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A CLASS OF WALLMAN-TYPE EXTENSIONS

ELLEN E. REED

This paper grew out of an attempt to determine what
T.-compactifications, the Wallman compactification, and the
one-point compactification have in common. It turns out
that in each case the associated nearness is generated by
those grills which contain ultraclosed filters and are clans
with respect to the associated proximity. Such a nearness
will be called a Wallman nearness, and this paper is a
study of the properties of Wallman nearnesses and their
extensions.

A mild ‘““‘covering” condition on a proximity guarantees
that it contains a Wallman nearness. Each covered proxi-
mity contains exactly one Wallman nearness. This sets up
a 1-1 correspondence between covered proximities and exten-
sions obtained from Wallman nearnesses. The latter will
be called Wallman-type extensions. These can be character-
ized by the fact that they are covered extensions and
satisfy a certain completeness property; namely, the duals
of certain clans must converge. This summarizes the first
two sections.

The last section is a study of compact Wallman-type
extensions. A condition on the proximity is obtained which
guarantees that the associated Wallman-type extension is
compact. The condition states that certain very large grills
containing ultraclosed filters must be clans with respect to
the given proximity. Such a proximity will be called a
compactification proximity. It turns out that compactifica-
tion proximities give rise to weakly regular compactifica-
tions. The paper ends with a study of the relation between
weak regularity and Wallman-type extensions.

0. Preliminaries. The paper uses the definitions and notation
of Reed [3] and Thron [5]. Throughout the paper we will assume
that X is a fixed T,-space and that = is a Lodato proximity compa-
tible with the topology on X.

1. Wallman-type nearnesses. Out of the large class of near-
nesses compatible with a given Lodato proximity = we will choose
one of particular interest. It is generated by those z-clans which
contain ultraclosed filters. We will call this the Wallman nearness
generated by #. A mild condition on 7 guarantees that the
Wallman nearness it generates is actually in the same proximity
class. Such proximities will be called covered proximities.

In this section we will develop some properties of Wallman
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nearnesses, and in fact give a characterization of these nearnesses.
In particular we will see that each covered proximity has exactly
one Wallman nearness in its proximity class.

DEFINITION 1.1. A Wallman w-clan is a w-clan which contains
some ultraclosed filter.

PROPOSITION 1.2. The set of all Wallman m-clans generates a
nearness on X. This mearness consists of all families of subsets
of X which are subsets of some Wallman w-clan.

Proof. By a theorem of Gagrat and Thron [1, Thm. 2.7], all
we need to establish is that each singleton {x} is in some Wallman
nw-clan. In fact it is easy to see that each point filter & is itself a
Wallman z-clan. Clearly & is at least a zw-clan. Since X is T, we
have that 4 is an ultraclosed filter.

NOTATION AND DEFINITION 1.3. Let the nearness generated by
the Wallman n-clans be denoted by v,(x), or by v, when the
meaning is clear. By a Wallman nearness on X we will mean any
nearness of the form v,(r), where 7 is a Lodato proximity compat-

ible with X.

Next we will establish that the usual construction of an exten-
sion from a nearness is a 1-1 map on the Wallman nearnesses com-

patible with X.

THEOREM 1.4. If v is a Wallman mearness on X then v is a
cluster-generated Lodato nearness compatible with the topology on X.

Proof. Assume v = y,(7w), where = is a Lodato proximity
compatible with the topology .7~ on X. To establish that v is
compatible with .7, note that for x € X the grill o,={AcX|zec A7}
is a Wallman n-clan. To see that v is a Lodato nearness, use the
fact that if ¢ is a z-clan then bo = {AcC X|A-eog} is a 7-clan.
Finally, to obtain the result that v is cluster-generated, observe
that every m-clan is contained in a maximal z-clan. But every
maximal m-clan in vy is a v-cluster.

REMARK 1.5. In Reed [3] a construction was described whereby
a Lodato nearness v compatible with the topology on a T,-space
gave rise to a principal T-extension k,. Further it was established
that this map v to £, was 1-1 on cluster generated Lodato nearnesses.
Thus the preceding result allows us to conclude that the
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Wallman nearnesses on X map in a 1-1 fashion into the principal
T,-extensions of X.

In what follows we will show that a proximity class contains
at most one Wallman nearness. We will also obtain a necessary
and sufficient condition for a proximity class to contain a Wallman
nearness.

PROPOSITION 1.6. If v is a Wallman nearness on X then w, is
a Lodato proximity compatible with the topology on X, and v=y,(x,).

