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THE HAUSDORFf DIMENSION OF A SET
OF NORMAL NUMBERS

A. D. POLLINGTON

Suppose that numbers 2,3, are partitioned into two
disjoint classes R, S so that rational powers lie in the same
class. In this paper we prove that the set of numbers ξ
which are normal to every base from R and to no base
from S has Hausdorff dimension 1. The existence of such
numbers was first shown by W. M. Schmidt.

1* Introduction* We call two natural numbers r, s equivalent
and write r ~ s, when each is a rational power of the other.

Schmidt [2] has shown that normality to base r implies normality
to base s precisely when s is a rational power of r and also [3] that,
given any partition of the numbers 2, 3, into two disjoint classes
R, S so that equivalent numbers fall in the same class, there are
real numbers normal to every base from R and to no base from S.

In this paper we prove the following.

THEOREM 1. Given any partition of the numbers 2, 3, into
two disjoint classes R, S so that equivalent numbers fall in the
same class, the set, ^V\ of numbers which are normal to every base
from R and to no base from S has Hausdorff dimension 1.

If R is empty then ^V consists of those numbers which are not
normal to any integer base. In this case Theorem 1 is already
known, see for example Schmidt [4]. If S is empty then Λ~ consists
of those numbers which are normal to all integers bases. This set
contains almost all numbers, in the sense of Lebesgue's measure,
and Theorem 1 is obvious. We will therefore restrict our attention to
the case when R = {rl9 r2, •} and S = {su s2, •} are both nonempty.

After some preliminaries, and given a certain parameter A, a
nested sequence

of sets is constructed, where each set Jt is a union of closed inter-
vals. It is then shown that a number

is nonnormal to each base su s2, . Then a new sequence of sets

^ = [ 0 , 1 ] : = ) ^ I D . . .
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is constructed, where each Kt £ Jίf and it is shown that a number

is normal to each base rl9 r2, . For this, estimates of exponential
sums and two lemmas of Schmidt [3] are required. Finally, a
theorem of Eggleston [1] is used to show that ΠΓ=i Kt has Hausdorff
dimension at least log (A — l)/log A. Since A can be chosen
arbitrarily large, the desired conclusion follows.

We will require the following lemma, due to Schmidt [3], which
is the cornerstone of his proof that yf is nonempty.

LEMMA 1. Let K, I, r, s be natural numbers with I ^ sκ and
r φ s. Then

( 1 ) S Π I cos (πrnl/sk) | ^ 2N1~a{r's) where a(r, s) > 0 .
n=Q k=K+l

The following result implies Theorem 1.

THEOREM 2. Let A > 2 be a natural number. Let R, S be two
subsets of {A, A + 1, •} such that if r eR and se S then r Φ s.
Then the set ^Y*A of numbers which are normal to every base from
R and to no base from S has Hausdorff dimension at least
log (A - l)/log A.

2. Deduction of Theorem 1 from Theorem 2 Suppose that
we are given a partition of the natural numbers R, S as in Theorem
1. Let RA = R ΓΊ {A, A + 1, - - •}, SA = S Π {A, A + 1, •}.

We apply Theorem 2 for RA, SA. Then ^ = ^K For suppose
r eR and xeΛ^A. Then clearly if r ^ A then x is normal to base
r, if r < A, then rA > A and also rAeR since rational powers lie
in the same class. Hence x is normal to base rA. But then x is
also normal to base r. Similarly x is nonnormal to base s for any
seS.

Hence . x ^ c ^ and clearly <yf^(Z^ΓA. Thus

U
A=3

But

log A

Thus aim\yK = 1 which proves Theorem 1.
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We now construct a subset of Λ^ to show that

dim ^ 2 : tog(^-D .
log A

Suppose i2 = {rx, r2, •} and S = fo, s2, •} are given as in
Theorem 2. It is sufficient to construct a set of numbers ζ such
that £ is normal to each of the bases rlf r2, but not normal to
the bases sl9 s2, .

3* Preliminaries* Let

β t J = a ( r u s s ) ( ί , j = 1 , 2 , •••)

where a(r, s) is the constant in Lemma 1.
Put

βk = min βiyj

and

7k = max (n, , rk9 slf sk) .

