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SOME REMARKS ABOUT C= VECTORS IN
REPRESENTATIONS OF CONNECTED
LOCALLY COMPACT GROUPS

L. MAGNIN

Given a continuous representation U of a connected
locally compact group G in a quasi-complete locally convex
topological vector space E, one may introduce the space E_
of C”-vectors which contains the dense space F' of regular
vectors. Natural questions are then: (1) does F_,=E_ hold?
(2) is the differential U_ of U a representation of the Lie
algebra of G on E,? We here prove that answer to (1) is
“yes” when G is a quotient of a direct product of compact
connected Lie groups and £ has a continuous norm, and
that answer to (2) is always ‘‘yes’’. Of special interest are
locally compact groups which are almost Lie in the sense
that any subgroup algebraically generated by two continu-
ous one-parameter subgroups is a Lie group in a finer con-
nected topology. We prove that a connected locally com-
pact group is almost Lie if and only if its universal cover-
ing in the sense of Lashof is HX A with H simply con-
nected Lie group and A direct product of copies of R.

Let G be a connected locally compact group and {H,, a € I} a di-
rected decreasing family of normal compact subgroups of G such that

(1) G,=G/H, is a Lie group for each acI (by a Lie group we
shall always mean a finite dimensional real Lie group),

and

(2) N H,={e}, e identity of G.

We shall identify G to the projective limit of the G,’s. Denote by
& the Lie algebra of G, which is the projective limit of the Lie
algebras ®, of the Lie groups G,. If X = (X,) €@, te R, denote by
expt X the element (expt X,) of G. Let U be a continuous repre-
sentation of G in a quasi-complete locally convex topological vector
space K. For acl, introduce A4, = S Uh)dp(h), with f¢, normal-
Hy

ized Haar measure of H,. A, is a continuous endomorphism of FE
([2], Prop. 10(a), p.17).

LEMMA 1.
(i) For each acl, A, is a projector of E (ie., A2 = A,),
orthogonal if K is a Hilbert space and U unitary; its range is the
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closed subspace E, = {ac E; U(h)a = aVh € H,} which is stable under
U.

(ii) F = Uees B. is a dense vector subspace of E which does
not depend on the family {H,, acl}.

Proof. (i) 4i=| ( (k)oSH U h) )= (S Ullch)

Hy

d,ua(h)>d;ea(k) = A, If E is a Hilbert space and U a umtary repre-
sentation, A* = S Uth-dp (k) = A,. Tt is obvious that E, = AE

and E, is closed. fac E,xeG,heH, Uh)Ux)a = Ulx)Ulx'hx)a =
U(x)a, so E, is U-stable.

(ii) Let € >0, a,€ E, ¢ any continuous seminorm on F and acl
such that ¢(U(h)a, — a,) < eVYh € H,. Then q(A.a, — a,) = S q(Uh)a, —

a)dp(h) < e, hence F is dense. The remaining assertion of (ii) fol-
lows from ([6], p. 45, Lemma 1).

COROLLARY (R. Lipsman, C.C. Moore). If U is irreducible, or
if E is a Hilbert space and U wunitary factorial, there exists acl
such that Uh) =1 Yhe H,, i.e., FF = K.

Proof. The irreducible case is clear. Now suppose FE Hilbert
and U unitary factorial, and choose a el such that E, =+ {0}. The
restriction U, of U to E, is quasiequivalent to U, hence there exists
cardinals m, » with mU, = nU, and the result follows.

This result is well-known ([11] Th. 2.1, Th. 3.1) ([14] Prop. 2.2),
but the foregoing proof based on the projector A,, though probably
well-known, does not appear in the literature, to the author’s know-
ledge.

DEFINITION 1. A vector ac E is said to be C~ for U if for
every X e® the mapping ¢t — Ulexpt X)a from R into E is C~. If
E is a Hilbert space, a e E is said to be analytic for U if the above
mapping is analytic.

In the sequel, when considering analytic vectors, we shall al-
ways implicitly assume that E is a Hilbert space.

Definition 1 generalizes the classical definition when G is a Lie
group, by Goodman’s theorem in the C* case and by [8] in the an-
alytic case. We shall denote by E.(resp. E,) the space of C* (resp.
analytic) vectors. Introduce the space (F,). (resp. (E,),) of C= (resp.
analytic) vectors of E, for the representation of G, defined by U,
and define F.. = U,e;(F)o = FNE. (resp. F, = U (E)e = FNE,).



SOME REMARKS ABOUT C~ VECTORS IN REPRESENTATIONS 393

F., may be called the space of regular vectors for U; it is the
Garding domain introduced in [13], by ([7] Th. 8.3), if E is a
Fréchet space.

For Xe® and ac E., define

Un(X)a = [% U(exth)a}

t=0

PropOsITION 1. F. (resp. F,) is demse in E and U. is a repre-
sentation of the Lie algebra © on F. (resp. F,). If E is a Hilbert
space and U unitary, U.(X) is essentially skew-adjoint on F.. and F,
Jor every Xe®, and its closure is the gemerator of the l-parameter
group t— Ulexpt X).

