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SPACES OF REPRESENTATIONS AND ENVELOPING
L.M.C. *-ALGEBRAS

MARIA FRAGOULOPOULOU

Given a l.m.c. *-algebra E with a b.a.i., the space of
representations &{E) and the enveloping algebra $f(E) of
E are defined. Under a suitable condition for the extreme
points of E, &{E)y &{&{E)) coincide topologically, a fact
contributing to the openess of the map defining the topology
of &(E). Furthermore, one gets &(E) = \im&(Ea), within

a

a topological algebraic isomorphism, where (Ea) is the
inverse system of Banach algebras corresponding to E.

1* Introduction* There is a vast literature concerning repre-
sentation theory of abstract Banach *-algebras (resp. C*-algebras).
On the other hand, due to recent considerations, it would be
interesting and useful to have these results extended within the
frame of (non-normed) topological *-algebras, a fact arising not only
from the part of pure mathematics (e.g., function algebras), but
also from that of applications in theoretical physics (:quantum
mechanics).

The present paper provides within the context of l.m.c. *-
algebras, extensions of various results referred to Banach *-algebras
(resp. C*-algebras) representation theory. More specifically, if E is
a l.m.c. *-algebra with a b.a.i., &(E) will denote the non-zero
extreme points of &*(E) (:continuous positive linear forms on E),
and &(E) the equivalence classes of all continuous topologically
irreducible representations of E. The set &(E) endowed with the
final topology τ§E induced on it by the map δE: &{E) —• &(E) (ran
extension of the classical "GeΓ fand-Naimark-Segal map"; Th. 3.4)
is called the space of representations of E. Thus, the paper is
mainly concerned with the study of &(E) and the openess of the
map δE. To this study, the notion of the enveloping algebra W(E)
of E having by its definition the crucial C*-property (Def. 4.1),
plays an important role. Now, the openess of δ#{E), with E a bQ
l.m.c. *-algebra with a b.a.i. (Def. 4.2) is obtained, leading thus to
the required openess of δE (Th. 4.2), based besides on the fact that
the spaces &(E)9 &{E) coincide topologically with the corre-
sponding ones of &(E), when &&(E)) is locally equicontinuous
(Th. 4.1).

Furthermore, %f(E/N(pa)), %f(Ea) are isomorphic as topological
algebras (Lemma 4.3) where (E/N(pa)), (Ea) are the inverse systems
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of normed respectively Banach algebras corresponding to E [1], a
fact further applied to get an inverse limit decomposition of &(E)
in terms of (if (#J) (Th. 4.3).

2* Preliminaries* We introduce in this section the notation
and terminology applied throughout.

A representation φ (or a ^representation) of a *-algebra E is
an involution preserving homomorphism of E into the C*-algebra
^f(Hψ) of all bounded linear operators on some Hubert space Hφ

^representation space of E).
A representation φ on a Hubert space Hψ is topologically

irreducible if Hφ, {0} are the only closed linear subspaces of Hψ left
invariant by Φ(E). Moreover, φ is called non-degenerate if {φ(x)(ξ):
xeE, ζeHφ}~ = Hψ where " —" means norm-closure. On the other
hand, a vector ζeHψ is called cyclic for φ if {φ(x)(ξ): x e E}~ = Hφ;
in that case ^ is called cyclic. Now, the representations φ, ψ of E
are equivalent, we write φ ~ ψ (cf. [7]), if there exists a Hubert
space isomorphism U: Hψ-+ Hψ such that ψ(x)oU = U°φ(x), xeE.

A positive linear form on a *-algebra i£ is a complex linear
form f on E with f(x*x) ^ 0, a? e E. If E has an identity e, then
we also suppose that /(e) = 1. The set of positive linear forms on
E is denoted by P(E). Now, if /, geP(E) we write f^g, and we
say that / bounds g, if / — g ^ 0. Thus, an element feP(E) is an
extreme point iΐ g e P{E) and f ^ g implies g = Xf with λ e [0, 1]
(cf. also [7]).

