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EQUIDISCONTINUITY OF BORSUK-ULAM FUNCTIONS

LESTER E. DUBINS AND GIDEON SCHWARZ

No idempotent function on the unit disc onto its
boundary is continuous. The stronger fact that no such
function has a modulus of discontinuity smaller than V3
is a prototype of the contents of this paper,

A principal purpose of this paper is to report this fact:

THEOREM 1. Let g be a function on a closed ball Bn in Euclidean
n-space into the boundary S91"1 of Bn such that g maps each pair
of antipodal points of S"1'1 onto a pair of antipodal points. Then
the modulus of discontinuity of g is at least dn, the diameter of a
regular n-simplex inscribed in Sn~x. Moreover, there is a g whose
modulus attains the bound dn.

The modulus (of discontinuity) δ(g) of a function g from a
topological space into a metric space is the infimum of all numbers
d such that every point in the domain of g has a neighborhood
whose image has a diameter of at most d.

Plainly, Theorem 1 strengthens a well-known result conjectured
by Ulam and proved by Borsuk (1933). Rather than provide an
independent proof, we find it considerably simpler to use Borsuk's
result as a principal stepping stone to Theorem 1. However, self-
contained constructive demonstrations are provided first for special
cases of Theorem 1, including the classical one in which only
idempotent functions g are treated (Corollaries 1 and 2 of Proposi-
tion 1). The conclusion that idempotent g's have a uniform modulus
of discontinuity which depends only on the metrization of the
boundary is extended to triangulable manifolds with boundary
(Corollary 4) and somewhat more generally to #'s that are not quite
idempotent (Corollory 5).

Some standard terms and facts facilitate the formulation of
Proposition 1, our principal constructive tool.

Though actually a triangulation of a space X consists of a
simplicial complex K and a homeomorphism t of the polyhedron \K\
onto X, in this paper t is suppressed, and \K\ and X are identified.

A function g that maps the vertices of a triangulation if of a
polyhedron \K\ into a Euclidean space determines a continuous
mapping ξ of \K | which is linear on each simplex of K, and coincides
with g on the vertices. If g assumes its values in the unit sphere
S*1'1 and ξ is never zero, then φ, the spherolinear extension of g,
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is defined for qe\K\ by letting φ(q) be the (unique) point where
the ray from the origin through ξ(q) intersects S*~\ Of course, if
q is represented as a barycenter of vertices qt of a simplex in K,
say q = Σιa>iQif t h e n 5(?) = Σ α^fo) and φ(q) = ξ(q)l\\ς(q)\\. When
it is necessary to indicate the dependence of ξ and φ on g, K and
q, the notation ξ(g, K) and φ(g, K), or f(#, iί, q) and φ(#, #, g) is
used.

PROPOSITION 1. Let (Kn, K™-1) be a triangulation of a manifold
Mn with boundary N71'1 and g a functian defined on the vertices
of Kn into Sn~\ Then for some simplex σn — (qOf , qn) in Kn,
the convex hull of g(q0), , g(qn) contains the origin if ξ(g, K?-1)
vanishes somewhere on N71'1, or else if one of these two conditions
holds.

(1) The modulo-2 degree of φ(g, K?-1) is not zero.
(2) Mn is orientable and the degree of φ(g, ϋΓ*"1) is not zero.

Proof. If ξ vanishes at q 6 σn e Kn, then σn fulfills the conclu-
sion of the theorem. If ζ vanishes nowhere on Nn~\ consider first
case (1). For σn~1eKn

9 let F{σn-λ) be the image of σn-1 under φ.
Defining the {modulo 2-) sum of a finite collection of subsets of Sn~λ

to be the closure of the set of points that belong to oddly many of
the subsets of the collection, let F'(σn) be defined for each σn in Kn

as the sum of the sets F{σn~1) as σn~1 ranges over the faces of σn.
The sum of F' over all σn in Kn is clearly equal to the sum of F
over all σ71"1 in K?-1. Since the degree of φ(g9 K"-1) is odd, the latter
sum is all of S71"1. This implies that there is a σn in Kn with the
asserted property, as becomes evident by the following observation.
If an ^-simplex in En excludes the origin, its boundary is intersected
in precisely two points by any ray from the origin that intersects
it but none of its (n — 2)-faces; so, if σn — (q0, •••,#*)£ Kn, and the
convex hull of g(q0), , g(qn) does not contain the origin, F'(σn) is
a set of dimension n — 2 or less. For the remaining case in which
ξ vanishes nowhere on N71'1 and condition (2) holds, replace the set-
valued F by the real-valued cochain F* where F*^-1) is the signed
(n — l)-volume of Fiσ71"1), note that the sum of the new F' over all
σ71 in Kn is a nonzero multiple of the volume of Sn~\ and verify
that F'(σn) = 0 if the convex hull of g(q0), , g(qn) does not contain
the origin. •

