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IDENTIFICATION SPACES AND UNIQUE UNIFORMITY

RICHARD H. WARREN

Properties of TVidentification spaces and uniform iden-
tification spaces are used to obtain necessary and sufficient
conditions for topological spaces to have a unique compatible
uniformity.

1* Introduction* The major results in this paper are five char-
acterizations of completely regular spaces with a unique compatible
uniformity. All prior results of this type assume the space to be
Tyehonoff, i.e., completely regular and Hausdorff. In our approach
we introduce a uniform identification space and develop some of its
properties in order to demonstrate a 1 — 1 correspondence between
the family of compatible uniformities on a completely regular space
and the family of compatible uniformities on its T0-identification
space.

Section 2 contains background on T0-identification spaces and
several new features of such spaces which we use later in the paper.
In § 3 we present the main aspects of uniform identification spaces
which lead to the order isomorphism in Theorem 3.5. In § 4, which
contains the major theorem of the paper, we sketch the development
of five characterizations of Tychonoff spaces with a unique compatible
uniformity and then prove that each of these characterizations has
a parallel for completely regular spaces.

2* Γ0-identification spaces* In 1936 M. H. Stone proved that
every topological space can be made into a Γ0-space by identifying
points with the same closure. A complete statement of Stone's work,
with additional properties not included in Stone's paper, can be found
in Theorem 14.2 in [8]. Briefly, given a topological space (X, ^~),
define x ~ y iff {x} — {y}. Then ~ is an equivalence relation on X
and the quotient space (Y, 3O is a Γ0-space. For xeX, let Dx be
the member of Y containing x. Then f: X—> Y by f(χ) = Dx is a
continuous, open and closed map onto Y.

Throughout this section (Y, JΓ) will be the Γ0-identification space
of (X, ^~)9 and Dx and / will be as designated in the two preceding
sentences.

A topological space (X, j?') is said to be C-embedded (in the
terminology of [3], normally embedded) in the space (Z, ^ ) if every
real-valued, continuous function on X has a continuous extension to
Z, possibly through a homeomorphism of (X, S~) onto a subspace
of (Z, ^ ) . Such a homeomorphism is called an embedding of (X, άs~)
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into (Z, ^U). Also, (X, J7~) is said to be densely embedded in (Z, ^ 0
if there is an embedding / of (X, J H into (Z, <%f) such that /(X)
is dense in Z.

THEOREM 2.1. (Y, T*) is densely embedded in (X, ^~).

Proof. Let W be a subset of X containing exactly one element
of each equivalence class. Let g: W -^ Y by g(w) = Dw. Clearly g
is 1 — 1 and onto. To verify that g is continuous, let GeT*. Then
f-\G) e J^~ and thus f~\G) Π W is open in W. Since f~\G) =
{J{Dx:DxeG}, it follows that g~\G) = f~\G) n W. To verify that
gr1 is continuous, note that if He^~, then H = U {A » € iϊ}. Hence

j
To see t h a t TΓ = X, let x e X. Then xeDw for some w 6 W.

Thus w is in every neighborhood of x. Therefore x e W.

COROLLARY 2.1. (Y, 3^) is C-embedded in (X, ^ " ) .

Proof. Let βr be t h e homeomorphism in t h e previous proof.

Given a real-valued, continuous map h on (Y, 3O, then h<>f is a

real-valued, continuous map on (X, ^ ~ ) which extends hog.

LEMMA 2.1. If g: X-^ S is continuous and (S, '&) is a TQ-space,
then g(x) = g(y) whenever yeDx.

Proof. Suppose y e Dx and g(x) Φ g(y). Since (S, ^ ) is To, there
is G e ^ such that Gf){g(x), g(y)} is a singleton. Thus the open set
g~\G) contains exactly one of the points x, y which contradicts the
equivalence relation determining Dx.

THEOREM 2.2. (Y, T) has property (*) iff (X, JΓ) does.

(*) For every real-valued, continuous function g defined on the
space, g~X{r: r ^ 1}) or g~\{r: r ^ 0}) is compact.

Proof. Let g be a real-valued, continuous function defined on
X. As a result of Lemma 2.1, we may define a real-valued function
h on Yby h(Dx) — g{x) for each Dx e Y. Hence g = h°f. It is easy
to show that h is continuous and if C is a compact subset of Y,
then f~λ(C) is a compact subset of X. Therefore, if h has property
(*), then g does also.

The proof of the converse is straightforward.