A topological algebra E (rtopological vector space with a
separately continuous multiplication) is called locally m-convex
(l.m.c.) if it has a local basis ^f consisting of m-barrels, (cf. [11]
and [9; Chapt. 1, Th. 1.1]), where by an m-barrel we mean a subset
of E which is closed, convex, balanced, absorbing and idempotent.
We may always suppose that such a local basis is directed.

Given a l.m.c. algebra E with a directed local basis ^/ =
{Ua, aeA}, {pa, aeA} will denote the family of submultiplicative
semi-norms (:gauges) corresponding to ^ . Then, Ua = {xeE: pa(x)?£l},
aeA, [9; Chapt. 1, Lemma 2.3].

Now, by a l.m.c. ""-algebra we mean a l.m.c. algebra E with
an involution * such that pa{x*) = pa{x), aeA, xeE (cf. also [5; p.p.
6, 7]). If moreover, pa(x*x) = pa(xf, aeA, xeE, E is called l.m.c.
C*-algebra. Note that if E is a l.m.c. algebra with an involution *
such that pa(xf ^ pa(x*x), oceA, xeE, E is a l.m.c. C*-algebra.
By a Frechet l.m.c. *-algebra, we mean a l.m.c. *-algebra whose
underlying locally convex space is Frechet.

Furthermore, if N(pa) = ker (pa), aeA, (E/N(pa)), (Ea) denote
the projective systems of normed and Banach *-algebras correspond-
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ing to E, where Ea is t h e completion of E/N(pa), aeA (cf. [1],

[11]). The topology of Ea is defined by t h e norm pa, w i th pa(xa) =

pa(x), xa = πa(x) = x + N(pa) e E/N(pa), aeA, where πa is the
quotient map of E onto E/N(pa). If E is a l.m.c. C*-algebra, each
Ea, ae A, is a C*-algebra.

Now, Eλ will denote the respective unital l.m.c. *-algebra of
E, with corresponding family of semi-norms (pι

a) and involution*
defined respectively by p\(x, λ) = pa(x) + |λ |, (&, λ)* = (a?*, λ), (a?, λ) e

On the other hand, a bounded approximate identity (:b.α.i.) on
E will be a net ( 4 e 7 , with pα(e,)^l, aeA, i e /and lim pa(etx — x) =
0 = limPaixβi — x), xeE, aeA.

3* Space of representations of a Lm*c* *~algebra* Let E be
a topological *-algebra (: *-algebra, which is also topological). Then,
by a continuous representation of E we shall mean a *-morphism φ
of E into J*f(Hφ), continuous relative to the uniform topology on
£f(Hψ). In the sequel, R(E) (resp. R'(E)) will denote the set of
all continuous (resp. continuous, topologically irreducible) representa-
tions of E. Note that "equivalence of representations" defines an
equivalence relation " ~ " on R(E) (and hence on R\E) too). In
this respect, (φ, ψr) in R(E) x R\E) with φ — ψ implies (φ, φr) in
R\E) x R\E).

Now, set &(E) = R\E)I ~, and denote by [φ] the respective
class of φeR\E) in &{E). In the rest of this section we work
out the appropriate material for defining &(E) as a topological
space.

Let E be a l.m.c. *-algebra, and 13, its weak topological dual.
Then, Es = \Ja Ul, where J7α° is the polar of the neighborhood Ua =
{xeE:pa(x) ^ 1}, aeA. Thus, if ^(lί?) denotes the set of all
continuous positive linear forms on E, and &(E) the non-zero
extreme points of &*(E), we obtain

(3.1) &>(E) = U &a(E), έ?(E) = U
a a

with &a{JE) = {fe^(E): \f(x)\ ^ 1, a?€ ί7«} and ^a(E) the extreme
points of ^a(E), aeA. The preceding sets being subsets of E[ are
considered endowed with the relative topology; moreover, since
&*(E) = &(E) Π 172 c 172, ^«(^) (and therefore ^a(E)), aeA is
an equicontinuous subset of &(E).