REMARK. If Mn is not orientable, condition (1) cannot be re-
placed by the weaker condition that the degree be not zero even
when N"-1 is orientable. For example, for a Mδbius strip realized
in the complex plane as the anulus 1 <i \Z\ rg 2 with Z and — Z
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identified when \Z\ — 2, let g(Z) = Z/Z. As is easily verified, g
is a continuous mapping of the strip onto its boundary S1, and its
restriction to S1 is of degree 2. For fine-meshed triangulations
(K\ Kϊ) of the strip, the degree of φ(g, Kl) is also 2, yet, by con-
tinuity of g, g(q0), g{qd and g(q2) are too close together to fulfill the
conclusion of Proposition 1.

In Proposition 1 and its proof, the unit sphere in any Minkowski-
space can be substituted for Sn~\ In Lemma 1, however, which
provides the link with the metric character of the corollaries below,
it is essential that En be Euclidean.

LEMMA 1. Every subset of the unit sphere in En whose convex
hull contains the origin has a diameter of at least dn, where dn =
(2 + 2n~1)1/2 is the diameter of a regular n-simplex inscribed in the
sphere.

Proof. As is well-known, the subset must contain n + 1 points

v0, , vn, not necessarily distinct, whose convex hull contains the

origin. Let α0, •••,(£„ be nonnegative numbers, not all zero, such

that Σ ^ Λ = 0 Denote inner products by <•,•>, and obtain the

equality

— IIΣ aivi II = Σ ^ ί W ^ i ) + Σ aί

which, together with the inequality

0 ^ Σ (α, - aάY = 2n^a\-2 Σ ^ α ,

implies

Σ aiUMvaVj} + w1) ̂  0 .

Therefore, for some i Φ j ,

For these i, j ,

COROLLARY 1. Let Ln be any manifold whose boundary is Sw-\
The moduli of all functions of Ln to its boundary, which leave each
point on the boundary fixed, are no less than dn.

Proof. As is not difficult to verify, there are arbitrarily fine-
meshed triangulations Kn of Ln such that the corresponding sphero-
linear extension of the identity mapping on the boundary vertices
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of Kn is simply the identity mapping on the boundary of LΓ.
Proposition 1 and Lemma 1 now apply. •

COROLLARY 2. Let f be a mapping of S2 into S\ If f maps
every pair of antipodal points of S2 onto a pair of antipodes of S1,
then its modulus δ(f) is at last τ/~3~.

Proof. Embed the range-space S1 of / as a great circle on S2,
and let M2 be one of the closed hemispheres bounded by S1. If K2

is a triangulation of M2 whose induced triangulation Ki of S1 is
symmetric around the origin, Proposition 1 will apply to the restric-
tion g of / to M2, once it is shown that g = φ(g, Kϊ) is of odd
degree. Since g is a continuous mapping of S1 into itself, its degree
is the winding number ω of the point g(t) as t goes once around
S1. To evaluate α>, fix some toeS\ and let a(f), for teS\ be the
angle accumulated by g(s) as s varies continuously from t0 to t.
Since g, and hence g, preserve antipodality, g( — t0) = g(tQ), and there-
fore a( — t0) is an odd multiple of π, say πr. Using the antipodality
once again, the total change in a(t) is twice as much, that is, 2πr,
when t goes once around the circle. Hence ω = r is odd, and by
Proposition 1, and Lemma 1 with n = 2, δ(g) ^ d2 = V 3 . Since g
is a restriction of /, δ(f) is not less. •

Plainly, Corollaries 1 and 2 are special cases of Theorem 1. A
tool for inferring the lower boundedness of the moduli for the
family of functions treated in Theorem 1 from the discontinuity of
its members is provided by the following proposition, which possibly
has applications elsewhere.

PROPOSITION 2. Let & be a set of functions defined on a sub-
polyhedron N of a polyhedron M into the Euclidean sphere S71'1

that satisfies these two conditions:
(1) For each fe^ and ε > 0 there is a triangulation (K, Kr)

of (Λf, N) with mesh less than ε such that either ζ(/, K\ q) = 0 for
some qeN or φ(f, K') e&;

(2) No extension g of any fe& to M is continuous.
Then every extension of each f e έ% to M has a modulus no less
than the diameter of a regular n-simplex inscribed in Sn~λ.