We may assume βk < 1/2. Put (̂1) = 1 and let φ(k) be the
largest natural number φ which satisfies

Φ ^ Φ(k - 1) + 1 , βΦ^ βjc-1" , ΊΦ ^ yjc .

Then ^(1), φ{2), is a nondecreasing sequence of natural numbers;
in [which every natural number occurs. We let τ[ = rφ{i), s[ = sφ{i),
then {r •} and {s[} have the same properties as {rj and {sj but further

βΊc^βtt-v* and τ ί^7ί fc .

Therefore we may assume that the original sequence satisfies

( 2 ) βk ^ Afc-1/4 , 7, ^ 7ifc

We write h(m) for the least number h, such that

m ^ 0(mod 2h) .

Put s(m) = sMm). Then every term s* occurs infinitely many
times in the sequence s(m).

Let δl9 δ2, denote absolute constants.

4* Construction of a set of nonnormal numbers* We construct

sets

(3) Jo= [0,
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(each the union of closed intervals) as follows:
Let

f(m) = e^ + 2sLm
3 .

Put

<m> = Γ/(m)l , <m; x) = Γ<m>/log#Ί ,

where [x~\ denotes the least integer greater than or equal to x,

( 4 ) hm= <m +

( 5 ) α w + i = Γ
L + 2 B

L log s(m + 1) J

Then

( 6 ) <m + l> + 2 ^ α m + 1 ^ i < " + *> + log log m + 3

log s(m + 1) log s(m + 1)

and

( 7 ) e<w>s(m)2 ^ s(m)a™ ̂  e<m>s(m)loglogm+8 .

'The numbers am and 6m, defined in (4) and (5), are chosen so
that

Let Ji be the union of the intervals 7, each of length s(ΐ)~bl,
whose left end points are of the form

4-

where ε̂  range over 0,1, , s(l) — 2 if s(l) is odd, and over
0,1, , 8(1) - 3 if 8(1) is even.

Put

δ(i) = 2 if s(ί) is odd

= 3 if s(i) is even .

There are (s(l) - δ(l))&1 such intervals I of J l e

Suppose that Jk has been constructed and that Ik is an interval
of Jk of length s(k)~bK

By (5).

Thus in each interval Ik there are at least
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Γs(k + iy^n _ 2 i n t e r v a l s Γh o f l e n g t h

L s(k)bk J

s(k + l)-α*+i whose left end points are finite "decimals" of length ak+1

in base s(k + 1).
To construct Jk+1 we proceed as follows:
Let pk be the left end point of an interval Γk. We construct

subintervals of Γk of length s(k + l)~δfc+1 whose left end points are
of the form

where tk = bk — ak and εlf , εί&+1 can range over 0,1, , s(k + 1) —
δ(k + 1).

In each interval Γk there are (β(ifc + 1) — d(k + 1) + 1)'*+! such
intervals. Let Jk+1 be the union of all such intervals taken over
all Γk. Then'Jfc+i is the union of at least

intervals of length s(k + l)"δ*+1. This completes the construction of
the sequence of sets Jo ZD JX ZD .

LEMMA 2. If ζe Γh°°=i ̂  *Λew <f is nonnormal to each base

Proof. Fix h and let s = sh. Let g be so large that

(10)

For a number M with fe(Λf) = h there are at least

(li) ΣΣ

^-blocks e<+1, , εi+q, consisting of the digits 0, 1, , s — 2 in the
expansion of ξ, such that i + q ^bM. Now h(m) = fe precisely if
m Ξ 2Λ-1(mod 2λ). If h(m) = h and m > 2h~\ the^. by (β),

tm - 1 - q ^ 2~h % [ « i + 1; s} - (j; e» - log log m - 5 - g]

since tm = bm — am and <m + 1; s) — <m; s> is a nondecreasing func-
tion of m.

Thus (11) is at least
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Σ
h{m)=h

Σ 4
j=m-2h+l

^ 2~\{M + 1; s> - <1; s » - M(log log M + 5 + q)

= 2-*δJf(l + 0(1)) .