Furthermore, note that a consequence of (3.1) and [9; Chapt.
1, Lemma 1.2] is that for each fe^(E) there exists aeA with
|/(a;)| 5* pα(cc) for every ices'. The next theorem extends an analo-
gous result of [5; Th. 4.1].
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THEOREM 3.1. Let E be a l.m.c. *-algebra. Then, for each
aeA

within homeomorphisms.

Proof. Let aeA and &>a(E) the corresponding subspace of
&*(E). Then, for each fe^a{E), N(pa)aN(f), so that we define
fae^(E/N(pa)) by fa(xa) = f(x), xaeE/N(pa), and we denote its
extension to Ea also by fa. Thus, the map

&a(E) >&>(E/N(PM™*V. ^{Ea)):f\ >fa

is a homeomorphism, the continuity being a consequence of the
equicontinuity of &*(Ea), since then the weak topologies σ((Ea)'s,
E/N(pa)), σ((EX Ea) coincide on &>(Ea), aeA [3; p. 23, Prop. 5]. D

By Theorem 3.1 it is clear that ^{Ea) consists of all continuous
positive linear forms on Ea with norm ̂ 1 .

COROLLARY 3.1. Let E be as in Theorem 3.1. Then, for each
aeA

within homeomorphisms. •

LEMMA 3.2. Let E be a topologίcal algebra with a b.a.i. {e^^e Σ.
Then,

( i ) If E has a continuous multiplication, (ef)ιeI is a b.a.i.
for E.

(ii) If E has a continuous involution *, (e*)ieI is a b.a.i.
for E.

(iii) // in particular E is a l.m.c. *-algebra, then (ez

a)ieI =
fa + N(pa))ieI aeA is a b.a.i. for both E/N(pa) and Ea, aeA.

Proof. For (i) cf. [9; Chapt. 6, Lemma 11.1]. (ii) (e*)ieI is a
bounded net in E, since * is continuous. Moreover, for each xe
E lim (e?x — x) = lim {x*et — #*)* = 0* = 0, and similarly lim (xef) — x,
xeE. (iii) For each aeA define ei

a = πa(ei)=ei + N(<pa), then pa(ei) =
PaM^h iel, aeA. Furthermore, limpa(xae*a — xa) = ]impa(xei — x) =
0, xa e E/N(pa), aeA; by the same way xa = lim (eixa), xa e E/N(pa),
aeA. Hence, (ei)ίeI is a b.a.i. for E/N(pa), aeA while this net
is also a b.a.i. for Ea, aeA (ibid.). •

LEMMA 3.3. Let E be a l.m.c. *-algebra with a b.a.i. (et)i6I,
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and fe&*(E). Then,

( i ) f(x*) = f(x)f xeE (i.e., / is real or hermitian).
(ii) | / ( α ) l 8 ^ \\fa\\f(x*x), xeE.

Proof, ( i ) /(&*) = lim,/(&*<0 = [7;p. 27, (1)] lim,

/(lim, efx) = (Lemma 3.2, (ii)) /(x), a eJΪ.
(ii) |/(s)|2 = (Lemma 3.2, (ii)) lim41 f(efx)|2 £ [7; p. 27, (2)]

lim,f(eTet)f(x*x), xeE. Now, if fa is the element of &*(Ea) defined
by / as in Theorem 3.1, limi/(e*e<) = (Lemma 3.2, (in)}\imifa((ei

a)*ei

a) =
[7;Prop. 2.1.5, (v)]||/α | |. Actually, | | / J | ^ 1 , since \fa(xa)\=\f(x)\£
1, x e Ua. •

The above assertion (i) is actually valid for any topological
algebra with continuous involution and a not necessarily bounded
a.i. Every element fe^(E) satisfying conditions (i), (ii) of Lemma
3.3 is called extendable.