Proof. Let g be an extension of an fe& to M and, for ε > 0,
let (K, K') be a triangulation of (M, N) as in (1). If ζ(g, K) were
never zero on M, φ(g, K) would be a continuous extension of φ(f, Kr)
to M. But by (1), φ(f, K') e &, and, hence by (2), it has no
continuous extension to M. Consequently, ξ(g, K, q) = 0 for some
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qe M. If Σ * a^ is the barycentric representation of q, then the
convex full of g(q0), — ,g(qm) contains the origin. Now Lemma 1
applies. •

Proof of the inequality in Theorem 1. Let M = Bn be identified
with a closed hemisphere of Sn, and let N be its boundary Sn~\
For & the set of all antipodality-preserving functions on S"'1 into
itself, condition (1) of Proposition 2 holds for any ε-meshed triangula-
tions that are invariant under the map q->—q on Sn~\ Clearly,
every extension g of every fe& to all of Bn has in turn a unique
antipodality-preserving extension G to the entire Sn. If g were
continuous, G would be too. But, by Satz II of Borsuk (1933), there
is no such G. Consequently, condition (2) holds as well, and Pro-
position 2 applies. •

COROLLARY 3. The modulus of each mapping g of Sn into S^1

that maps every pair of antipodal points of Sn onto antipodal
points of S™'1 is no less than dn.

Proof. Theorem 1 applied to the restriction gf of g to any
closed hemisphere of Sn yields δ(g) ̂  δ(g') ^ dn. •

Scholium 1. The bounds in Theorem 1 and in Corollaries 1, 2,
and 3 are attained.

Proof. For Theorem 1 and Corollary 1, inscribe a regular n-
simplex in Sn~λ, let g map each interior point of Ln to the closest
(or one of the closest) of its vertices, and on the boundary, let g
be the identity. The modulus of g is easily seen to be dn. For
Corollaries 2 and 3, embed Sn in En+1 as the boundary of the unit
ball Bn+1. Choose a hyperplane through the origin. It divides Sn

into two open hemispheres Hx and H2 and intersects Bn+1 in an w-ball
Bn. Inscribe in Bn two mutually antipodal regular w-simplices σn

and — σn. Let / map each point of Hλ to the vertex of σn closest to
it, and each point of H2 to the closest vertex of — σn. On the
common boundary Sn~λ of the two hemispheres let / be the identity.
The modulus of / on each of the two closed hemispheres separately
is clearly dn since there, / is just the function g above for Ln = Bn,
transferred via a homeomorphism of the domains and an isometry
of the ranges. For the modulus at a point p on the common
boundary of the hemispheres, note that the closest to p among the
vertices v0, •••, vn of σn, and the closest among their antipodes are
never as far as dn apart: in fact, for any p in Sn, if vt is closest
to p among the former, (vίf p} > 0, therefore ( — vif p) < 0, and
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— Vi is certainly not closest to p among the latter. Hence, some

— Vj with j Φ i is closest. Since (vi9 Vj} = — n~x,

\\v< - {-v3)f = 2 + 2(vif vdy = 2{n - l)/n < d\ .

Consequently, the modulus of / on all of S* is still dn. •

The values obtained for the minima of the moduli are, of course,
contingent on the metric on the range spaces. The existence of a
positive lower bound, however, is a topological fact, valid for any
metrization. Since the next two corollaries of Proposition 1 deal
with mappings into range spaces where no one metric seems
distinguished, it is the topological fact that is asserted there. A
simple lemma about the behavior of moduli under composition is
used in its proof.

LEMMA 2. Let h be a uniformly continuous mapping from a
metric space Y to a metric space Z. For every d > 0 there is a t> 0,
such that for any function g on any topological space X into Y,
δ(h of)^d implies δ(f) ^ t.

Proof Choose ί>0 so that py(yl9 y2)<t implies pt[h(yj)9 h(y2)]<d.
Then any set in X whose image under h o f has a diameter at least
d, has an image under g whose diameter is no less than t. •

COROLLARY 4. Let Mn be a triangulable manifold with boundary
N"'1. For any metrization of JV*"1, there is a t > 0 such that the
modulus δ(f) of any function f of Mn onto N"'1 that leaves each
point of Nn~x fixed is at least t.

Proof. Let V be a subset of N™'1 that is homeomorphic to an
open (n — l)-ball and hence to S"-1 — {p}, for an arbitrary p e Sn~\
Define a continuous mapping h of N^1 onto S71"1 that maps V
homeomorphically onto S""1 — {p}, and on the rest of Nn~\ \eth = p.
The composition h o / is a function on Mn onto S*"1, and its restric-
tion to Nn~ι is h. Since h covers every point of Sn~\ except p,
precisely once, the degree of h is 1. For all sufficiently fine-meshed
triangulations (Kn, K?~ι) of (Mn

9 N"'1) the degree of φ(h, K?-1) is
also 1, by the following lemma.

LEMMA 3. For a continuous mapping h of any polyhedron
Nn~ι into Sn~λ, there is a δ > 0 such that, for any triangulation K"'1

of iV""1 with Mesh (K^1) < δ, h and its sphero-linear extension
φ(h, K?~ι) nowhere take on antipodal values and, consequently, are
homotopic.