Proof. By Theorem 1.4 if v is a Wallman nearness on X then v
is Lodato and compatible with .9~ Hence the same holds true for
w,. Now suppose v = yy(7). We wish to show v, (7) = v,(z,). This
holds, provided every Wallman z-clan is a Wallman =, -clan, and
conversely.

(1) m,crw. If Az,B then A and B are members of the same
n-clan o. This implies AzB.

(2) Every =,-clan is a w-clan. This follows immediately from (1).

(38) Every Wallman =n-clan is a x,-clan. If ¢ is a Wallman
nm-clan then by definition o € y,(x), which is v. Thus ¢ is a 7, -clan.

THEOREM 1.7. A proximity class contains at most one Wallman
nearness.

Proof. This follows easily from Proposition 1.6.

Next we will obtain a condition on z# which guarantees that
v,(7) is in the proximity class of «.

DEFINITION 1.8. A proximity = is covered iff any two m-near
sets are members of the same Wallman z-clan.

THEOREM 1.9. The following conditions are equivalent.
(1) The Lodato proximaity © 1is covered.

(2) The nearness vy(rw) is compatible with .

(8) The class of m contains a Wallman nearness.

Proof. (1)=(2). Let v,(x) be denoted by v. From the defini-
tion of v it is clear that =, cw. If 7 is covered, we obtain = C ..

(2) = (8). This follows from the fact that v,(x) is a Wallman
nearness.

(8) =(1). Let v be a Wallman nearness in the class of #. Then
by Prop. 1.6 we have v = vy, (x). From this it is easy to see that
7 is covered.
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REMARK 1.10. Every Lodato proximity compatible with 9 is
near a covered proximity. For if 7 is not covered and v = y, ()
then =, is covered, since v is a Wallman nearness in its proximity
class. But x is close to =m,, since both proximities have the same
Wallman 7-clans. (See the proof of Prop. 1.6.) In fact it may be
that all Lodato proximities are covered. I was unable to find a
counterexample.

In any case we lose nothing by considering only covered proxi-
mities, since every Wallman nearness is in the class of some covered
proximity.

In what follows we will obtain a characterization of Wallman
nearnesses.

DEFINITION 1.11. A nearness v compatible with .9 is covered
iff for .o ey there is an ultraclosed filter % such that .o U % is
in y.

THEOREM 1.12. Let v be a Lodato nearness compatible with
7. Then v is Wallman iff v 1is covered and contains every
Wallman w,-clan.

Proof. Let v be a Lodato nearness compatible with 7. If v
is Wallman then by Proposition 1.6 we have v = y,(x,). Clearly then
y is covered and contains every Wallman = -clan.

Conversely, suppose v is covered and contains every Wallman
w,~clan. We will show that v = v, (x,). Note =z, is Lodato and com-
patible with .77, since the same holds for v. Now » contains all
Wallman 7,-clans and so we have v,(z,) < v.

Containment the other way follows from the faet that v is
covered and that every proximity class © has a largest member
ve(r) which is generated by all the w-clans. (See Reed [3], Thm.
2.7.) If .o7 ey then there is an ultraclosed filter Z such that .o U
27 e¢y. Then &7 U % evym,), and so there is a m,-clan ¢ such that
7 U e€o. Clearly o is then a Wallman x,-clan containing .%7 so
that o7 ey, (m,).

2. Wallman-type extensions. In this section we will inves-
tigate the properties of Wallman-type extensions, which are exten-
sions obtained from Wallman nearnesses. These are characterized
by the property that they are covered and satisfy a certain com-
pleteness property, which we will call Wallman-completeness. The
determining factor for the Wallman-completeness of a principal
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T.,-extension is whether or not the induced nearness contains all
Wallman z-clans.

It turns out that Wallman-type extensions are in 1-1 corres-
pondence with covered Lodato proximities. Thus in constructing a
Wallman-type extension we are choosing a particular nearness in
the proximity class and obtaining the standard extension for that
nearness. Many of the usual compactifications are obtained in this
way from appropriately chosen proximities. These include the
usual Wallman compactification, the Alexandroff one-point compacti-
fication, and all T,-compactifications.

DErFINITION 2.1. An extension k£ of X is a Wallman-type exten-
ston iff there is a Wallman nearness v on X such that £ is equivalent
to Ext (v), the extension obtained in the usual way from v. (See
Reed [3], Construction 1.15.)