PROPOSITION 3.4. Let E be a l.m.c. *-algebra with a b.a.i. (et)ieI.
Then,

( i ) Each fe^(E) is uniquely extended to an element fe
^(Eί) with /i(0, 1) = ||/α||, where (0, 1) denotes the identity element
of E,.

(ii) Each element of ^(E^ extending f bounds f.
(iii) // Q(Eλ) = {he^iEJ .hiO, 1) = ||(ΛU)α||} and an element

of ^(Ex) is bounded by an element of Q(E^), it must itself belong
to Q(Eλ).

(iv) / G&(E) <=>Λ 6&(Eλ) « Λ G ^ ( J E J , where E1 is the com-
pletion of Ex and fλ the extension of fx to Elm

Proof ( i ) For each fe &(E) define f: E^C: {x, \)\-+Mx, λ) =
λ||/β | |, where fae&(Ea) (cf. Th. 3.1). Then, ΛePffi) with

/i(0, 1) = | |/β | | . Moreover, 1/^, λ)| ^ \f(x)\ + |λ| ^ pa(x) + |λ| -
Pa(x, λ), (x, λ) e Eu hence f e ^{E,).

(ii) Suppose that ge^EJ extends fe&*(E). Then, there
exists ye A with ge^EJ and fe&*r(E), hence \\gr\\ ^ | |/ r | | which
yields g ^ f.

(iii) Let g = h + k with g e Q(£?i) and fe, fc 6 ^ ( ^ ί ) . Then, g ^
fe, fc and h + k = g = (g\E\ = (h\E)1 + (kl^. Moreover, fe(0, 1) ^
(fe|A(0, 1), fc(0, D^ίfcLWO, 1), which implies fe(0, 1) = (feUX(O, 1),
fc(0f 1) = (k\E\(P, 1), that is fe, fceQffi).

(iv) Let fe^(E) and ge^{Eλ) with /, ^ p. Then, /^flr'U,
i.e., flrU = λ/, λe [0, 1] and since #(0, 1) = λ/i(0, 1) by (iii), we con-
clude g = λΛ, λe[0, 1].

Conversely, let fe^(E) with / ^ ^ K ) and ge^(E) such
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that f^g. Then, f-ge&(E), so that (/ - g\ = f1-gιe
i.e., f ^ g19 g^^iEj); but then, gx = Xf, λe[0, 1], hence also g =
Xf, λe[0, 1]. The second equivalence of (iv) is clear. •

REMARK 3.4. For E as in Proposition 3.4 and φ e R{E) we define
φyi Eγ -• ^f(H9): (x, X) h-> φλ(x, λ) = φ(x) + XidHψ. Then, φι e R(Eλ) and
particularly φeR'(E) <=> φ.eR^E,) <=> φ.eR^E,), where φ, is the
extension of φλ to Eλ.

Now, if /, fx are as in Proposition 3.4, Ly1 = {ze E^. f1(z*z) = 0}
is a left ideal of Ex and ίfx = EJLyl is a pre-Hilbert space with
inner product (z + Lyλ9 w + L/^ = f1(w*z\ w, ze Elm Denote by H
the respective Hubert space, completion of Hx. Then, one obtains

E/L7l = EJL7l

since 11(^0) + L7l - (0, 1) + L? 1 | |
2 = Me,, -l)*( e <, -1)) =

/(βi) - /(βi) + ll/αll -*0 (cf. proof of Lemma 3.3 and note that
lim</(ei) = (Th. 3.1, Lemma 3.2) lim</β(e*) = [7; Prop. 2.1.5, (v)] | | / β | | ) .

On the other hand,

EJL7ι =

hence one finally obtains

(3.2) E/L7ί = H .

In this respect, the following extends [5; Th. 6.1], being actually
the analogue in our case of the standard GeΓfand-Naimark-Segal
construction.