This proposition is straightforward since F is dense in E and
stable under U(expt X) te R, Xe®.

Now, E. and E, are U-stable, since for ac E. (resp. E,), X =
(X,)eB®, x=(x,) €G, Ulexpt X)U(x)a= Ux)Ulexpt Ady(x"")X)a, where
Ads(x)X = (Adg (2:")X,) € ®. Hence, if E is a Hilbert space and U
unitary, U.(X) is essentially skew-adjoint on E. and E, for each
Xe®. Moreover, the continuous mapping (s, t) — U(exps XexptY)a,
X, Ye@®, is separately C~ (resp. analytic) from R? into E.

LEMMA 2. Let a€FE., X, Ye®. Thern mapping
(s, t)— Ulexps X expt Y)a

Jrom R? into E 1s differentiable, its differential at (s, t,) € R* being
(8,t) = sU(X)U(exps, X expt,Y)a + tU(exps, X expt,Y)U(Y)a.

This lemma follows at once from the equality

U(exp(s, + s) X exp(t, + t) Y)a — U(exps, X expt, Y )a — sU(X)U(exps, X
expt,Y)a — tU(exps,X expt,Y)U(Y)a = U(exp(s, + $)X expt,Y)(U
(exptY)a — a — tU(Y)a) + tU(exp s, X)(U(exps X expt,Y)U(Y)a —
Uexpt, Y)U(Y)a) + Ulexp(s, + 8)X expt,Y)a — U(exps, X expt, Y )a —
sU(X)U(exps, X expt, Y)a and ([16] p. 220, (c)).

PROPOSITION 2. Let a € E.. The mapping X — Us(X)a from &
wnto E 18 continuous linear.

Proof. The linearity is proven exactly as in ([1], p. 226, Lemma
2.2) using Lemma 2. Now, the Lie algebra @ is a direct product
of finite dimensional Lie algebras [10], hence a Baire space ([4], p.
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114 Ex: 16(a)). This implies that the linear mapping X+ Uo(X)a
which is the point wise limit of the continuous mapping X+ n(U
(exp(1/m)X)a — a), n — + o, is continuous ([4], p. 115, Ex. 20(b)).

DEFINITION 2 ([15]). A vector a € K is said to be weakly regular
for the representation U if for any continuous linear form o’ on E
the mapping x — (U(x)a, a’) is regular in the sense of [6].

Denote by R the space of weakly regular vectors. Then F.C
RCE. and U. is a representation of & on R.

PrROPOSITION 3. Suppose G is any quotient of a direct product
of compact conmmected Lie grouws. Then: (i) E. = R; (ii) of there
exists a continuous norm on K, F, = E..

Proof. Let a€ E.. Suppose first G = [[;.;G;, G; compact con-
nected Lie group. Then ® is the direct product of the Lie algebras
@, of the Lie groups G,. For X = (X,)e® and J, finite subset of
J, define

X, 1¢ed,

X, =(Y)e®, Y, =
7 = (¥)) =lo ieJ,.

We have Uo(X,)a = [d/dt d(exptX,)],-, where @ denotes the map-
ping *— U(x)a from G into E. Choose for each 7 eJ a coordinate
system of the first kind for G, in a neighborhood of the identity e;
of G,;, and denote by D.,@ the differential of the restriction of @ to
G, evaluated at ¢, Then Un(X;)a = 3., (D@)X,). Now, by Pro-
position 2, U.(X)a = lim, ., Uu(X,)a, F denoting finite subsets of
J and lim being in the obvious sense hence the family ((D,@)(X)));. is
summable in E, and 3,.,;(D.d)(X,) = U.(X)a. As Xe® is arbitrary,
if there exists a continuous norm on E, then there exists a finite
subset J, of J such that D@ = 0Vi¢J,i.e., @ = Gop,;, where p,: G —
Ilics, Gi is the projection. This proves that a€F. Suppose now
that G = G/H, with G = [[,., G, as above and H normal closed sub-
group of G, and let 7: G — G denote the projection. Choose a direct-
ed decreasing family of compact normal subgroups {H,;acl} of G
with properties (1) and (2). Then the family {z(H,), @ € I} of com-
pact normal subgroups of G has the same properties. The vector
a is C= for the representation I = U-zw of G, so there exists ae I
such that U(n(h))a = a Vh e H,, which implies a € F. This proves
(ii). (i) follows easily by putting in the above reasoning a'-@ in
place of @, with o’ any continuous linear form on E.

ExAMPLE. Let G = [[3.,G,, G, compact connected Lie group,
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and U the left regular representation on L*G). Then F (resp. E.)
consists of those fe L¥G) such that there exists neN and f,e
L¥G, X --- x@G,) (resp. C=*(G, X --- X@G,)) with f = f,op, where p,: G —
G, x---x@G, is the projection.

PROPOSITION 4. If G is compact, F contains the set of G-finite
vectors.

