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FINITE SIGNED MEASURES ON FUNCTION SPACES

A. J. VAN HAAGEN

Some results for probability measures on function spaces
are extended to finite signed measures (FSM's). In particular
FSM's on the space of continuous functions and right-con-
tinuous functions with left-hand limits are patched together
by a procedure of Stroock and Varadhan. Given an in-
creasing sequence of stopping times the procedure is carried
out repeatedly. A sequence of transition functions and, an
extension result for the linear maps associated with these
transition functions are obtained.

Introduction* In recent years some papers have appeared
related to signed measures on function spaces (see [3] and [4]).
This paper extends certain results for probability measures on
function spaces to finite signed measures (FSM's) on such spaces. A
more detailed discussion can be found in [8].

In part I we introduce conditional FSM's and consider the ex-
istence of a regular conditional distribution (ROD) of an FSM on a
standard measurable space mimicking Chapter V of [5]. Further,
the Jordan decomposition of an RCD is investigated. We then con-
sider a sequence of transition functions and associate linear maps
between Banach spaces of FSM's with these transition functions.
An extension result for the linear maps is obtained.

In part II FSM's on Ω = C([0, oo); S) and Ω = D([0, <»); S) with
S a separable metric space are patched together by the procedure
used in [6] for probability measures on C([0, oo); Ed). In fact, if
^* is the σ-field on Ω generated by the coordinate projections
{Xu t >̂ s} and τ an s-stopping time with respect to the (/-fields
^ft

8 = σ{Xu, s <: u<^t}, then an FSM on ^/έ* is patched together
with a family {μω}ωeΩ of FSM's where μω has domain ^ Γ ( ω ) if
τ(α>) < <*>.

If S is a complete separable metric space, (Ω, ̂ f8) and (Ω, ̂ %f)
are standard measurable spaces. In this case any FSM on (Ω, ̂ /έs)
with an RCD given ^/έ* can be thought of as obtained by patching.
If τ0, τlf is an increasing sequence of s-stopping times ^C*,
^fT[, is the corresponding sequence of ^-fields and, given families
of FSM's {μnω)ω on ^ Γ * ( ω ) for each n with the right properties the
patching procedure can be applied repeatedly. We have in fact an
associated sequence of transition functions and the results of part I
apply.

Basic facts on FSM's are taken from [2].
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Part I. RCD's of FSM's on Standard Measurable Spaces

I* Conditional FSM's* Let (42, &] μ) be an PSM space and Σ
a sub σ-field of ^ 7 If μΣ is the restriction of μ to Σ, then a μΣ-
null set is not necessarily a μ-null set. However we can prove the
following.

THEOREM 1.1. If each μΣ-null set of Ω is also a μ-null set, and
if B is any ^-measurable set, then there exists a Σ-measurable real
function μiβ\Σ) such that for all AeΣ

Any two such functions for given B must coincide μ-a.e. μ(B\Σ)
is called the conditional FSM of B given Σ.

Proof. For S e ^ w e define an FSM λ on Σ by λ(A) = μ(A Γί B)
for all AeΣ. As λ is absolutely continuous with respect to μΣ it
follows by the Radon-Nikodym theorem that there exists a im-
measurable real function / on Ω such that

μ(A ί i 5 ) - ( fdμΣ for all A .
JA

We can take / to be μ(B\Σ).

THEOREM 1.2. With the assumptions on μ of Theorem 1.1 let
{JBJΓ be a sequence of disjoint ^-measurable sets. Then

Proof. Let μ = μ+ — μ~ be the Jordan decomposition of μ and
let \μΣ\ be the total variation of μΣ. If Bejf, there exist im-
measurable real functions h1{B\Σ) ^ 0 and hi{B\Σ) ^ 0 such that for
all AeΣ

If we put h(B\Σ) = hx(B\Σ) - h2(B\Σ), then \μ(B\Σ)\ = \h(B\Σ)\ μ-
a.e. It now follows easily that for all A e Σ

\ Σ μ{BΛ I Σ)dμΣ = ί ^ ( U Ba \ Σ)dμΣ .
JA » JA n
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REMARK 1.3. Note that for all ΰ e ^ \μ(B\Σ)\ £ h,(Ω\Σ) +
h2(Ω\Σ) except on a μ-null set N (which depends on B in general).

DEFINITION 1.4. Let (Ω, ̂  μ) be an FSM space, Σ a sub σ-field
of ^ and R the set of real numbers. The function Q: Ω x &~ -> R
is called an RCD of μ given J? if it has the properties:

( i ) For each B e ^ ω -> Q(ω, B) is a ^-measurable map from
Ω into R.

(ii) For each ωeΩ, Q(ω, •) is an FSM on J ^ with Q(ω, Ω) = 1.
(iii) For all A e £ and

μ(A Γ)B)=\ Q(ω, B)dμΣ(ω) .
JA

In §3 we give conditions under which Q exists.