THEOREM 3.4. Let E be a l.m.c. *-algebra with a b.a.L, and
fe&*(E). Then, there exists a continuous representation φf of E
and a cyclic vector ξf of φf such that f(x) = (φf(x)(ξf), £/), x&E.

Proof. For each fe&*(E), Λ belongs to &»(£,) (Prop. 3.4), so
that [5; Th. 6.1] there exists a continuous representation φγλ of Ex

into £f(H) and a cyclic vector ξ7l of ψ7l in H such that

Thus, if φf = φ7l\E and ξf = f7X 6 H, one obtains

where f/ is cyclic for φf as this follows by (3.2) and Φ(E)(ξf) =
E/L7l. Π
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N o w , g i v e n a l . m . c . * - a l g e b r a E l e t , f o r e a c h aeA

(3.3) Ra{E) = {φβ R(E): \\ φ{x) \\ ^ kpa(x), x e E), k > 0 ,

so that R{E) = \JaRa(E). Thus, we can define φaeR(E/N(pa)) with
Φafaa) — Φ(pή9 %a e E/N(pa), so that if φa denotes also the extension
of φa to Ea, one has || φa(z) \\ ^pa{z), zeEa [7; Prop. 1.3.7]; hence || φ(x) || ^
pa(x), %sE in such a way that one may assume k ^ 1 in (3.3), for
each φ 6 i2α(^). Besides, if R'JJE) = {φe R\E): φ e Ra{E)} and &*{E) =
R'a(E)/~, we get

(3.4) j?(#) = lim β ^ ) , '̂(JS?) = lim R'a(E,) &{E) = lim
α α a

within bisections [4; p. 92].
Now, if φaeR'(Ea) and I is a closed linear subspace of

Hψ(=HΨa) with φ(E)(M)aM, then φa{Ea)(M)aM. Hence, φeR'a(E)<=>
φaeR\E/N(pa)) (resp. R'(Ea)). Finally, notice that φ - ψ in i?;(#)
implies ζ5α ̂  ^ α in R\Ea). The above yields the following

PROPOSITION 3.5. Let E be a l.m.c. *-algebra. Then,
( i ) R(E/N(pa)) = # α (#) - 22C0β), α e i ,
(ii) R\EIN{pa)) = R'a{E) = Λ'(JS7β), α e A,
(iii) &(E/N(pa)) = &JJ2) = &(Ea), aeA, within bijections.

D

The following Banach *-algebras analogue [7; Prop. 2.5.4]
extends also Corollary 6.4 of [5].

PROPOSITION 3.6. Let E be a l.m.c. *-algebra with a b.a.i.
Lei also fe^(E) and φf the respective element of R(E) (cf. Th. 3.4).
Then, fe <0(E) ~φfe R'(E).

Proof. fe^(E) implies / ί e ^ X E ϋ (Prop. 3.4, (iv)), so that
[5; Cor. 6.4] φ^eR'ίE^), which implies φfl — φy^EleR\E^ and since
Φ/, = (Φf)u ΦfeR\E) by Rem. 3.4.

Conversely, let fe^(E) with φfeR\E). Then, φfl = (Φf\e
R'(EX) (Remark 3.4), so that φ^eR'iEJ, which yields Λ e . ^ ) [5;
Cor. 6.4]; hence fe&(E) by Proposition 3.4, (iv). •

Furthermore, one gets the next (cf. also [7; Prop. 2.4.1, (ii)].

LEMMA 3.7. Let E be a *-algebra and φ9 ψ representations of
E into £f(Hψ), ^f(Hf) respectively. Let also ξ (resp. η) be a cyclic
vector of φ {resp. <f), with (Φ(x)(ξ), ξ) = (ψ(x)(y),V)> %εE. Then,
φ~ψ such that there exists a Hilbert space isomorphism U: Hψ-+ Hψ
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with Uoφ{x) = ψ(x)oU, xeE and U(ξ) = η. •