DEFINITION 2.2. Let £ = (¢, Y) be an extension of X. A clan
on £ is a grill on Y which is a clan with respect to the usual
proximity on k; namely, two sets are near if their closures intersect.
A Wallman clan on £ is a clan which contains the image under e
of an ultraclosed filter on X. Finally, we say & is a Wallman-com-
plete iff the dual of every Wallman clan converges.

The next two results are technical results which will be useful
later.

ProrosiTION 2.3. If £ = Ext (v) where v is a Wallman nearness
on X, then v = v, and 7w, = 7,.

Proof. By Theorem 1.4 we have that v is cluster-generated,
Lodato, and compatible with .. Therefore the nearness induced
by k£ is the original nearness v. (See Reed [3], Thm. 1.18.) Thus
v =y, and from this it follows that =, = =,.

COROLLARY 2.4. If k£ ts a Wallman-type extension then v, =
Vi (TT).

Proof. The proof follows readily from Proposition 2.3, Proposi-
tion 1.6, and the fact that equivalent extensions of X induce the
same nearness on X, and hence the same proximity on X.

Next we will show that a principal extension is Wallman-complete
iff the induced nearness is large enough to include the associated
Wallman nearness.
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THEOREM 2.5. Let £k = (e, Y) be a principal extension of X.
Then & is Wallman-complete iff v, (z,) C v,.

Proof. (=) Suppose £ is Wallman-complete. Let ¢ be a Wallman
w.-clan on X. We will show that for some y€ Y we have ocCz(y).

Since ¢ is a Wallman =,-clan it is easy to check that ec is a
Wallman clan on Y. But £ is Wallman-complete, and so the dual
of eoc converges to some y in Y. It is easy to check that ocz(y).

(=) Suppose v, (7,) Cv,. Let ¢ be a Wallman clan on Y. We
wish to show dg¢t converges.

Let 0 = {A:e(A)~ € p}. Then it can easily be verified that o is
a Wallman rz.-clan. By our assumption on v, we have o €v,. Choose
2€Y so 0 C7(z). Then since k is a principal extension of X we
have that dyp — z.

COROLLARY 2.6. Wallman-type extensions are Wallman-complete.

Proof. Let £ be a Wallman-type extension. Then v, = y,(7,),
by Corollary 2.4. From the preceding theorem it now follows that
£ is Wallman-complete.

It turns out that Wallman-type extensions are characterized by
being Wallman-complete and covered.

DEFINITION 2.7. An extension of £ of X is covered iff every
point of £ is the limit of the image of an ultraclosed filter in X.

PROPOSITION 2.8. Wallman-type extensions are covered.

Proof. Let £ be equivalent to » = Ext (v), where v is a Wallman
nearness on X. It is easy to see that x is covered iff ) is covered.
To show X\ is covered let ¢ be any v-cluster. We need to show
there is an ultraclosed filter % such that e(%) — 0.

Since v is a Wallman nearness, it is Lodato and it is compatible
with .9~ (Thm. 1.4). Therefore Theorem 1.12 applies, and we can
say v is covered. Since oey there is an ultraclosed filter % such
that c UZ ev. But ¢ is a v-cluster, so 27 co. We claim that
e(#)—o0.

Recall the closed sets of A have as a base all sets of the form
A*, where A is a closed set in X. By A* is meant the set of all
v-clusters containing A. Suppose A is closed in X and o¢ 4. We
need to show ~A* is in e¢,(%).

Since 0 ¢ A* we have A¢ o and so A¢ Z. But % is ultraclosed,
so there is a closed set F' in % such that FN A= @. We claim
that ¢ (F)c ~A”.
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Let xe F. Recall ¢(x) = {Blxe B~}. Since x€ F we have x¢ A
and so A¢e(x). (Recall A is closed.) Thus ¢,(x) € ~A* as desired.

THEOREM 2.9. Let k£ be a principal T,-extension of X. The
following conditions are equivalent:

(1) & is a Wallman-type extension.

(2) £ 1is covered and Wallman-complete.

(3) v = vy(m).

Proof. (3)=(1). Let v =y,(x,). We wish to show v is a
Wallman nearness on X and k is equivalent to Ext (»).

It is easy to check that x, is a compatible Lodato proximity on
X, so that v is indeed a Wallman nearness on X.

Now since k is a principal T,-extension of X we have that « is
equivalent to Ext (v,). (See Reed [3], Thm. 1.19.) But v =y,, by
assumption, and so we have the desired equivalence.

(1) = (2). This follows immediately from Corollary 2.6 and Prop-
osition 2.8.