If £ were normal to the base s = sh, the number of ^-blocks
with digits 0,1, , s — 2 and indices smaller than bM would be
asymptotic to ((« — l)ls)gbM. By (10) this is clearly not the case and
Lemma 2 is proved.

5* Construction of a set of normal numbers* We also have
to ensure that the numbers we have constructed are also all normal
to every base from R. To do this we will modify our construction
by discarding certain of intervals of Jt at each stage, to obtain a
new sequence, KλZ)K2Z) , with Ktc J*.

Consider the intervals Γm_λ. In each such interval there are
($(m) — δ(m) + l) ί m intervals of Jm whose left end points we denote
by ςm.

Let

m ζm+l rΛ
AJx) = Σ Σ Σ edritx)

t = -mi=l i ^ ^
tΦO

where e(x) denotes e2πίx.

LEMMA 3. // m ^ δx there are at least (s(m) — 3)'m numbers
ξm e Γm-i for which

Am(ξm) ^ δ2m\(m + 1>

Here δx and δ2 are absolute constants.

Proof. Now

and the inner sum,Σ =
<m l< + ; ? > < l l ; , >

Σ Σ Σ β((rί
«m i=<»:ri>+l ί=<»:ri>+l

Σ Σ Σ e((rί - r?)«ί J .

Thus
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SΣ;

Thus

(12)

s π
0 fc=αm+l

1 Σ
t ί j g k=am+l

We write -Bm(#) for that part of Am(x) for which either
| i — ffl < m or fir is at least <m + 1; r<> — m and we write Cm{x) for
the remaining part.

Then

(13) Am(x) = Bm(x) + Cm(x) .

We have the following trivial estimate.

Bm(x) ^ 10m2 Σ « m + 1; r,> - <m; r 4 »

Thus

Σ Bm(ξm) ^ 8, 1)'- .

Here the δ̂  are absolute constants.
We now estimate Σ * m Cm(fm).
That part of the sum (12) corresponding to Cm(ξm) is at most

2 Σ Σ < m l Γ < m +^ ι >"m j j β ( m Σ ( m > (eGir fW" '- l)β(m)-*))
ί < fl^Ow r ^ + l i=g+m A; i=ϋ

since |Σ*β(*)l = IΣ»β(—α)|. By making a change of variable we
obtain

(14)

where

IΣ J I
t = -m i = l g=

Π I D(m, t, i, g, j , k) | ,
k=am+l

and

\D\ =
s{m)-δ{m)

Σ β(ί(r? - l )r j " r«>rί
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\(s{m) - 8{m) + 1) 11 + e(ί(rf - l)r$"-VίW"1) |

ΐ) \ cos (πLiris(m))-k

where L£ = (r? - l)rim'^>t.
Fix L = Lif t, r = rif s = s(m), δ = δ(s) and g. Then the inner

sum in (14) is

<m+l,r>-<m,r>-m-sr &w

(15) ^ Σ Π |cos(7rLrV fc)| .

i=l fc = α w + l

Now

Lτ3s~bm ^ ^ < T O + i * ' ί >-<T O ' ί >-

= mr1"9" ^ 1/2 (provided m > 1, r ^ 4) .

Thus

Π I cos (πLrjs~k) | ^ Π | cos (ττ/2fc+1) | = <55 > 0 .

The sum (15) is at most equal to

<m+l;r>-<m;r>-m-ί/ oo

δβ Σ Π | c o s ( 7 r L r ' / s 4 ) | .
,,•=1 A;=άm+1

Now

| L | ^ ( r w - l)r< m ; r> ^ ( r w - l)e< >

^ ( r m - l)8(m)f*βζm)- l o β l o g w - 8 by (6)

provided

r^ ^ .s(m) loglOfc'm+4 + 1 ,

which holds for m sufficiently large, by (2). Hence from m ^ δ, we
may apply Lemma 1 and see that (15) is at most

2<56«m + 1; r> - <m; r)y-a{r'8) .

Thus we have

I Σ C J f J I ^ δ 7 ^ 2 « m + l > : - <m>)2^"(i - δ + iγ™ .