Now, regarding Proposition 3.6 we notice that for each φ e R\E)
there exists fe^(E) such that φ ~ φf: Indeed, if ξ is a cyclic
vector of φ, the formula f(x) = <0(#)(£)> <f>, xe i? defines an element
/ of &*(E). Hence, (Th. 3.4) there exists φfeR(E) and a cyclic
vector ξf of 0/ with f(x) = (Φf(x)(ζf), ξ/}, xeE, so that (Lemma
3.7) φ — φf in Λ?(2?), i.e., φfeR\E), which by Proposition 3.6 implies
/ 6 &(E). Hence, by Theorem 3.4 and Proposition 3.6 we now define
an onto map

(3.5) δE: <&(E) > mE): f i > δE(f) = [Φλ .

The set&(E) equipped with the final topology τδE induced on
it by δE, is called the space of representations of E.

In the next § 4, under additional conditions for E we prove the
openess of the map (3.5).

4* Enveloping algebra of a Lm*c* *-algebra* We define below
the enveloping algebra &(E) of a l.m.c. *-algebra E with a b.a.i.
It is proved that the representation theory of E is actually reduced
to that of &(E) (Th. 4.1), the last algebra having the important
"C*-property", hence its significance for the latter theory. On the
other hand, by further obtaining under appropriate conditions the
openess of the map δ^kE)f we finally get the same property for
the map (3.5) (Th. 4.2). Further applications, concerning topological
tensor product algebras, will be given elsewhere.

LEMMA 4.1. Let E be a l.m.c. ""-algebra with a a.b.i. Then,
for any xeE and aeA, the following hold true:

( i ) a = b = c = d, where

a = suv{\\φ(x)\\:φeRa(E)}, b = suv{\\φ(x)\\: φeR'a(E)} ,

c = (sup {f(x*x): f e ^a{E)})υ\ d = (sup {f(x*x): f e ^a(E)})1/2 ,

xeE .

(ii) For each aeA, the map ra: E-+ R+: x i—> ra(x) = d, defines
a submultίplicative semi-norm on E, which is ^-preserving and has
the C*-property.

Proof. The proof is an immediate consequence of [7; Prop.
2.7.1] since by Theorem 3.1, Corollary 3.1 and Proposition 3.5, one
concludes that
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a = sup{||^(a?β)||:^βei2(JS?β)}, b = sup{\\φa{xa)\\: φaeR'(Ea)},

c = {suV{fa{x*axa):fae^{Ea)}y\ d = (sup {fa{xlxa)ιfae&{Ea))y*.

Regarding Lemma 4.1, note that δ also coincides with

Furthermore, since \\φ(x) || ^ pa(x), xeE for each φeRa(E), one
obtains ra(x) ^ pa(x) for any aeA, xeE, that is each ra(a e A) is
continuous with respect to the given topology of E.

DEFINITION 4.1. Let S b e a l.m.c. *-algebra with a b.a.i., and
(E, (rα)) the respective l.m.c. C*-algebra defined by Lemma 4.1.
Then, the "Hausdorff completion" of the latter, that is the algebra

(4.1) &(E) = (E, (ra))/I

with / = Π {N(ra): ae A) & closed 2-sided self-ad joint ideal of E, is
called the enveloping algebra of E.

In this regard, cf. also [6; p. 65] concerning Frechet l.m.c.
*-algebras with identity. It is clear that (4.1) provides a complete
l.m.c. C*-algebra, whose topology is defined by the family (qa) of
submultiplicative semi-norms, extensions of qay aeA to S?(2£), where
qa(x + I) = inf {ra(x + i):iel}, x + Ie (E, (ra))/L Moreover, if (eά)
is a b.a.i. for E, the net (e5 + /) is a b.a.i. for

REMARK 4.1. A given l.m.c. *-algebra E with a b.a.i. has the
C*-property iff ra = pa for each a e A, that is one has then pa(x) ^
ra{x)j with aeA, xeE : In fact, since i? has the C*-property, each
Ea is a C*-algebra, therefore Ea9 aeA has an isometric representa-
tion, say φa9 that is \\φa(z)\\ = pa(z), zeEa (cf. [7; Th. 2.6.1]). But
t h e n , \\φ(x)\\ = pa(x), xeE w i t h φeRa(E) ( P r o p . 3 .5).