(2)=(8). Let k = (e, Y). First we will show that each z(y) is
a Wallman =,-clan. Clearly z(y) is at least a m.,-clan. Since £ is
covered we can choose an ultraclosed filter % such that e(%) — v.
It is easy to check that # < z(y), so that z(y) is Wallman. Thus
DECDW(ﬂ:K)'

Now let ¢ be a Wallman m.-clan. Then es is a Wallman clan
on Y. Since £ is Wallman-complete, the dual of esc converges to
some y in Y. It is straightforward to check that o C z(y).

NOTATION AND REMARK 2.10. For = a Lodato proximity on X
let k() denote Ext (v, (x)), the associated Wallman-type extension.
We can regard £, as a map from proximities to extensions, and
regard 7w as a map from extensions to their induced proximities.
(So 7w(k) = m, the induced proximity.) If we limit ourselves to
covered Lodato proximities and Wallman-type extensions then &,
and 7 are inverses of each other. This is the content of the next
theorem.

THEOREM 2.11.

(1) Let w be a covered Lodato proximity on X and let k=ku(T).
Then w, = .

(2) Let k£ be a Wallman-type extension of X. Then k,(w.) 18
equivalent to k.

Proof. (1) Let m be a covered Lodato proximity on X. Let
vy = v,(7) and let £ = ky(7) = Ext (v). Since 7 is covered, we have
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that 7 = x,. Also v =v,, by Theorem 1.5. Thus we have n=rx, =
T, = T

(2) Let £ be a Wallman-type extension of X. From the
preceding theorem we have vy, = yv,(x,). Thus Ext(v,) = k,(x.).
But Ext (v,) is equivalent to k, since x is a principal T,-extension
of X. (See Reed [3], Thm. 1.19).

LEMMA 2.12. Let £k = (e, Y) be a covered extemsion of X. Then
T, 18 covered, and in fact each 7(y) is a Wallman 7w.-clan.

Proof. Recall Az B iff there is a y€ Y such that A, Bez(y).
Thus to show =, is covered it is sufficient to show that each z(y)
is a Wallman =m.-clan. Clearly z(y) is a w.-clan. Since £ is covered,
we can choose an ultraclosed filter ¥ on X such that ¢(%) —y. It
is easy to check that % c z(y), so that z(y) is a Wallman clan.

COROLLARY 2.13. The map £y is a bijection from the covered
Lodato proximities on X to the covered Wallman-complete principal
T,-extensions of X.

Proof. Let m be any covered Lodato proximity on X. Clearly
£kw(m) is a Wallman-type extension, so by Theorem 2.9 we have that
£Ew(7) is covered and Wallman-complete.

Now suppose £ is any covered Wallman-complete principal 7'-
.extension of X. By Theorem 2.9, £ is a Wallman-type extension.
Hence by the preceding theorem, k is equivalent to k,(z.). Since
k£ is covered, m, is covered, by the preceding lemma. Thus £ can
be considered in the image of £j.

Finally, let 7, and =, be covered Lodato proximities on X, and
suppose k,(r,) is equivalent to £,(m,). Then the induced proximities
are 7, and 7, respectively, by Theorem 2.11. But equivalent exten-
sions induce the same nearness, and hence the same proximity. (See
Reed [3], Lemma 1.9.) Thus #, = 7,.

REMARK 2.14. It has been shown that the principal T,-exten-
sions of X are in 1-1 correspondence with certain nearnesses on X.
(See Reed [3], Cor. 1.20.) In general a proximity class contains
many nearnesses. Thus to obtain a 1-1 map from proximities to
extensions it is necessary to pick out a particular nearness. What
we have done here is to obtain a way to pick a nearness out of a
proximity class; namely, by choosing the =z-clans which contain
ultraclosed filters. This particular choice is of interest because it
includes so many of the known compactifications. This will be seen
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in the next theorem.

THEOREM 2.15. The following compactifications are Wallman-
type extensions:

(1) all T,-compactifications;

(2) the usual Wallman compactification of a T,-space;

(8) the one-point compactification of a T,-space.

Proof. First we will establish that all these compactifications
are Wallman-complete. Let £ = (¢, Y) be a T,-compactification of
X. Let ¢ be a Wallman clan in k. Pick % an ultraclosed filter on
X such that ez co. Since Y is compact, (%) —y for some y in
Y. We claim that the dual do converges to y, provided « is in one
of the above categories. Let V be an open neighborhood of y.
The idea of the proof is to find a set S in ¢ which is far from ~ V.
Clearly in that case Vedo.

(1) Suppose Y is Hausdorff. Then it is regular, and we can
choose W open such that ye¢ W and W-c V. Then W is far from
~V. Since ez —y we have Weezy Co.