IDENTIFICATION SPACES AND UNIQUE UNIFORMITY 485

THEOREM 2.3. If X is a set, Y is a partition of X and T is
a Tropology on Y, then there is a unique topology ά?~ on X such
that (Y, *jΓ) is the ΊΊ^identification space of (X,

Proof. Since Y is a collection of disjoint subsets of X which
covers X, for each xeX there is exactly one Dx e Y such that xeDx.
Let /: X-> Y by fix) = Dx. By Theorem 10.10 in [8] the family
J7~= {f~\B)\ BeT*} is the weakest topology on X such that / is
continuous. We shall show that (Y, °F) is the TV-identification of

Let x,yeX. If y eDx and x e f~\B) where Be T] then since
f~\B) = U{A: DxeB), it follows that yef~\B)9 i.e., each member
of JD,. is in every open subset of X which contains x. On the other
hand, if y $ Dx, then DynDx= 0 . Since (Y, 3O is Γo, there exists
BeT* which contains Dy or Dx9 but not both. Hence f~ι(B) contains
x or y, but not both. Therefore the members of Y are exactly the
classes which are determined by the equivalence relation on X where
x F& y iff {x} = {y}.

Let ^ be the quotient topology on Y determined by /. Since
'& is the strongest topology on Y such that / is continuous, 5^c ̂ .
If G e ̂ , then f~\G) e j/^and there is B 6 J^such that /"'(B) - /"X(G).
Since / is onto, B = f(f-\B)) - RfΛG)) - G.

To see that J^" is unique, let ^ be a topology on X such that
(Y, 3O is the Γ0-identification of (X, S*). Since S~ is the weakest
topology on X such that / is continuous, ^a£f. Suppose S e 6^\SΓ.
Since / is an open map, f(S) 6 7: So f"\f(S)) e J7~ and there is
t e f~\f(S))\S. Now ί G A for some seS. Thus s is a member of
a set in £/* not containing t, which contradicts the equivalence
relation ?&.

THEOREM 2.4. Let (X, ̂ ) be a subspace of (£, Sf) whose To-
identification space is (T, %f). If (Y, Jr) is C-embedded in (T, (2/),
then (X, J^") is C-embedded in (S,

Proof. Let # be a continuous, real-valued function on X. As
a result of Lemma 2.1, we may define a real-valued function h on Y
by h(Dx) = #(#) for each Zλ,. 6 Y. Hence ^ = h o/and Λ is continuous.
By assumption h has a continuous extension & to T. Let β: S —> T
be the quotient map φ ) = [s] where [s] is the equivalence class
containing s. Then k ° e is a continuous extension of # to S.

THEOREM 2.5. Let (Y, 3̂ ) 6e α dense subspace of the T0-space
(Γ, ' ^ ) . Tfeê  ίfeere is α topological space (S, *5̂ ) swcfc ίfeαί (Γ,
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is the T^identification of (S, &*) and (X, ^) is densely embedded
in (S, £f). Furthermore, if (X, ^~) is C-embedded in (S, S^)9 then
(Γ, T) is C-embedded in (T,

Proof, Let S = X{J(T\Y), so without loss of generality we
may assume T n X = 0 . For each open subset A of T form A* =
U {Dx: Dx e A D Y} U A\Y. Then {A*: Ae %S} is a topology on S. As
usual, define x^y for x, yeS iff {ϊp" = {t/}s. Note that when as and
y are distinct points in S, then x ^ y iff x} y eX and x ~ y in X.
Thus ^ determines the members of ϊ7, with the identification of {t}
with £ whenever ί e T \ 7 . It is easy to show that the quotient
topology on T agrees with c^f and that (X, ^) is a dense subspace
of (S, SS).

Let h be a real-valued, continuous function on Y. Then h°f
is a real-valued, continuous function on X, and thus has a continuous
extension i to S. As a result of Lemma 2.1, we may define a real-
valued function fc on Γ by &(A) = i(«) f o r ΰ . e Γ a n d fc(ί) = i(t) for
teT\Y. Let e:S-^T be the quotient map. Then j = koe, k is
continuous and fc|F = h.

Let C*(X) be the set of bounded, real-valued, continuous func-
tions on X and let C*(X) have the topology of uniform convergence.
By A(X) we denote the subset of C*(X) consisting of those func-
tions which are constant on the complement of some compact set in

(X,

THEOREM 2.6. Let (Γ, T) be the Ί^-identification space o/(X, ^ ~ ) .
Then A(X) is dense in C*(X) iff A(Y) is dense in C*(Y).