Combining this with the estimate for | Σ Bm(ξm) \ we have

I Σ AM(ξu) i ^ δ2m
2«m•'+< ί> - <m>) 2^(s - δ + 1
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Hence the number of ζmeΓm_1 for which

is at most

«m

But

βm ^ βw-1" and «m
2i/ra

and so

< 1/2 for m > <54.

Hence there are at least J(β — δ + ΐ)tm numbers ζm e If

m_x for
which

Am(ξ J ^ δ2m
2«m + 1> - <m» 2 -^ / 2 .

For m^δ1 (s - 3)** < i(* - δ + l)*w and the proof of Lemma 3
is complete.

We construct a sequence of sets K± 3 K2 ^> in the same way
as JxiD J 2=) was constructed. But at each stage in our construc-
tion of {Km} we use only the (s(m) — Z)tm points ξm satisfying Lemma
3.

LEMMA 4. If ξe Γ\%=1 Km then

Am(ξ) £

Proof. Clearly

Am(ξ) = Am(ξ) - Am(ζm) + Am(ξm) and

Am(ξ) - Am(ξJ = Cm(ξ) - Cm(ξJ + Bm(ξ) - Bm(ξm) .

We estimate jBm(i) — Bm(ξJ as we did for Bm(x) above.
P u t Lg = (r9 - l)r<m+Ur>-m-Π(ξ - ξm). Then \Lg\ ^ 1/2 for m ^ δL.

The part of the expression for | Cm(ζ) — Cm(ξm) \ for which t and
r = r< remain fixed is at most equal to

2 Σ Σ \e(Lgr-η-i\
g=l 2 = 1
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^2 Σ Σ r-'
0 = 1 3=1

< 2«m + 1; r> - <m; r » .

Thus

|C.(f) - Cj£m)\ S d9

^ δlom
2«m + 1> -

Thus

\Am(ξ) - Am(f J | ^ dnm\(m + 1>

and so, combining this with Lemma 3,

Am(ξ) ^ δ8m\(m + 1> - <m»2-^/2 .

We now apply the following lemma, Hilfsatz 8, of Schmidt [3]
to show that ζ is normal to every base from .R.

LEMMA 5. // Am(ζ) ̂  δ8m\(m + 1) - <m»2"^/ 2 for m^δ, [then
ξ is normal to each base rl9 r2,

Thus if K = ΠS=i Km9 then K is a set of numbers [normal to
every base from R and to no base from S. It remains to estimate
the Hausdorff dimension of K.

6* Estimation of the Hausdorff dimension of K. Km is a
linear set consisting of

= Π (s(k) - s W [ /y

8(fe)"* 1 ~ 2)

intervals of
Hence

Now

( β -

length

3)* = s(1

S ( m ) - δ m

if.:

log(»-S,/log

= 8m.

m

>Π(
fc=l

u-nnogΛu f (jf

Thus

Nm > exp Γ l o g ( A ~ 8 > Σ (h -o>) log β(fc)l
L log A *=i J
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-exp [ 1 O g ^ 8)

We also have

% g ( m ) 6 m - ^ ^ exp ( < m + 1> + log

and

<5L = s(m)- 6 ^ ^ exp ( - ί < m

Thus

l o g ( A 7- + log β(m) Ί 7 <
i/m log^L

= Σ exp [<» + l>(ί - l 0 g

1 ^ ~ 3 ) ) d + 0(1))] .

This sum will certainly converge for all t < log (A — 3)/log A.
We apply the following theorem of Eggleston, [1], to estimate

the Hausdorff dimension of K.

THEOREM. Suppose Kk (k = 1, 2, •) is a linear set consisting
of Nk closed intervals each of length δk. Let each interval of Kh

contain mk+1 > 0 disjoint intervals of Kk+1.

Suppose that 0 < s0 ^ 1 and that for all s < s0 the sum

converges. Then K — Γ\k=i Kk has dimension greater than or equal
to s0.

Clearly all the conditions necessary to apply Eggleston's theorem
are satisfied where we may take s0 = log (A — 3)/log A. This proves
Theorem 2.

The author would like to thank the referee for his careful
reading of the original manuscript and for his many helpful sugges-
tions for improving the presentation of this paper.
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