LEMMA 1.5. Let {Ω9^9μ) be a conntably generated FSM space
and Σ a sub σ-field of J^. If Qx and Q2 are RCD's of μ given Σ,
then Qi(ft), B) = Q2{cof B) for all B e ά^ except for ω in a μ-null set
of Σ which is independent of B.

Proof. The proof is the same as for regular conditional proba-
bility distributions (RCPD's).

2* Extension theorems for FSM's* In this section we generalize
theorems for probability measures appearing in Chapter V of [5] to
theorems on FSM's.

DEFINITION 2.1. Let {^}Γ be an increasing family of σ-fields
on the space X. The family of FSM's {μn}? is said to be consistent
if μn is defined on ^ and for all A e &n and m^>n, μn(A) = μm(A).
The family is said to be uniformly bounded if sup% | μn \ (X) < oo.

We will need the following simple lemma of which we omit the
proof.

LEMMA 2.2. // {μn}T is a uniformly bounded consistent family
of FSM's on the σ-fields {&n}?, then there exists a unique finitely
additive set function μ on the field \Jn &n with the properties:

( i ) μ(A) = μn(A) for all A e ^ and n = 1, 2,
(ii) Given ε > 0, there exists a positive integer n0 such that

\μ\(A) - \μn\(A) < ε for all Ae^n if n^ n0.

THEOREM 2.3 (analogue of Theorem 4.1 on p. 141 of [5]). Let
(X, &) be a measurable space and for each n = 1, 2, &n is a
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sub σ-field of & such that

( i ) &i £ ^ ί £ * * y and Un <^n generates &.
(ii) (X, &n) is a standard measurable space for n = 1, 2,
Then, in order that every uniformly bounded consistent sequence

of FSM's on &lf &2, be extendable to an FSM on έ%, it is
necessary and sufficient that ΠΓ An Φ 0 for each decreasing sequence
{An}? of subsets of X such that An is an atom of &n for all n. If
this is the case, (X, &) is also standard, and if {μn}? is such a
sequence of FSM's, the extension is unique. Moreover, \μ\(X) =

Proof. The necessity is proved in [5]. In order to prove the
sufficiency we first prove the analogue for FSM's of Theorem 3.1 on
p. 138 of [5], We use the notation of [5] and make the further
assumption that sup% | μn \ (Zn) < oo.

Let μ be the finitely additive bounded set function on
analogous in the obvious way to μ on p. 139 of [5]. We will show
that if {AJΓ is a decreasing sequence in &~ and if \μ\(An) ^ δ > 0
for all n and some δ > 0, then Γ\nAnΦ0 Without loss of
generality we may assume An e 3rn for n = 1, 2, . For n ~ 1, 2,
and ί = 0, 1, we can write An = φ~χx{β%t^ where BnΛ e ^ + t . For
each n and I there exists a compact set KlΛ Q BnΛ in ^ w + ί such that
\μ*+ι\(B%tl - Kid ^ δβ\ Put Kntί = fc\x{Klx). By Theorem 2.6 on
p. 136 of [5], Z is compact and φn+ι is continuous. Hence, KnΛ is
compact. Moreover, KnΛ £ An for I = 0, 1, and

( * ) I μsn+11 (An - KnΛ) rg δj^ for all n and I .

Now {μ&j}? is a uniformly bounded consistent family of FSM's. By
Lemma 2.2 there exists for each n an I(w) > 0 such that \μ\(An —
£ - KnMn)) < δl^\ Together with (*) we obtain

Put Kn = Γ\7=i Kj,us) for w = 1, 2, . As in [5] it follows that
f\n An Φ 0 . Thus μ is countably additive on ^ T Therefore μ has
a unique extension to an FSM on 3ϊ, which we also denote by μ,
and \μ\(Z) = suvn\μn\(Zn).

We can now prove the analogue for FSM's of Theorem 3.2 on
p. 139 of [5]. This proof and the proof of the theorem at hand go
through in the same way as in [5]. For details see [8].

The next theorem is Kolmogorov's extension theorem for FSM's.
Its proof is similar to Parthasarathy's proof for probability measures.
With the notation of Theorem 5.1 on p. 144 of [5] we have the
following.
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THEOREM 2.4. Let (Xa, &a), a el, be standard separable measur-
able spaces. If {μF: F £ /, F finite) is a uniformly bounded con-
sistent family of FSM's, then there exists a unique FSM μ on &1

such that μF(A) = μ(πγF(A)) for all A e &F and all finite F £ /.
Moreover, \ μ \ (X1) = supF g j F finiu \ μF \ (XF).

3* The existence of an RCD of an FSM.