Proof (<=) Let g e C*(X) and ε > 0. As a result of Lemma
2.1, we may define a real-valued function h on Y by h{Dz) = g(x)
for each Dx e F. Then £ = h ° / and feeC*( Γ) . Since A( Γ) is dense
in C*(F), there is a continuous function fc which is constant on the
complement of a compact set C in Y and satisfies | k(Dx) — h(Dx) \ < ε
for each Dxe Y. Then f~\C) is compact in X and kof is constant
on the complement of f~\C). Also | k{f{x)) — g{x) \ < ε for each x 6 X.

(=>) Let / ιeC*(Γ) and ε > 0. Then hofeC*(X). Since A(X)
is dense in C*(X), there is a continuous function g which is constant
on the complement of a compact set K in X and satisfies | h(f(x)) —
<7(x)| < ε for each xeX. As a result of Lemma 2.1, we may define
a real-valued function k on Ybγ k{Dx) = g(x) for each Dx e Y. Then
g = Icof and k is constant on the complement of the compact set
f(K) in Y. Also \h(Dx) - fc(Z>.)| < ε for each DxeX.
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3* Uniform identification spaces* For the definitions of a uni-
form space and a proximity space, see [8]. Recall that if U, Fez
X x X, t h e n t / Ό V = {{x, y): (x, t ) e U a n d (t, y ) e V f o r s o m e t} a n d
U(x) = {#: (x, y) e U}. If (X, Sίf) is a uniform space and Z is a set
with fcl-^Za map onto Z, then the quotient uniformity induced
on Z by h is {A a Z x Z: there is i ί e < ^ such that {x, y)eH implies
(h(x), A(l/)) e A}, which is the largest uniformity on Z such that h is
uniformly continuous, see [9, p. 255]. It is easily verified that the
quotient uniformity is {g(H): Heβέ?} where g(H) — {(h(a), hφ)):
(a,b)eH).

Let (X, <%?) be a uniform space. For x, y e X, define x ~ y iff
?/ e fΓ(fl5) for each H e ̂ ^ Then ^ is an equivalence relation on X.
Throughout this section Y is the set of equivalence classes, Dx is
the member of Y containing x, f: X -+ Y by f(x) = Dx and SΓ is
the quotient uniformity on Y induced by /. Also, (Y, J5fΓ) is called
the uniform identification space of (X,

LEMMA 3.1. (Y, 3Γ) is a separated uniform space.

Proof Suppose Dx and Dy are distinct equivalence classes. Then
there exists HzSίf such that H(x)f]H(y) = 0 . Since Dy(zH{y),
H(x)Π A, = 0 . Choose F 6 ^ T such that FoFczH. If there exists
α 6 Zλ, and beDy such that (α, δ) e F, then (α?, α) e F, since xeDxa
F(x). Hence (a?, b) eF° F, and thus 6 6iϊ(#) which is a contradiction.
We conclude that (Dx x Dy)f)F = 0. Therefore (Dx, Dy) ί #(F) G

COROLLARY 3.1. If (X, £ίf) is a uniform space, then Γ\{H: He
= \J{Dm x Dx: xeX).

Proof. Using F in the proof of Lemma 3.1, it follows that
Π {H: H e Sίf) c\]{Ώxx Dx: xeX). The other containment is a result
of DxczH(x) for each

THEOREM 3.1. Let (X, Sίf) be a uniform space, let δ be the
proximity on X induced by £%f and let a be the proximity on Y
induced by 5ίΓ. Then the following diagram commutes.

(X, Sίf) > (Y,

^roximity_^roximity_ >

9 identification y

Proof. In (X, 3), the equivalence classes are determined by the
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relation x & y iff xδy [9, p. 276]. Since xδy iff yeH(x) for each
H G Sίf iff x ~ y, it follows that the same members are determined
for Y by either path. Since the proximity induced by a quotient
uniformity is the quotient proximity of the induced proximity [9,
p. 276], the diagram commutes.

COROLLARY 3.2. In addition, let ̂ ~ be the topology on X induced
by δ and let Ύ* be the topology on Y induced by a. Then the fol-
lowing diagram commutes.

(X, o)
proximity

identification

identification

Proof. The topology induced by a uniformity is the induced
topology of the induced proximity [8, Theorem 21.15]. Starting with
(X, δ), it is known that the paths are equivalent [9, p. 276],

LEMMA 3.2. Let (X, 3(f) be a uniform space and let
Then there isE^^f such that EaH and E = U{DxxDy: (x, y)eE}.

