+\tau) / 2$. It suffices to find $\nu \in \Sigma$ such that

$$
\begin{equation*}
\|\mu-\nu\| \leqq \varepsilon . \tag{5}
\end{equation*}
$$

Define $\nu_{0}=\mu_{0}$; that is, $\nu_{0}=\left(\sigma_{0}+\tau_{0}\right) / 2$. To define $\nu_{1}$, first let $Z=\{0,1\}$ and consider the strategy $\lambda$ on $Z \times X$ which has $\lambda_{0}=$ $(\delta(0)+\delta(1)) / 2, \lambda_{1}(0)=\sigma_{0}$, and $\lambda_{1}(1)=\tau_{0}$. (Here $\delta(\mathrm{i})$ denotes the measure which assigns mass 1 to the singleton \{i\}.) Next consider the measure $\alpha$ on $X \times Z$ obtained from $\lambda$ by reversing the cordinates; in other terms, for each bounded, real-valued function $g$ on $X \times Z$, $\alpha g=\lambda \widetilde{g}$ where $\widetilde{g}(z, x)=g(x, z)$. Notice that

$$
\alpha_{0}=\left(\sigma_{0}+\tau_{0}\right) / 2=\nu_{0} .
$$

Apply Lemma 2 to obtain a strategy $\beta$ on $X \times Z$ with

$$
\begin{equation*}
\beta_{0}=\alpha_{0}, \quad\|\alpha-\beta\|<\varepsilon . \tag{6}
\end{equation*}
$$

Now define

$$
\nu_{1}(x)=\beta_{1}(x)(\{0\}) \sigma_{1}(x)+\beta_{1}(x)(\{1\}) \tau_{1}(x)
$$

for each $x \in X$. It remains to verify (5).
To that end, let $A \subset X \times Y$ and define $g: X \times Z \rightarrow[0,1]$ by

$$
g(x, 0)=\sigma_{1}(x)(A x), \quad g(x, 1)=\tau_{1}(x)(A x)
$$

where

$$
A x=\{y:(x, y) \in A\}
$$

It follows from (6) that

$$
\begin{equation*}
|\alpha g-\beta g| \leqq \varepsilon . \tag{7}
\end{equation*}
$$

However,

$$
\begin{align*}
\alpha g=\lambda \widetilde{g} & =\iint g(x, z) d \lambda_{1}(x \mid z) d \lambda_{0}(z) \\
& =\frac{1}{2} \int \sigma_{1}(x)(A x) d \sigma_{0}(x)+\frac{1}{2} \int \tau_{1}(x)(A x) d \tau_{0}(x)  \tag{8}\\
& =(\sigma(A)+\tau(A)) / 2 \\
& =\mu(A),
\end{align*}
$$

and

$$
\begin{align*}
\beta g & =\iint g(x, z) d \beta_{1}(z \mid x) d \beta_{0}(x) \\
& =\int\left[\beta_{1}(x)(\{0\}) g(x, 0)+\beta_{1}(x)(\{1\}) g(x, 1)\right] d \beta_{0}(x)  \tag{9}\\
& =\int \nu_{1}(x)(A x) d \nu_{0}(x) \\
& =\nu(A)
\end{align*}
$$

Because $A$ is an arbitrary subset of $X \times Y$, the desired inequality (5) now follows from (7), (8), and (9).

The next lemma can be viewed as a variant of Bayes formula and its proof is hardly different from the proof in the countably additive case as given, for example, by Renyi [4, Example 5.1.1].

Lemma 4. If $\sigma \in \Sigma$ and $f$ is a $\sigma$-density, then $\nu=f d \sigma \in \Sigma$. Indeed, if $g(x)=\int f(x, y) d \sigma_{1}(y \mid x)$, then $\nu$ is the strategy $\left(\nu_{0}, \nu_{1}\right)$ where $\nu_{0}=g d \sigma_{0}$,

$$
\nu_{1}(x)=\frac{f(x, .)}{g(x)} d \sigma_{1}(\cdot \mid x) \quad \text { if } \quad g(x)>0
$$

and $\nu_{1}(x)$ is an arbitrary probability measure on $Y$ if $g(x)=0$.
Proof. Let $B=\{x \in X: g(x)>0\}$. It is easy to verify that $\nu_{0}(B)=1$. Now let $\varphi$ be a bounded function on $X \times Y$ and calculate as follows:

$$
\begin{aligned}
\nu \varphi & =\int(\varphi \cdot f) d \sigma \\
& =\int_{B} \int \varphi(x, y) \frac{f(x, y)}{g(x)} d \sigma_{1}(y \mid x) g(x) d \sigma_{0}(x) \\
& =\iint \varphi(x, y) d \nu_{1}(y \mid x) d \nu_{0}(x) .
\end{aligned}
$$