THEOREM 3.1 (analogue of Theorem 7.1 on p. 145 of [5]). Let
(X, έ%?) be a standard measurable space and Σ a sub d-field of έ@.
Let μ be an FSM on <5@. The condition that a μΣ-null set of X is
a μ-null set is necessary and sufficient for the existence of an RCD
of μ given Σ.

Proof. The necessity follows immediately from the definition.
If X is countable the sufficiency is a direct consequence of Theorems
1.1 and 1.2. Let X be uncountable. As is shown in [5] there exists
an increasing sequence of finite σ-fields {^n}T such that \Jn &n

generates & and any uniformly bounded consistent sequence of
FSM's on {^JΓ is extendable to an FSM on ^ .

Following [5] it is easy to see that for n — 1, 2, there exists
a function Qn: X x ^ -* R such that

( i ) for each A e έ%%, x —> Qn(x, A) is ^-measurable.
(ii) for each xeX, Qn(x, •) is an FSM on ^ and Qn(x, X) == 1.
(iii) for all AeΣ and Be^?n

μ(A ΠB)=\ Qn(x, B)dμΣ(x) .
JA

By the argument in [5] and Remark 1.3 there exists a μ-null set
NeΣ such that for each xeX — N, Qλ(x, •), Q2(x, •),••• is a uni-
formly bounded consistent sequence of FSM's on ^ , ^ , . Thus
for each x e X — N there exists a unique FSM, Qx, on έ% such that
QX(A) = Qn(x, A) for all A e &n and n = 1, 2, . Define the function
Q on X x & by

(QXB) if δ e ^ and ί c e X -

' } ~ IP(J5) if j B e ^ and xeN,

where P is any fixed probability measure on ^ . Now | Q \ (x, X) =
supw |Q»|(ίc, X) if xeX — N and, consequently, Remark 1.3 implies
that &-»|Q|(<B, X) is ^-integrable. That Q is an RCD of μ given
Σ follows now as in [5].

COROLLARY 3.2. The map %-*\Q\(x, B), from X into R, is μΣ-
integrable for all B e &.
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Proof. Let &* be a countable field generating έ%. Then
\Q\(x, B) = supΣ?=i \Q(χ, Bi)\t where the sup is taken over all finite
sequences {J3J of disjoint sets in a?" such that B^B. The assertion
now follows.

COROLLARY 3.3. If Σ is countably generated, then there exists a
μ-null set NeΣ such that for all AeΣ and Be&, Q(x, AB) —
h(x)Q(x,B) ifxeX-N.

Proof. Clearly, iί AeΣ and Be^, Q(x, AB) = IA(x)Q(x, B) ex-
cept for a; in a μ-null set in Σ depending on A and B. Now both
Σ and & are countably generated and the proof is completed by a
standard argument.

The next theorem concerns the Jordan decomposition of an
RCD.

THEOREM 3.4. Let (X, &) be a standard measurable space and
Σ a countably generated sub σ-field of &.

Let μ be an FSM on & with an RCD, Q, given Σ. If Q(x, •) =
Q+(x, •) — Q~(x, •) is the Jordan decomposition of Q(x, •)> then there
exists probability measures Px and P2 on & "With RCPD's Qx and Q2

given Σ, respectively, and there exists a μ-null set NeΣ such that
for all Be&

Q(x, B) = Q+(x, X)Q1(x, B) - Q-(x, X)Q2(x, B)

if xeX- N.

Proof From Q+(x, B) = l/2{|Q|(a?, B) + Q(x, B)} and Q~(x, B) =
l/2{|Q|(ά, B) - Q(x, B)} it follows that the maps x-^Q+(x, B) and
x ~> Q~(x, B) are ^-integrable for each B e &. There exists a μ-null
set Nx e Σ such that Q(x, AB) = IA(x)Q{x, B) for all A e Σ and B e &
if xeX- Nx. Hence, Q+(x, AB) = IA(x)Q+(x, B) and Q-(x, AB) =
IA(x)Q-(x, B) if x e X - Nx.

Let P be any probability measure on (X, &) such that μ and
P are absolutely continuous with respect to each other and let Qf

be an RCPD of P given Σ. We set Fx = {x: Q+{x, X) = 0} and F2 =
{x: Q-(χ, X) = 0} and define, for all

Qi(x, B) = Q+(χ, X)
if xeX-Fl9

Q'(x, B) if x 6



FINITE SIGNED MEASURES ON FUNCTION SPACES 473

if xeX - F29

Qt(x,B) = .Q-(x,X)

[ Q'(x, B) if x e F2 .

Let probability measures P, and P2 on έ% be defined by PX{B) —

ί Q^x, B)dP(x) and P2(B) = ί Q2(», B)dP(x). Clearly, Q, and Q2 are

RCPD's given Σ of Px and P2 respectively. Moreover, for all AeΣ
and

Π B) - ^ [Q+(*, JDQ^aj, B) - Q-(z,

The proof is complete.