(2) Suppose & is the usual Wallman compactification of X.
Since £ is a principal extension, we can choose a closed subset A
of X such that ye ~e(A)-C V. Since y¢e(d)” and e(%) -y we
have that A¢ 2. But % is ultraclosed, so ~AeZ/. Let K be a
closed set in % such that K< ~A. We claim that ¢K is far from
~V. Note e(K)cezy Co.

Now since « is the usual Wallman compactification, and KN A=
@, we have e¢(K)  Ne(Ad)- = @. Thus ¢X) V. This confirms
that e(K) is far from ~ V.

(3) Now suppose £ is the usual 1-point compactification of X.
If 2/ is a convergent filter then since %/ is ultraclosed we have
7 = & for some re X. Since ¢z —y we have y = e(x). Here we
used that Y is a T,-space. Thus {y} is a set in ¢ which is far
from ~ V.

Suppose now that % does not converge. Since e(Z%) >y we
have that y¢e(X). For if e(Z') —e(x) then % — 2. Thus y = w
the “point at infinity”. Now since VeeZ we can choose a closed
set K in % such that KCe (V). Then e¢K) Ce(K)U {w}C V.
Thus e(K) is far from ~ V. Note e(K)ee(%) Co.

Now we need to establish that each of the listed compactifica-
tions is covered.

(1) Suppose Y is a T,-space. Let y€ Y, and consider e7'(_+;).
Since Y is a compact T,-space, it is regular. Thus e '(_7}) is a
closed filter on X. By Zorn’s lemma it must be contained in some
ultraclosed filter . It is easy to check that e(Z) — y.
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(2) Suppose k£ is the usual Wallman compactification of X.
Then we can think of a point in Y as an ultraclosed filter . By
construction, e(%) — % .

(8) Finally, suppose £ is the 1-point compactification of X.
Note that X and Y are T,-spaces but they need not be T,-spaces.
Let yeY. If y =e(x) then # is an ultraclosed filter for which
e(%) —»y. Suppose y = w, the point at infinity. Then X is not
compact and so there is a nonconvergent ultraclosed filter % on
X. We claim that ¢(%) — w.

Let G be an open neighborhood of ®w. Then by construction
~e (@) is closed and compact. Since % is nonconvergent, ~e '(G)
cannot be in Z. But % is maximal closed, so e (G)e%Z. Thus
Gee(Z) as desired.

REMARK 2.16. From what we have just seen, many compacti-
fications can be thought of as special cases of Wallman-type exten-
sions. The kind of extension obtained depends on the proximity
chosen. For example, if the proximity is an Efremovich proximity
then the corresponding extension is a T,-compactification. This is
spelled out in the next theorem.

Notation 2.17. (1) Let =, denote the “Wallman” proximity
on X:

Am,Biff AANB~# @

(2) Let m, denote the “Alexandroff” proximity:
An,Biff A-N B~ # @ or else both A~ and B~ are noncompact
sets.

THEOREM 2.18.

(1) If m is an Efremovich proximity then ku(m) is a T,-com-
pactification of X.

(2) The extension ky(my) is the usual Wallman compactifica-
tion of X.

(3) The extemsion ky(m,) is the ome-point compactification of
X.

Proof. Suppose £ is either a T,-compactification of X, or the
usual Wallman compactification, or the one-point compactification of
X. Then by Theorem 2.15 we have that £ is a Wallman-type
extension of X. Thus £ is equivalent to x,(w,), by Theorem 2.11.
The idea of the proof is to show that in each case 7, is the desired
proximity.
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(1) Suppose = is an Efremovich proximity. Then there is a
T.,-compactification & such that z, = n. (See Smirnov [4].) Thus
£.(7) is equivalent to a T,-compactification of X.

(2) Let r£ be the usual Wallman compactification of X. We
claim 7z, = m,. This follows from the fact that if % is an ultra-
closed filter on X and A C X we have

weey(A)-iff A~exr .

(8) Let £ be the one-point compactification of X. We claim
7. = m,. Let w be the point at infinity. The key relation is that
for Ac X we have wee(A) iff A~ is not compact.

3. Compact Wallman extensions. In this section we will
look at a condition on 7 which guarantees that the associated
Wallman-type extension is compact. This condition states that
certain large Wallman grills, called giant z-grills, must be m-clans.
Covered proximities which satisfy this condition will be called com-
pactification proximities. For these proximities the associated
Wallman-type extensions are the weakly regular compactifications
of Reed [2]. In fact, weakly regular covered principal T,-compacti-
fications turn out to be exactly those Wallman extensions whose
induced proximities are compactification proximities.