Now, it is clear that every complete l.m.c. C*-algebra coincides
with its enveloping algebra. In the sequel E/I will stand for
(E, (ra))/L

THEOREM 4.1. Let E be a l.m.c. *-algebra with a b.a.i., and
&(E) its enveloping algebra with &($?(E)) locally equicontinuous.
Then, &{E) = &&(E)) and &(E) = ^(^(E)) within homeomor-
phisms.

Proof. If fe.^(E) there exists aeA with fe&a(E) and
1/0*01 ^ra(x), xeE (Lemma 3.3, (ii)). Thus, we define g
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with g(x + J) = f(x)9 x + Ie E/I. Denoting also by g the respective
element of &&(E)) we have g e<^(&(E)) <~fe&(E). Now, the
map Ψ: &?(&{$)) -> ̂ {E): g H> Ψ(g) = f with / = goZy where τ:E-+
ί?(E) is the canonical continuous morphism (Def. 4.1), is a continuous
Injection. Moreover, the inverse of Ψ is certainly continuous for
the weak topology induced on its range by E/I. On the other hand,
let V be a neighborhood of g in &&(]£)) which we may always
assume to be equicontinuous by hypothesis. Then, the weak topo-
logies on V from E/I and £jί = &{E) coincide [3; p. 23, Prop. 5],
which proves the continuity of Ψ~\

Now, if φeR(E), there exists aeA with φeRa(E) and N(ra)a
N(φ), so that one gets φ'eR(E/I) with φ\x + I) = φ(x), x + IeE/I.
Thus, preserving the same symbol for the extension of φr to
we have φ'eR\%?(E)) <=> φeR'(E), so that the map r: &(
&(E): [φ'] ι-> r([^']) = M with 0 = ^Όr, is a homeomorphism as this
follows by the relation roδ#{E) = δE°Ψ, since δE, Ψ are continuous
and &(&(E)) has the final topology induced on it by δ^[E)9 an
analogous argument being valid for the inverse of r. Π

Concerning the above theorem, we note that Ψ, r are always
continuous bijections. Moreover, an element φeR(E) is non-
degenerate iff the element φf e&(ξ?(E)) is non-degenerate, and for
any (φ, φ')eR(E) x R(t?(E)) the set φ(E) is dense in φ\&(E)).

Regarding the local equicontinuity of &(&(E)) we note that
this, is equivalent with that of &{E) when for instance, &(E) is
barrelled (cf., for example, [9; Chapt. Ill, Cor. 5.31]). In this re-
spect (cf. also Def. 4.2 below as well as the comments following it.

Now, a topological algebra E is said to be a Q-algebra, if the
set of its quasi-regular elements is open. If E is a Q-algebra, the
same holds also true for its respective unital algebra Ex [12; p.
174, I].

DEFINITION 4.2. A l.m.c. *-algebra E with a b.a.i., whose
enveloping algebra &(E) is barrelled (l.m.c.) Q-algebra, is called a
bQ l.m.c. *-algebra.

In case E is a Frechet l.m.c. *-algebra, C£{E) is by its defini-
tion Frechet and thus barrelled. However, we still assume that
&{E) is a Q-algebra to have the situation provided by Theorem 3
of [8], hence its application to the next result.

THEOREM 4.2. Let E be a bQ l.m.c. *-algebra with a b.a.i.
Then,
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δE: <&(E) > &<JE)

is a (continuous) open map.