4* Sequences of transition functions*

DEFINITION 4.1. Let {^}S° be an increasing sequence of σ-fields
on the space X. For all n > m ^ 0 let the functions fmtn: X x &n —> J?
have the properties:

( i ) For each ΰ e ^ , a;—>fm,n(x, B) is a .^-measurable map
from X into ϋ?.

(ii) For each xeX, fm,n(x, •) is an FSM on &n and

(iii) sup β e x |/m,»|(», X) < °°.
(iv) For all α̂  e X, A e ̂ m and 5 e ̂ , /.„(», AB)=IΛ(x)fM(x, B).

fm,n will be called a transition function from (X, &m) to (X, &n).
For /._1>Λ we write /,.

LEMMA 4.2. Lei {fn}T be a sequence of transition functions with
respect to the σ-fields {&Jft. For 0 ̂  n ^ m define the functions
fm>% on X x &n by fm,n(x, B) = IB(x). Then the functions fm,n: X x
&n —> R inductively defined for n > m >̂ 0 by

fm,n(x, B) = j /,(* ' , B)fmtn^x, dx')

are transition functions and if sup^ |/Λ|(ίc, X) = ccn, then
sup,,. \fm,n\(x, X) ^ αm + ] •• α». Moreover, for B e ̂ > and n > m ^ 0,
/m>Λ(α?, 5) = /mιΛ+1(a?, J5)

Proof. This is straight forward and will be omitted. We only
observe that for n > m ^ 0 and B 6 <^,

j Λ ( ^ B) = j [
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DEFINITION 4.3. For n = 0, 1, let Mn = M(X, &J be the set

of FSM's on (X, &n). With the usual operations and the total
variation norm Mn is a Banach space. Let {/JΓ be transition func-
tions as in Lemma 4.2. For n — 1,2—- define the linear maps

Ln:Mn_x-^Mn by Ln(μ)(B) = j/»(a?, B)dμ{x). Ln is injective and

|| Ln || £an. For n > m ^ 0 let Lm>n = LnLn_, Lm+1. Then

Lm,n(μ)(B) = j/w,»(a?f B)d/ι(a?) and | | L m , J | ^ α w + 1 - a%.

THEOREM 4.4. Let (X, &) be a measurable space and {^}Γ an in-
creasing sequence of sub σ-fields of & as in Theorem 2.3 and satisfy-
ing the extension condition. Let flf f2, be a sequence of transition
functions with respect to {&n}ϊ such that a = ΠΓ sup^ \fn\(x, X) < °°.
Then for each m — 0, 1, there exists a unique transition function
gm from (X, &m) to (X, &) such that gm(x, B) = fM(x, B) for all
xeX, Be&n and n > m. If M is the Banach space of FSM's on
(X, &), then for each m = 0, 1, there exists a unique injective
linear map Tm: Mm-> M with norm || Tm\\ ^ a such that Tm(μ)(B) =
Lm>n(μ)(B) for all μ 6 Mm9 B e &n and n > m. Moreover, gm is an
RCD of Tm(μ) given &m for all μ e Mm.

Proof. Obviously, fm,m+1(x, •), /*,*+*&, ), is a uniformly
bounded consistent sequence of FSM's on &m+lf &m+2, for each
α?. There exists a unique FSM gm(x, ) on έ% such that gm{xy B) =
fm,n(x, B) for all B e &n and n > m. Moreover, sup,, | gm | (x, X) ^ α,
and gm is a transition function from (X, ^ J J to (X,

For all μ e Afm, E 6 ^ and w > m ^ 0

( * ) Lmtn{μ){B) =

Thus {I/w,w(^)}?=m+i is a consistent sequence of FSM's such that
sup%>m |I/TO,w(μ)|(X) ^ α|/^|(X). There exists a unique FSM on &
which we will denote by Tm(μ) such that Tm(μ)(B) = Lm>n(μ)(B) for
all B e &n, n > m. It is easily seen that Tm: Mm -> M is a one-to-
one linear map with | | Γ m | | ^ «:. The last assertion follows from (*)
and the above.

COROLLARY 4.5. For n — 0, 1, let μn denote the restriction

to £%% of an element μ of M, then the map Pn: M—+M defined by

Pn(μ) = Tn(μn) is a continuous linear projection with null space

{μeM:μn = 0}. Moreover, Pn(μ)(B) = ( gn(x9 B)dμ{x) for all μeM

and B e &, and PnPm = Pn for all m ^ n.

Part II. FSM's on the function spaces C([0, <*>); S) and D([0, oo); S)
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In §§5 and 6 the patching Theorem on p. 367 of [6] is
generalized.