We will spend some time studying the relation of weak regu-
larity to what we have done here. We will obtain a characteriza-
tion of weak regularity in terms of the associated nearness. We
will also study the relation between weak regularity and Wallman-
completeness.

Finally, we will see that the operation of taking the Wallman
extension is a bijection from the compactification proximities com-
patible with a given topology to the covered weakly regular principal
T,-compactifications of the space.

DerFINITION 3.1. (i) For subsets A and B of X we say Ao.Biff
there is an ultraclosed filter % on X such that A€ %z c z(B).

(ii) If .o~ is a family of subsets of X then 6.(.&7) = {S: 48.S
for all A in .07},

Next we will develop some properties of §.. The following
proposition shows that 6. has many of the properties of =z, but it
is coarser than =.

ProrosiTiON 3.2. Let A, B, and C be subsets of X
(1) ©#.A and Ad.OD.
(ii) If ANB+# © then Ad.B.
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(iii) If Ao.B and BC C then Ad.C.
(iv) If Bo.A and Bc C then Ci.A.
(v) If A6.(BUC) then Ab.B or Ad.C.
(vi) od.Cm.

COROLLARY 3.3. If &7 is a filter on X then 6.(F ) is a grill
which contains 7 .

Construction of v, (). For any filter & let #* be the filter
generated by the open sets of # . If % is an ultraclosed filter on
X we will call 6.(z*) a giant w-grill. Then v, (7) is generated by
all the giant z-grills on X; i.e., v.(7) consists of the families of the
subsets of X which are contained in some 6.(%%).

PRroOPOSITION 3.5.

(i) v/m) 18 a nearness on X.

(ii) wy(m) Cy (7).

(iii) If o is a w-clan which contains an wultraclosed filter 7z
then o C 0.(Z7).

Proof. To see that v,(zw) is a nearness we note that for xe X
we have {x}€d.(#"). Thus each singleton is a member of one of
the generating grills. This is sufficient to guarantee that v.(z) is a
nearness. (See Gagrat and Thron [1], Thm. 2.7.)

It is clear that (ii) follows from (iii). To see that (iii) holds,
let Seo, and let G be an open set in 2. We need to show G4.S.
Since G ez, it is sufficient to show % C#n(S). This last relation
follows easily from the fact that ¥ C ¢ and ¢ is a #-clan.

THEOREM 3.6. The nearness v, (w) 18 contigual.
Proof. Let .7 be a family of subsets of X such that every

finite subfamily of .o is a member of v, (z). Set

% = {K: K is closed and .o~ C 6.(~K)} .

(i) ¢ has the finite intersection property. Let K, ---, K, €
%#". TFor each i, choose A, €. so that ~K,3.A,. Now {4,, ---, A,} €
v,(7), and so for some ultraclosed filter Z we have

{4y -, A} Co(Z) -

We claim that each K; is in %, so that the K,’s intersect.
Suppose some K; is not in Z/. Then since 7/ is ultraclosed we
have ~K;ez'. But A;ed.(Z"), and so ~K;0.A;. But this violates
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the choice of A;.

(ii) Let 7" be an ultraclosed filter containing .9#". This exists,
by Zorn’s lemma. We claim .97 C 6.(77%).

Let Ae.o7 and let V be an open set in #°. Since % C 7 we
have ~ V¢ 2. But ~ V is closed, and so we must have .o C6.(V).
In particular then, Vi A.

REMARK 3.7. We have constructed a contigual nearness using
a Lodato proximity on X. It is not clear that this nearness is
even compatible with the topology on X. Its closure operator may
be too coarse; i.e., there may not be enough closed sets produced
by the nearness. However, if v, (7) happens to land in the proximity
class of w then it turns out to be the Wallman nearness of #. In
this case the Wallman-type extension is a compactification, and we
will call 7 a compactification proximity.

DErFINITION 3.8. We say 7 is a compactification proximity iff =
is covered and y,(x) is in the proximity class of =.

THEOREM 3.9. Let w be a covered proximity. Then the follow-
ing conditions are equivalent.

(i) = is a compactification proximity.

(ii) 0z is a w-clan for every ultraclosed filter Zz on X.

(iil) v,(7) = vy(n).

Proof. Clearly (i) = (ii). Now assume (ii) holds. Recall that
vw(@) C v, (). Thus all we need to show is that each 06.(%") is a
Wallman 7m-clan. This follows easily from (ii) and from the fact
that % C 6.(%).