Theorem 1 now follows from Corollary 2, Lemma 3, and Lemma 4.
3. Nearly disintegrable measures. Let $T$ be a mapping which assigns to each $x \in X$ a nonempty subset $T_{x}$ of $Y$. A measure $\mu \in$ $P(Y)$ is T-disintegrable if there is a strategy $\sigma$ on $X \times Y$ such that $\sigma_{1}(x)\left(T_{x}\right)=1$ for all $x$ and

$$
\mu(A)=\int \sigma_{1}(x)\left(A \cap T_{x}\right) d \sigma_{0}(x)
$$

for all $A \subset Y$. Let $D$ be the collection of all such $T$-disintegrable measures.

Theorem 2. $D^{\perp \perp}=\bar{D}$.
Corollary 3. Every $\alpha \in P(Y)$ can be written in the form

$$
\alpha=p \mu+(1-p) \nu
$$

with $\mu \in \bar{D}, \nu \in D^{\perp}$, and $0 \leqq p \leqq 1$ where $p \mu,(1-p) \nu$, and $p$ are unique.

In the special case when $Y=X \times Z$ and $T_{x}=\{x\} \times Z$ for all $x$, Theorem 2 easily reduces to Theorem 1 for the product space $X \times Z$.

The proof of Theorem 2, like that of Theorem 1, is based on Corollary 2. Let $E$ be that subset of $X \times Y$ given by $E=\{(x, y)$ : $\left.y \in T_{x}\right\}$ and let $P_{E}$ be the set of $\mu$ in $P(X \times Y)$ such that $\mu(E)=1$. That properties (i) and (ii) of Corollary 2 hold for $D$ follows from the fact that they hold for $\Sigma$ together with the fact that $D$ is the image of $\Sigma \cap P_{E}$ under the affine mapping which sends a measure on $X \times Y$ to its marginal on $Y$.

It should be remarked that the notion of disintegrability used here is slightly more general than the usual one which is that a measure $\mu$ in $P(Y)$ is disintegrable under the mapping $\varphi$ of $Y$ onto $X$ if there is a $\sigma_{0} \in P(X)$ and, for each $x \in X$, there is a $\sigma_{1}(x) \in$ $P\left(\varphi^{-1}(x)\right)$, such that

$$
\mu(A)=\int \sigma_{1}(x)\left(A \cap \varphi^{-1}(x)\right) d \sigma_{0}(x)
$$

for all $A \subset Y$. The main difference is that the definition here does not require that the sets $\left\{T_{x}\right\}$ form a partition of $Y$ as do the sets $\left\{\varphi^{-1}(x)\right\}$.

Acknowledgment. After we had written this paper, Lester Dubins sent us a copy of unpublished notes of Annibal Sant'anna. These notes, written several years ago when Sant'anna was a
graduate student at U . C. Berkeley, contain results which represent a genuine contribution towards an affirmative answer to the question raised by Dubins whether $\Sigma^{\perp \perp}$ is $\bar{\Sigma}$.

## References

1. S. Bochner and R. S. Phillips, Additive set functions and vector lattices, Annals of Math., 42 (1941), 316-324.
2. L. E. Dubins, An elementary proof of Bochner's finitely additive Radon-Nikodym theorem, Amer. Math. Monthly, 76 (1969), 520-523.
3. , Finitely additive conditional probabilities, conglomerability, and disintegrations, Annals of Probability, 3 (1975), 89-99.
4. Alfred Renyi, Foundations of Prabability, Holden-Day, San Francisco, (1970.

Received February 26, 1979. Research supported by National Science Foundation Grants MCS74-05786-A02 (for Armstrong) and MCS77-28424 (for Sudderth).

University of Minnesota
Minneapolis, MN 55455