5* Extension of a τ-basic family of FSM's*

NOTATIONS AND DEFINITIONS 5.1, Let S be a metric space.
C([0, oo); S) will denote the space of all continuous functions on
[0, oo) with values in S. D([0, °°); S) denotes the space of all S-
valued functions on [0, oo) that are right-continuous and have left-
hand limits. The symbol Ω will be used both for C([0, oo); S) and
D([0, oo);S). For each t e [0, oo) we define the coordinate projection
Xt: Ω -> S by Xt(ω) = ω(t) for all ωeΩ. Instead of Xt we also
write X(t). The Borel σ-field of S will be denoted by &(S) or Sf.
I f 0 ^ α ^ ί ^ 6 < o o , then ^ ° = σ(Xt, a^t^b) is the σ-field on
Ω generated by the maps Xt, a <: t <̂  δ. If b = oo we write ^£a

for σ(Xtf t ^ α). <§f6

α(ίrα) is the semifield of subsets of Ω of the
form {XheΓl9 - , XtneΓn}, where *„ ••-,*» are points in [α, 6]
([α, oo)), pu •• ,JΓ» Borel sets in 5 and ^ any positive integer.
Clearly, ^ C = σ(<g%β) and ^ ^ α = σ ( ^ α ) . ^°° and ^^°° will stand
for {0, £}.

If s >̂ 0, then an s-Markov time or s-stopping time is a map
τ: Ω -> [s, oo] such that {r ^ ί} 6 ̂ £t

8 for all ί ^ s. ^ 8 = {A e ^£8\
i ί l { r ^ ί } G ^ C s for all t ^ s} is the σ-field of sets in .^Γ s prior to
τ. If ωeΩ, the atom of ^ ^ s containing ω is given by

_ |{α>'ei2: X(t, ft)') - X(ί, ft)), s ^ ί ^ r(α>)} if r(α>) < oo ,
ω ~ I {ft)' e Ω: X(t, ft>) = X(t, ft)), ί ^ s} if τ(ω) = oo .

DEFINITION 5.2. A family of FSM's {μω}ωeQ will be called a τ-
basic family if it has the following properties:

( i ) For each ωeΩ, μω is an FSM on ^ C Γ ( ω ) and the map

μω{A) if ft) e {τ ^ ί} and A e . ^ e ,

0 if ft) e {τ > τ} ,

from i2 into R, is .^'-measurable for all ί ^ s and all A e
(ii) For each ωeΩ — {τ < oo} the complement of

Ωω = {ft)' 6 Ω: X(τ(ω), ft)') = X{τ{ω), ft))}

is a //ω-null set of ^ T Γ ( ω ) .
(iii) For ωeΩ - 3 and A 6 ^ ° ° , ^ (A) = /^(ft)).

For each ωeΩ the set function μ'ω is defined on (Ω, ^8) as
follows:
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i) e Γt; i = I + 1, ••-,%})

if ω 6 {ί, <: τ < tt+i} and I = 0, 1, , n — 1 ,

if ω e {τ ^ U ,

with 0 ^ s = ί0 < ^ < < tn, n ^ l and Γo, , Γ Λ 6 ^

LEMMA 5.3. jFor eαcfc ωeΩ, μ'ω is a countably additive set
function on the semifield if8.

Proof. Fix ω0eΩ and put τ0 = r(α>0). Let C = {-3Γ(ί<) 6 Γ , ; i =
0, , w} with β = ί0 < ίi < < ίΛ be a set in 9fs.

Suppose r0 6 [ίIf ίI+1) where 0 ^ I ̂  w — 1. We can write C = AB
with A = {X(Q e Λ ; i = 0, -. -, 1} and B = {X(Q e Γ,; i = I + 1, , n).
Now A e ^ Γ

s

0 and B e ifTo+ where ^ T o + is the collection of sets of the
form {X(Uj) e Al9 , X(uJ 6 J J with r 0 < ux < < un, n^l and
Λ, , Δ% Borel sets of S. Clearly, ^ 0 ( C ) = IA{ω0)μωQ{B).

If r o 6 [ ^ , oo), C = AB with A = Ce<g=70 and B = β e ^ Γ 0 + . If
r0 = oo, C = A 5 with A = C e <g% 0 = ^ i - ^ 8 and B = Ω e <ifΓo+ = ^°°.

In both cases μ'ωQ(C) — I^(ft>0)^ω0(5). To show countable additivity
of μ'ωo on if8, let C = U?=i ^ A = AS e ^ s , where AA, A2β2,
are disjoint members of c^s with Afce<g70, J 5 Λ e ^ Γ 0 + , A e ^ and
B e ^ ^ . Clearly, ^ ( U * AkBh) = IA(ω0)μωQ(B).