Finally, suppose (iii) holds. Since = is covered, vy(x) is in the
proximity class of #. (See Thm. 1.9.) Thus (i) holds.

THEOREM 3.10. If w 18 a compactification proximity then ky(w)
18 compact.

Proof. Since contigual nearnesses give rise to compact exten-
sions, it is sufficient to show that v,(7) is contigual. (See Reed [3],
Thm. 1.24.) However, we have seen that v, (x) is contigual (Thm.
3.6). If n is a compactification proximity then v.(7) = vy(7), by
Theorem 3.9.

REMARK 8.11. The next few results lead up to a formulation
of weak regularity in terms of the associated nearness.
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LeMMA 3.12. Let £ = (¢, Y) be an extension of X and denote
7w, by w. Let Z be an ultraclosed filter on X and yeY.

(1) e(z)—yiff zx Cz(y).

(ii) If @ Cz(y) then ©(y) C o(Z?).

LEMMA 3.13. Let & be a principal T.-extension of X. If v (x,)C
Y, then & 18 weakly regular.

Proof. Let £ = (¢, Y) and let # = w,. Assume v.(7,) C v,.
(1) If Z is an ultraclosed filter on X and e(%’) —y then
(y) = 0L(Z").

Since e(%') —y then z(y) Cé.(%*) by Lemma 3.12. We need
to show that the hypothesis on & guarantees 6.(%*) Cz(y). Since
v () Cv, we have that 6.(Zx%) ey, and so 6.(%*) Cz(z) for some
2€ Y. Therefore z(y) C7(z). Since £ is a principal extension, this
guarantees ./, C.4,. Since £ is a T,-extension y = z.

(2) « is weakly regular.

Let % be an ultraclosed filter on X such that ¢(Z) — 4. From
(1) we have that z(y) = 6.(Z%). We need to show e(%)* —y.

Let G be an open neighborhood of y. Since £ is a principal
extension, there is a subset A of X such that y€ ~ e(4)- c G. Thus
A¢tly) = 6.(z"). Let U be an open set in % such that Uj.A.
We claim e(U)* C G.

Let zee(U)*. Then there is an ultraclosed filter 7° such that
e(U)ee(?") —2. Then Ue?", and so 7 ¢ n(A), since Ujd.A. Pick
Ve so that A V. Then by definition e(4)-Ne(V)~ = @&. Since
e(7") —z we have zee(V)~. Thus ze ~ e¢(A)~CG. We have shown
e(U)* C@.

LEemMA 3.14. If k£ 18 a weakly regular compactification then
v, Dy (T,).

Proof. Let Kk = (¢, Y) and # = w,. We need to show 6.(Z % ey,
for every ultraclosed filter 7. Let % be given. Since Y is com-
pact, we have e(Z') —y for some y€ Y. We claim 6.(Z%*) C z(y).

Let Acd.(zr"). We wish to show yece(A)-. Let G be an open
neighborhood of y. We will show G Ne(4) = @.

Since e(Z’) —y we have by weak regularity that e(zZ%)* — y.
Hence we can choose an open member U in % such that e(U)*C@G.
Since A€ d.(z*) we have Uid.A. Let 7 be an ultraclosed filter such
that Ue 7 c n(A).

Since £ is a compactification of X, v, is contigual. (See Reed
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[3], Thm. 1.25.) Thus from 7" c n(A) we can conclude 7" U {4} ev,.
Choose z€Y so that 7" U {4} Cz(z). Clearly then e(?") —z. Thus
zee(U)* CG. But we also have Act(z), so that z€e(A)-. Thus

GnNneld) + Q.

THEOREM 38.15. Let £ be a principal T.-compactification of X.
Then & ts weakly regular iff v (7,) Cv,.

Proof. This follows immediately from Lemmas 3.14 and 3.13.
Next we will look at the relation between weak regularity and

the associated proximity.

THEOREM 3.16. If m is a compactification proximity, then k()
is a covered weakly regular principal T,-compactification of X.

Proof. The theorem simply gathers up some previous results.
We have already seen that &, (7) is a covered principal T,-extension
(Cor. 2.12). If 7= is a compactification proximity, then ky(7) is a
compactification (Thm. 3.10). Moreover, v (7) = vy(x) by Theorem
3.9. Thus by Lemma 3.13 we have that k,(7) is weakly regular.

This now allows us to obtain a new characterization of Wall-
man nearnesses whose induced proximities are compactification prox-
imities.