Proof. Clearly δE is continuous by the definition of the final
topology τδE on &(E). Now, by [8; Th. 3] C£(E\ is a C*-algebra
(cf. also [13; Cor. 5]), and since <^(E)CL^(E)1 (cmeans topological

algebraic imbedding) 8* (2?) becomes also a C*-algebra, so that
&&(E)) is equicontinuous, and δ#{E) open by [7; Th. 3.4.11]. Thus
the assertion follows by Theorem 4.1 and the relation δE = r<>δs{E) °
W-\ " •

In the rest of this section we relate r£(E) with the decomposi-
tion of E as an inverse limit of Banach algebras [1], [11]. Namely,
we give &(E) (Th. 4.3) as an inverse limit of the C*-algebras
&(Ea), aeA, which are the enveloping algebras of the Banach
algebras Ea, aeA, corresponding to E. However, we still need the
following.

LEMMA 4.3. Let E be a l.m.c. *-algebra with a b.a.i. Then,

(4.2) &(Ea) = &(E/N(pa)) = (E/I)a = &(E)af aeA,

within topological algebraic isomorphisms.

Proof. By Definition 4.1 &(E/N(pa)) = (E/N(pa), ta)/Ia with
ta(xa) = sup{||φa(xa)\\:φaeR(E/N(pa))} = ra(x), xaeE/N(pa), aeA (cf.
Prop. 3.5 and Lemma 4.1) and Ia = N(ta). Moreover, ta <k pa, a e A,
hence ta has a unique extension ta to Ea, aeA, so that if ϊa =

N(ta), &(Ea) = (E^XS/ϊa, aeA. Now, for Fa = (E/N(pa), ta)/Ia and
Ga = (Ea, ta)/ϊa, aeA, consider the map

ha: Fa • Ga: xa + Ia i > xa + ϊa, aeA ,

which is an algebraic isomorphism into. Then, if Qa, Qa, aeA, are
the norms defining the quotient topologies of Fa, Ga, ae A respec-
tively, one gets

Qa(x« + la) = ta{xa) = Qa(xa + h), x<*eE/N(pa), aeA,

which yields ha, α e A , as a topological isomorphism too. Now, since
by ta ^ pa Im (ha) is dense in Gat aeA, one obtains the first part of
the assertion. The last part of the statement is similarly proved.
Concerning the 2nd equality in (4.2), if Ma — (E/I)/N(qa), aeA,
the map

ka: Ma > Fa: (x + I)a ι > xa + L, aeA,
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is an algebraic isomorphism. In fact, fcα, a e A is a topological
isomorphism: Namely, Qa(xa + Ia) S qa((x + I)a), which yields the
continuity of ka. Besides, &"1 is continuous iff p: (E/N(pa), ta) —> Ma:
%a

 !~> (# + /)« is continuous, which is true since qa{p{xa)) S ra(x) =
ίβ(a?β), xaeE/N(pa), (aeA). Π

THEOREM 4.3. If E is a l.m.c. *-algebra with a b.a.i.,
its enveloping algebra, then

within an isomorphism of topological algebras.

Proof. &(E) is by its definition a complete l.m.c. C*-algebra,
hence

(4.3) &{E) = \ιm^{E)a

<—
a

within a topological algebraic isomorphism, where (&(E)a) is the
inverse system of C*-algebras corresponding to ί?(E) [2], [11; Th.
5.1]. Now, (4.3) and Lemma 4.3 yield the assertion. •

Theorem 4.3 has a special bearing on a previous result in [6;
Th. 4.3] referred to a Frechet l.m.c. *-algebra with an identity.
On the other hand, by applying categorical language, since g7

preserves continuous morphisms between l.m.c. *-algebras with
b.a.i's (cf. also Th. 4.1) one may consider ^ as a covariant functor
between the categories of the respective algebras E and ί?(E).
Moreover, g7 is continuous (ipreserves inverse limits) by Theorem
4.3 restricted to the full subcategory of Banach *-algebras.

The technique developed hitherto is further applied to the

case of topological tensor products [10], by considering &{E&τF)

and &(E®τF) with E, F suitable l.m.c. *-algebras and τ an

"admissible" tensor product topology.
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