In the case that a)0 e Ω — Ω countable additivity is obvious. Now
let ωoeΩ and note that \μωQ\(Ωc

0) = 0, where Ωo = ΩωQ. If ωoeAΓ)Ω,
&0(\Jk A]cBk) - μωo(B) and Σ * &0(AkBk) = Σ * lΛk(o)0)μωo(Bk). Let J o =
{&: u ) o e 4 J . Thus if J o Φ 0 , we have to show μωo(B) = ΣAkeJoμ<υo(Bk)
and if J o = 0 , ^β 0(S) = 0.

Let J o ^ 0 . We claim i20J3& Π i20̂ fe' = 0 iί k, k' e JQ and & = &'.
Suppose ωeΩ0Bkf] Ω0Bk>. There exists an ωλ such that

I ω0 on [s, τ0] ,

(ft) on [τ0, c>o) .

Now ft)0 6 AfcAfc/ and it follows that ωλ e Ω^AkAkBkBk', a contradiction.
By a similar kind of argument it is seen that Ω0B = \Jkejo@oBh- It
follows that μωo(B) = ΣAkBjoμωQ(Bk). The remainder of the proof is
along similar lines.

LEMMA 5.4. For each ωeΩ, μ'ω has a unique extension to an
FSM on ^ s . The total variation on Ω of this FSM does not exceed

Proof. F ix ωoeΩ and p u t τ0 = τ(a>0). μ'ω has a unique countably
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additive extension to the field S/r generated by (^s. Denoting this

by &0, we have

where the sup is taken over all finite sequences {Ek} of disjoint sets
in r^\ We can write Ek = AkBk with Ak e ̂ / 0 and Bk e ̂ Γ o + for
k = 1, . . . , n. It follows that \μ'ω^\(Ω) ^ \μ0J(Ω). Thus μ'ωQ has a
unique extension to an FSM on ^/fs.

REMARK 5.5. From now on μ'ω will denote the extension to ^/έs

and {μ'ω}(OeΩ will be called the family of FSM's associated with the
r-basic family {μω}ωeΩ. In Lemma 5.9 we will see that μ'ω,^τ{ω) — μω

and it follows that \μ'ω\(Ω) = \μω\{Ω).

LEMMA 5.6. The map ω^> μ'ω(B), from Ω into R, is . /?z

s-measura-
ble for all B e ^ \

Proof. It is easy to see that ω —> μ'ω(C) is t /^/-measurable for
each C e ^ s . By the monotone class theorem the proof is completed.

LEMMA 5.7. Let ωeΩ. Then for all Ae^//Z

s and ΰ e . / 8 ,

μ'ω{AB) = IA(ω)μ'ω{B) .

Proof. Fix ω0 e Ω and call τ(ω0) = τ0. If A = {X(u) e Γ} with s ^
u^τ0(s^u<oo it To=: oo) and Γe.9*, then μ'ωo(AB) = IA(ω0)μ'ωQ(B) for
all B 6 ̂ /fs. By induction it follows that μ'ωo(AB) = IA(ω,)μ'ω()(B) for
all A e ^ β and E e ^ / 8 . By a monotone class argument, μ'ωo(AB) =
lΛ(ωo)μr

ωo(B) for all A e , < and Be^^s.
Now let Ae ^'£ίs and B e ^/fs. Since both 4 π ( r = τ0} and

{τ = τ0} are in , /Sτ\ it is easily seen that μ'ωo(AB) = IA(Q)o)μ'ωo(B).

LEMMA 5.8. For eαcfe α)6fl, ^ ( β ) = μω(B) for all

Proof. The assertion is obvious if ω e Ω — Ω. Now let ω0 e β.
If 5 = {X(ίi) e Γt; i = 1, , m} with τ0 = τ(ωQ) < tλ < < tm and
A, •• , Γ m e ^ then μ'ωQ(B) = μωo(E) and thus the assertion is true
for all 5 e σ ( ί r r o + ) . But cr(^Γ 0 +) = t,^

Γ° and the lemma is proved.

6. The patching theorem* In this section S will be a separa-
ble metric space. The σ-field ,^s then is countably generated.

LEMMA 6.1. Let {μω}ωeΩ be a τ-basic family of FSM's and {μ'ω}ωeΩ

its associated family. For each ΰ e ^ / s , the map α)—> \μ'ω\(B), from
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Ω into R, is ^/fJ-measurable.

Proof. See proof of Corollary 3.2.