THEOREM 3.17. If @ is a compactification proximity then v, (w)
is the smallest nearness in the proximity class of w which is induced
by a weakly regular compactification of X.

Proof. Let k be a weakly regular compactification of X such
that v, is in the proximity class of 7. Note then n, =x. We
wish to show yu(x)Cy,. Recall y,(n) c v, () by Proposition 3.5.
Also since k is weakly regular we have y,(7) Cy, (Lemma 3.14).
Since © = w, we have the desired result.

We note that v,(x) is induced by a weakly regular compactifi-
cation; namely, £,(x) (Thm. 3.16).

LemMMmA 3.18. If £ 1s a covered extemsion them v, C vu(m.).

Proof. Since k is covered we have that each z(y) is a Wallman
w.-clan (Lemma 2.12). Thus vy, Cy,(7,).

COROLLARY 3.19. Compactification proximities on X are those
proximities which are induced by covered weakly regular compacti-
fications of X.
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Proof. Let m be a compactification proximity. Then k, (%) is
a covered weakly regular compactification of X, by Theorem 3.16.
But = is induced by £,(x), by Theorem 2.11.

Conversely, let £ be a covered weakly regular compactification
of X. We wish to show =z, is a compactification proximity. Note
7, is covered, by Lemma 2.12. We will show v,(7,) = vu(7w.).

Recall vy (7,) Cv,(z,). Since £ is a weakly regular compactifica-
tion, we have v, (x,) Cvy, (Lemma 3.14). Since £ is covered, vy,C
v.(m.) by the preceding lemma. This establishes the desired result.
By Theorem 3.9 then 7, is a compactification proximity.

Next we will investigate the relation between weakly regular
compactifications and Wallman-type extensions. In order to simplify
the discussion we will introduce the notion of an efficient extension.

DEFINITION 3.20. An efficient extension of X is a covered prin-
cipal T,-extension.

LEMMA 3.21. Ewvery weakly regular principal compactification
of X is Wallman-complete.

Proof. Let £ be a weakly regular principal compactification of
X. We wish to show that x# is Wallman-complete. Since £ is a
principal extension of X, it is sufficient to show v, (7, Cv,, by
Theorem 2.5. Now vy, (7. Cv.(z.) by Proposition 3.5. But since x
is a weakly regular compactification we have v,(z,) Cvy, by Lemma
3.14.

This says that for principal compactifications of X, weak
regularity implies Wallman-completeness. Next we will show that
for a Wallman-complete (principal 7)) compactification to be weakly
regular the associated proximity must be a compactification proximity.

THEOREM 3.22. Let £ be an efficient compactification of X.
Then k& is weakly regular iff £ is Wallman-complete and . is a
compactification proximity.

Proof. (=) Suppose k£ is weakly regular. Then £ is Wallman-
complete, by the preceding result. Since £ is a covered weakly
regular compactification, we have that z, is a compactification proxi-
mity, by Corollary 3.19.

(=) Suppose £ is Wallman-complete and z, is a compactification
proximity. To show & is weakly regular it is sufficient to show
v, (z,) v, (Lemma 38.13). Since 7, is a compactification proximity
we have v, (x,) = vy(z,). But k£ is Wallman-complete, and so vy, (z,)C
v, (Thm. 2.5).
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COROLLARY 3.238. FEwery efficient weakly regular compactifica-
tion k£ of X is a Wallman-type extension.

Proof. From the preceding corollary we have that £ is Wallman-
complete. Since k is also covered, it must be a Wallman-type
extension (Thm. 2.9).

Thus in the context of efficient compactifications, weakly regular
extensions are Wallman-type extensions.

To complete this section we will show that k, defines a corres-
pondence between compactification proximities and weakly regular
efficient compactifications.

THEOREM 8.24. Ky 14s a bijection from the compactification
proximities on X to the efficient weakly regular compactifications

of X.

Proof. From Theorem 3.16 we have that k£, maps compactifica-
tion proximities into efficient weakly regular compactifications. We
know from Theorem 2.11 that «, is 1-1. Finally, let £ be an
efficient weakly regular compactification of X. From Corollary 3.23
we have k£ is a Wallman-type extension. Thus by Theorem 2.11 we
have £ equivalent to £y(7,). But z, is a compactification proximity,
by Theorem 3.22.

Open question 3.25. We have established some conditions under
which a Wallman-type extension is compact; namely, it is compact
if all grills 0.(%%), are 7m-clans, where % is an ultraclosed filter.
It would be of interest to obtain other conditions on z which would
guarantee that k,(r) is compact.
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