Proof. Find symmetric G eSίf such that GoGaH. Note that
GczGoG. Then find F e ^ T such that FoFaG. If (r, s) $ H, then
iϊ(r)n{s}= 0 . If there exists £ e G(r) Π G(β), then (r, ί) and (s, ί)
are in G. Since G is symmetric, (r, s)eG o G, which is a contradic-
tion. Thus (τ(r)nCr(s) = 0 . As in the proof of Lemma 3.1 we can
conclude that (Dr x D.)ΓιF = 0 . Set # = U{Dβ x -D/ (α, 1/)€JP}.
Since (x, y)eDx x D ,̂ if follows that FaE and hence, Ee£ί?. If
(α, 6) e £7, then (Da x A) Π F Φ 0 , and from the above work (α, 6) e ίί.
Clearly, .E = U{DX x Dy: (a?, i/) e i?}.

THEOREM 3.2. (F, J ^ ) is uniformly isomorphic to a uniform
subspace of {X, £έf).

Proof. Let S be a subset of X consisting of exactly one point
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from each equivalence class in Y. The relative uniformity on S is
{HΓ\{Sx S): He£ί?}. Consider the map d: S -> Y by d(s) = Ds.
Clearly, cί is 1 — 1 and onto. To verify that d is uniformly con-
tinuous, let Ke^Γ. Then there is ΉeSif such that f(H) = K. If
(x, y) eHf)(Sx S), then (d(x), d{y)) = {f{x\ f(y)) e f(H). To verify
that d'1 is uniformly continuous, let Έle^f and Consider Ef)(S x S)
where E is the entourage in 3ίf guaranteed by Lemma 3.2. If
(Dx,Dy)ef(E) which is in 3Γ, then (d'\Da)f d~\Dy))e f~\f{E))r\
(Sx S) = Ef](S x S)(zHn(S x S).

THEOREM 3.3. Let (F, J3Γ) be the uniform identification space
of (X, £έf). Then Jf= {g'\K): Ke^έΓ} is a base for ^ where
g-\K) = {(α, b)eXx X: (/(α), /(6)) e K}.

Proof. By Theorem 20.21 in [8], ά?" is a subbase for the weakest
uniformity & on X such that / is uniformly continuous. Thus
5 ^ c ^ To verify that ^ is a base, note that g~\K) = U{DxxDy:
(Dx, Dy) G K) and DxxDy = Drx Ds or (Dx x Dy) n (A- x A) = 0 , from
which it follows that g~\K) f] g-\L) = g-\KΠL). lΐ He^, then
let Έe^f be the entourage guaranteed by Lemma 3.2. Therefore
E = g~\g(E)) and g{E) e J T Hence J T c gf.

THEOREM 3.4. Lβί X be a set, let Y be a partition of X and let
be a separated uniformity on Y. Then there is a uniformity
on X such that (Y, SίΓ) is the uniform identification space of

(X, ser).

Proof. Since 7 is a collection of disjoint subsets of X which
covers X, for each xeX there is exactly one member Dx of Ysuch
that x 6 A- Let /: X-> Y by f(x) = Dx. By Theorem 20.21 in [8],
the family ^— {g~\K)\ Ke^Γ] is a subbase for the weakest uni-
formity <%f on X such that / is uniformly continuous. Here g~λ{K) =
{(α, b)eXx X: (/(α), /(&)) elf}. We shall show that (Y, J Γ ) is the
uniform identification space of (X, ^f).

If i/eZ), and KzST, then (Dx,Dx)eK and hence yeg-\K)(x).
If y£ DXf then since ^%^ is separated, there is some Ko e St~ such
that (A, A) £ ̂ o Thus ?/ ί flr~1(jBΓ0)(α5). We conclude that the members
of Y are exactly the classes which are determined by the equivalence
relation on X where x ~ y iff yeH(x) for each H6£%f.

Let Sf be the quotient uniformity on Y induced by /. Since
/ is uniformly continuous with respect to SίΓ and ^ 3ίΓ c £?. On
the other hand, if L e ^ , then there is He£ί? such that h(H) = L,
where h(H) = {(/(r), /(«)): (r, s)eίί} . Since ^ is a base for < ^
there is f e . f such that FaH. Then there is ITeJ3T such that
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g~\K) = F. Thus KdL and therefore L e X

THEOREM 3.5. Let (X, ̂ ~) be a topological space and let (Y, T)
be its TQ-identification space. Let Θ be the family of all uniformities
on X compatible with ά?~ and let Ω be the family of all unifor-
mities on Y compatible with Yl Then Θ and Ω are order isomorphic.