THEOREM 6.2 (Patching theorem). Let μ be an FSM on (Ω, ^/έτ

8)
and {μω}ωeΩ a τ-basic family of FSM's. Assume, moreover, that for
all ωeΩ, μω^0 and that the map (*)->\μω\(Ω)/μω(Ω), from Ω into
the extended real line, is μ-integrable. If {μ'ω}ωeΩ is the family of
FSM's associated with {μω}ωeΩ, then the intgral

with 5 e ^ f ' , defines an FSM μ' on ^£'s. μ' has the properties:
( i ) μ'(A) = μ(A) for all Ae.,/f/ i.e., μ — μ':, the restriction of

μ' to ^£τ\

(ii)

for all Ae^r/τ

8 and

Proof. If {Bk}T is any sequence of disjoint sets in ^C% then

By the dominated convergence theorem μr is countably additive and
thus an FSM on ^£8. By Lemma 5.7 μ\A) — μ(A) for A e ^£8 and
also (ii) follows.

THEOREM 6.3. Let μ and μf be as in Theorem 6.2. There exists
an RCD, Qr, of μr given ^/ί8. Qr is unique in the sense of Lemma
1.5. Furthermore, ίfN= {ωeΩ: μjβ) = 0}, then for all ωeΩ — N:

( i ) Q'(ω, B) = μω(B)/μω(Ω) for all B e ^T^>.
(ii) Q'(ω, Aω) = 1 and \ Qf \ (α>, Ae

ω) = 0, where Aω is the atom of
^y/ίτ

8 containing ω.

Proof. Define a function Q': Ω x ^S* -> R by

&*& if ω£N and
Q'(α>,£)= Λ W

P(B) if ft) e JV and

where P is a fixed but arbitrary probability measure on
Clearly, Q' is an RCD of μ' given _y/ίτ

8. As Λ€* is countably
generated the second assertion follows. By Lemma 5.8, Q'(co, B) —
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t*<λB)lμω(Ω) for all B e ^ τ { ω ) if ω $ N. The last part is an immediate
consequence of Lemma 5.7.

THEOREM 6.4. The FSM μ' defined in Theorem 6.2 in terms of
{μ<o}ωeΩ and μ is the only FSM on ^/t?s such that

( i ) μ\A) = μ(A) for all A e, /4%
(ii) μf has an RCD, Qf, given . /C%
(iii) Q'(α>, B) = μω(B)/μω(Ω) for all B e ^τ{u>) except for ω in a

μ'-null set of ^//J.

Proof. Suppose μ is another FSM on . ^ s satisfying (i), (ii) and
(iii), and let Q be its RCD given ^ τ \ Let B = {X(Q e Γ,; i = 0, , n)
with s = tQ < tx < - - < tn and Γo, , Γn e S< Put At = {ί, ^ τ < ίί+1}
for I - 0, 1, , n - 1 and An = {τ ^ ίn}. Clearly, A, 6 ̂  for I -
0,1, ••-,%. Now it follows from Lemmas 5.7 and 5.8, and (i) and
(iii) that

Thus μ' and /Z agree on c^s and hence on ^/Ss.

7* T h e Jordan decomposition of /^* Let {̂ ω}ωei2 be a r-basic
family of FSM's and let μ^ — μl — μ~ be the Jordan decomposition
of μω. For each ωeΩ, μt{Ωe

ω) = #;(.!%) = 0 and we define μ'ω, μf
and ^ ' on (Ω, ̂ s) as in 5.2 and extend to (i2, Λ€S). For ωeΩ — Ω
put ^L(A) = /C'(A)- - /̂ (fl)) and μz'{A) = 0 for all A e ̂  . We have
the following.

LEMMA 7.1. // μ'ω = μ'J~ — μf~ is the Jordan decomposition of
μr

ω, then for all ωeΩ and A e ̂ Y/s

and μ

Proof. There exists for each ω e Ω a set Dωe. ^ Γ ( ω ) such that
μt(A) = μω(AVιDω) and μ~(A) - -μω(AΠDZ) for all A e . / Γ ( f f l ) . Let
A 6 ̂ s . It is not hard to see that μ'ω(A Π Dω) = /^+'(A) and
i « : ( i l n f l : ) = - / ς f ( i i ) . It follows that &(A n Dω) = μi'(A) and
^ ( A Π D:) - -/C(A) for all A 6 . . ^ s . Hence ^ + - μV and ̂ - - ^ ' .

LEMMA 7.2. Lei {μ«}«eΰ &e the family of FSM's o^ (42, ^ T s ) αs^
sociated with {μω}ω6Q. If S is a separable metric space, then the
maps ω —> μ'ω

+(B) and ω -> μf~{B), from Ω into R, are ^y£*-measura-
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ble for each B e ^fs.

Proof, For all B e ^€s and ω e Ω we can write

μΛB) h\
Δ

Now apply Lemmas 5.6 and 6.1.