EQUIDISCONTINUITY OF BORSUK-ULAM FUNCTIONS 57

Proof. By uniform continuity, there is a 8 > 0 such that, for
p and q in Nn~\ p(p, q) < 8 implies \\h(p) — h(q)\\2 < 2 or, equivalent-
ly, the inner product of h{p) and h(q) is positive. If Mesh (K?-1) < δ,
p e σ"-1 e Kΐ~γ and q e σn~\ then <Λ(p), h(q)) > 0. Since this in-
equality holds in particular for every pair of vertices p and q
of σn~\ the sphero-linear extension φ(h, K?-1) is well-defined and
(<p(h, Ks

n~\ p)9 h(q)) > 0 for all p e σn-χ and any q e σ%~\ Since h(p)
and <p(h, K?-1, p) have positive inner products with the same vector
h(q)9 they are not antipodal. Therefore, the origin is not a covex
combination of h(p) and φ(h, Ks

n~\ p). As is now routine to verify,
[th + (l-ί)9>(λ, Krι)V\\[th + (1 - ί)9>(fc, if/"1)] || is a homotopy of Λ
and φ(h, Krι). D

To complete the proof of Corollary 4, first note that the
composition hof is a # to which Proposition 1 applies, then ap-
ply Lemma 1 to obtain δ(h ° /) ^ dn, and finally Lemma 2 with
d = dn. •

REMARK. The assumption that / is the identity on N^1 is used
in the proof of Corollary 4 only to imply:

(*) The restriction of hof to N^1 covers S^-ip} precisely once.

But (*) also follows from the weaker assumption that for an open
in — l)-ball VaNn~\ f is the identity on V and the complement
of V is invariant under g. This proves the following generalization
of Corollary 4.

COROLLARY 5. Let Mn be a trίangulable manifold with boundary
Nn~\ p a metric for Nn~ι and V a subset of N1""1 that is home-
morphic to an open (n — l)-ball. Then there is a t > 0 depending
only on V and p that satisfies this condition: If f is a function
on Mn into N™'1 that is the identity on V, and the complement of
V is invariant under f, then the modulus of f exceeds t. In parti-
cular, no such f is continuous.

The derivation of the minimum of the moduli of idempotent
functions on a manifold onto its boundary can also be extended
beyond the case where the boundary is a sphere. This extension
is an easy consequence of Corollary 1.

COROLLARY 6. Let Ln be a manifold whose boundary is Sn~ι,
M an arbitrary manifold (without boundary), and p a metric on
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p[(slt mx)9 (s2, m2)] ^ p[(slf mt)9 (s2, m,)] = \\s1 - s2|| .

Then the minimum of the moduli of all idempotent functions on
Ln x M onto its boundary Sn~λ x M is dn.

For example, if a solid torus is realized in i?3 by rotating a
closed unit disc in the plane around a line disjoint from it
(n = 2, L2 = J32, M = S1), then each idempotent function on the solid
torus onto its boundary has a modulus no less than V 3 , and there
is at least one such function whose modulus is V 3 .

At a lecture where this paper was presented, Ed Spanier asked
whether Proposition 2 can be applied to extensions to B* of the
Hopf map fH:S*-^S2 (see e.g., Dugundji (1966) p. 408), or more
generally, to the extensions of a mapping / to a superspace M of
its domain N to which it has no continuous extension. An answer
to his question is included in the following corollary.

COROLLARY 7. Let f be a continuous mapping defined on a sub-
polyhedron N of a polydedron M into the Euclidean sphere S%~x

that has no continuous extension to M. Then the modulus of every
function of that extends f to M is at least dn, and there is an
extension that attains the bound.

Proof. Let & be the class of all continuous mappings of N
into S*"1 that are homotopic to /. Condition (1) of Proposition 2
follows by applying Lemma 3 to /; and condition (2) is a consequence
of the homotopy extension property for subpolyhedra (see e.g.,
Spanier (1966) p. 118). For the attainment of the bound, inscribe
a regular ^-simplex [p0, •• , p j in Sn~\ extend / to a continuous
function h defined on an open neighborhood W of N in M, and
define g on I by: on N, let g = /; for x e W — N, g{x) is (one of)
the pt closest to h(x); for xeM — W, g{x) = pQ. Since the image of
the open set M — N under g is a subset of {p0, , pn}, the modulus
at any x e M — N is at most dn. At any x e N, the modulus is no
greater, as can be seen by an argument similar to the conclusion
of the proof of Scholium 1. •
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