Proof. By Corollary 3.2 we may define h: Θ -> Ω by b(3e?) is
the identification uniformity of £έf. As a result of Theorem 3.3, h
is 1 — 1. By Theorem 3.4 in conjunction with Theorem 2.3 and
Corollary 3.2, h is onto. Since h(£ίf) is a quotient uniformity, it
follows that h preserves order. Noting how hr\J%Γ) is formed in
the proof of Theorem 3.4 allows us to conclude that h~λ preserves
order.

It is noted that Theorem 3.5 can also be proved from Theorem
2.1 in [7].

4* Unique compatible uniformity and proximity* Early in
the study of uniform spaces it was observed that a compact, com-
pletely regular topological space admits exactly one compatible uni-
formity [8, Theorem 20.38]. Using normally separated sets, Doss
[2] characterized Tychonoff spaces which have exactly one compatible
uniformity. Later Gal [3] gave two additional characterizations of
Tychonoff spaces with this phenomenon. Newns [6] has given a
characterization based on the structure of the uniformity. Doss'
work is extended to completely regular spaces in Theorem 4.1(d),
GaΓs work in Theorem 4.1(e) and (f), and Newns' work in Theorem

In Corollary 2.2 of [4] it is shown that a Tychonoff space has
a unique compatible proximity iff it has a unique compatible uni-
formity. Note that [4] requires a Hausdorff assumption since Corol-
lary 2.2 is based upon the Stone-Cech and Smirnov compactifications.
This result is also in [9, p. 277], We prove in the next theorem
that this result is valid without a Hausdorff assumption.

THEOREM 4.1. Let (X, ̂ 7") be a completely regular topological
space. Then the following are equivalent:

(a) There is a unique uniformity on X compatible with ^~.
(b) There is a unique totally bounded uniformity on X com-

patible with J7~.
(c) There is a unique proximity on X compatible with J7~.
(d) (X, ̂ ) has the property that for every real-valued, con-

tinuous function f defined on X, {x: f{x) ^ 1} or {x: f(x) ^ 0} is
compact.
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(e) (X, ^) is C-embedded in every completely regular space
containing (X, Jf~) as a dense subspace.

(f) A(X) is dense in C*(X).

Proof. Let (Y, T) be the T0-identification space of (X, J H
(b) <=> (c). The implications follow from Theorem 21.28 in [8].
(a) <=> (c). Since J^~ and Y* are lattice isomorphic, it follows

from [1] that the family of proximities on X compatible with ^~
is isomorphic to the family of proximities on Y compatible with T.
Hence (b) is equivalent to the existence of a unique proximity on Y
compatible with Tl From [4, Corollary 2.2] this is equivalent to
the existence of a unique uniformity on Y compatible with T. By
Theorem 3.5 this last statement is equivalent to (a).

(a) <=> (d). Couple Theorems 3.5 and 2.2 with Doss' Theorem in

[2].
(a) *=> (e). Let X be a dense subspace of the completely regular

space S whose TV-identification space is T. Denote the equivalence
classes of S by [s] where s e S. If s e X, then we identify the equi-
valence class Ds of X with [s] of S. Thus Y is densely embedded
in T. It follows from Theorem 3.5 that (a) is equivalent to Y having
a unique uniformity, which by GaΓs Theorem (v) in [3] implies that
Y is C-embedded in T, and by Theorem 2.4 X is C-embedded in S.
On the other hand, (d) implies by Theorem 2.5 that Y is C-embedded
in every Tychonoff space containing F a s a dense subspace, which
by GaΓs Theorem (v) in [3], is equivalent to Y having a unique
uniformity.

(a) <=> (f). Couple Theorems 3.5 and 2.6 with GaΓs Theorem (iv)
in [3].

Each of the following three statements is equivalent to Theorem
4.1(d). In the terminology of [2], of any two normally separable
sets in X, at least one is compact. In the terminology of [5], if A
and B are functionally distinguishable subsets of X, then A or B
is compact. In the terminology of [9], of any two disjoint zero-sets
in X, at least one is compact.

Comparing Theorem 4.1(d) with Theorem 7.20 in [5], it is noted
that locally compact can be deleted from the statement of Theorem
7.20.
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