REMARK 7.3. It is now obvious that under the conditions of
Theorem 6.2 we can write for all i e χ s and

μ'ω{Ω)

8* The reverse of patching. From now on S will be a com-
plete separable metric space. Let 0 <£ a <^ h < °° and let C? =
C([a, &]; S) be the space of continuous functions on [α, δ] with values
in S. It is well known that Cl with the uniform metric is a com-
plete separable metric space and that the Borel σ-field on Cl coincides
with the σ-field generated by the coordinate projections, e.g., see
[9]. Let Dl — D([α, 6]; S) be the space of functions on [α, b] that
are right-continuous and have left-hand limits, with values in S. If
S = R, it is shown in [1] that Dl with the Skorohod topology is a
separable completely metrizable space. Its Borel σ-field coincides
with the α-field generated by the coordinate projections. If S is
any complete separable metric space the same can be shown, see
for instance [8]. That (£?, ̂ 0") is standard is then an easy applica-
tion of Theorem 2.3.

If τ is an s-Markov time as in 5.1, it is shown in [6] that
(β, ^C s) is standard in the case that Ω — C([0, oo]; R

d) (see also [7]).
Along similar lines it can be shown that (Ω, ̂ C s) is standard if
Ω = C([0, oo);S) or Ω = D ([0, oo); S) with S any complete separable
metric space. In fact ^/Sτ

s is generated by the collection of sets of
the form {X(t, Λτ)eΓlf , X(tn A τ) e Γn) with tlf , tn points in
[s, °°), Λ, , Γn e £f and n^l. Also Ω(τ) = {ω: X(t, ώ) =
X(t A τ(ω), ω) for all t ^ 0} is a set in ^€s (compare p. 395 of [6]).
If ΨT:Ω-+Ω is defined by Wτ(ω)(t) = ω(t A z(ω)) for all ωeΩ and
t S 0, then Ψ~\^s ΓΊ Ω(τ)) = ^€τ

s. For details see [8].
We have the following extension of Theorem 1.3.4 on p. 34 of

[7].

THEOREM 8.1. Let μ be an FSM on (Ω, ^fs). The condition
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that a μ^\-null set of Ω is a μ-null set, is necessary and sufficient
for the existence of an RCD of μ given ^ C s . If the condition is
satisfied there exists an RCD, Q, of μ given ^~ such that

Q(ω, AB) = IA{ω)Q{ω, B)

for all ωeΩ, 4 G ^ / / and

Proof. The first assertion follows from Theorem 3.1. Assume
the condition is satisfied and let Q' be an RCD of μ given ̂ ζ s .
By Corollary 3.3, there exists a μ-null set Ne^τ

s such that for all
i e ^ 8 and Be^t% Q\ω, AB) = IA(ω)Q'(ω, B) if ω$N. Define Q
on Ω x ^£s by

{Q'(ω, B) for B e ̂ €s and ω $ N ,
O(ω B) = i

U(^(ω)) for 5 e ^ r and ωeN.

Clearly, Q has the required properties.

THEOREM 8.2. Let μr be an FSM on (Ω, ^fs) and let μ be its

restriction to ^C s- Assume that a μ-null set of Ω is also a μf-
null set. Then there exists a τ-basic family of FSM's {μω}ωeΩ with
the properties (i) μω(Ω) = 1 for all ωeΩ, (ii) the map ω —> |μω\(Ω)
is μ-integrable and (iii) μf coincides with the FSM obtained by
patching μ and {μω}ωeΩ together as in Theorem 6.2.

Proof. Let Q' be an RCD of μ' given ^T/ such that Q'(ω, AB) =
IA(ω)Q'(ω, B) for all ωeΩ, Ae^fΓ

s and Be^£\ Define the family
of FSM's {μω}ωeΩ as follows: For each ωeΩ, μω(A) = Q\ω, A) for
all A e ^ " 1 . {μω}ωzΩ is a τ-basic family. Let {μ'ω}ωeΩ be the family
of associated FSM's on (Ω, ̂ /ίs). It is easily seen that μ'JJB) =
Q\ω,B) for all ωeΩ and Be^£s. It follows that {μω}ωeΩ has
properties (ii) and (iii).

9. Patching countably many times* Let τ0 ^ τι ^ τ2 ̂  be
a sequence of s-Markov times, from Ω into [s, oo], with respect to
the family of or-fields {^ft% t ^ s}. For each n = 0, 1, 2, let
{j«Jfflefl be a τv basic family of FSM's and {μ'nω}ωeQ its associated
family of FSM's on (Ω, ̂ ^€s). Assume, moreover, that

a = Π sup J^βl <

For ^ = 0, 1, 2, define the transition functions fn+1, from
^τ

s

n) to (i2, ^ C : + 1 ) , by fn+1(ω,B) = μUB)/μ'nω(Ω). Let M w -

, ,^^) be the Banach space of all FSM's on {Ω, ̂ f r;). If ^ T * =
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tf(Uo°° ~ < Ό l e t M * b e t h e Banach space of FSM's on (Ω, ̂ T*). With
/w,n defined as in 4.2 and Lm>n as in 4.3 we can apply Theorem 4.4.
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