Proof. Let G the unitary dual of G and P; = SG () U(x)d pe(xe),

e G, m; = dim(\)X;, X; character of A, ## normalized Haar measure of
G. P, is a projector of E, E* = P,(E) is the A-type isotypic compo-
nent of E, and the set of G-finite vectors of E is the algebraic
direct sum 3.5 E*. For ne @, there exists, by corollary to Lemma
1, a el such that =m;(hx) = w(x)Vx € GVh € H,; then Uh)P, = P,Vhe
H, which proves the result.

Any locally compact connected group being locally isomorphic to
Hx K with H connected Lie group and K compact connected group,
one still has F. = F. when K is a quotient of a direct product of
compact connected Lie groups and E has a continuous norm. For
other groups like the p-adic solenoid I, = (RXZ,)/B (p a prime),
where Z, denotes the additive group of p-adic integers and B =
{(n, n) e Rx Z,, nc Z}, the question of whether or not E. = F. is here
left open. We shall see that for general locally compact connected
G, U. is a representation of the Lie algebra & on E. and E,.

DEFINITION 8. A topological group G is said to be almost Lie
if the following condition is satisfied: for any two continuous one-
parameter subgroups 6,, 6, of G, there exists on the subgroup G(,,
0,) of G algebraically generated by 6,(R)U 6,(R) a finer connected
topology for which G(4,, 6,) is a Lie group. '

Such a topology a G(6,, 6,) is unique if it exists, and has the
same continuous one-parameter subgroups as the topology induced
by G. ([12], Lemma 2).

EXAMPLES. :

(1) Any connected nilpotent topological group is almost Lie
[12].

(2) Any Lie group is almost Lie ([3], p. 177, Prop. 9).

LEMMA 3.
(i) The direct product of two almost Lie topological groups 1is
almost Lie.
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(ii) Any quotient of an almost Lie topological group by a
locally compact normal subgroup is almost Lie.

Proof.

(i) results from Example (2), and (ii) follows from ([9], Lemma 1).

If G is connected locally compact almost Lie, then for ac E.
(resp. E,), X, Ye®, the mapping (s, t) — U(expsXexptY)a is jointly
C=~ (resp. analytic) and U. is a representation of the Lie algebra &
of G on E. (resp. E,).

PROPOSITION 5. Let G be any connected locally compact group.
U.. s a strongly continuous representation of the Lie algebra & of
G on E., and on E,, by essentially skew-adjoint operators if E is
a Hilbert space and U unitary.

Proof. We already noted that G is locally isomorphic to HXx K,
with H connected Lie group and K compact connected group. Now,
K is isomorphic to (Px A)/H, with P direct product of compact con-
nected Lie groups, A abelian compact connected group and H closed
normal subgroup of Px A. Proposition 5 then follows from Proposi-
tion 8 and from the fact that A is almost Lie, observing that, for
a representation or local representation of a product of two locally
compact groups, a vector is C= (resp. analytic) if and only if it is
separately C> (resp. analytic) on each factor (this results of [17],
p. 186, Ex. 92 in the C~ case and of [5] in the analytic case).

We now turn to the characterization of locally compact connect-
ed almost Lie groups.

Let & a Lie algebra and X, Ye®. A formal commutator of X
and Y is any expression Z = [X], [X,, [ - -[X,-;, X,]- -] where X;=X
or Yvi=12 ---,m n=degZ is the degree of the formal com-
mutator Z. Any formal commutator of X and Y defines an element
of @ which we shall again denote by the same letter Z; the formal
commutator Z will be said to be #0 if the corresponding element
Ze® is #0. The set of all formal commutators of X and Y is
clearly ordered as follows:

X, Y, [X, Y] [X [X, Y]] [Y, [X, Y]], [X, [X, [X, Y]II,
[Y[X’ [Xr Y]]]y [X’ [Y, [X9 Y]]], [Y) [Yy [X) Y]]]’ e

LEMMA 4. Let @ be a finite dimensional real Lie algebra and
G. =159, where 6, =8vn=1. Fix X, Yec® and define X°,
Y°e®. by X°= nX)pzy, Y= Y ),2:. If there is an imfinite
sequence of formal commutators of X and Y which are +#0, then
the Lie subalgebra of ®. generated by X° and Y° is infinite dimen-
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stonal.

Proof. We may suppose that ® is generated as a Lie algebra
by {X, Y}. Denote by Z,=X,2,=Y,Z, ---, Z,(p = dim®) the p
first (with respect to the order) formal commutators of X and Y
with the property that the family {Z, ---, Z,} of the corresponding
elements of & is linearly free. For each ge N, choose 0 formal
commutators W,(h=1,2, ---,q), such that deg W, =deg Z, + h.
Denote by Z;, W 1 <1 <p,1<h <q the formal commutators of
X® and Y° in ®. analogous to Z, W, formed with X° and Y° in
place of X and Y. We have Z)= (n%¢% Z),., 1S i< p, Wi =
M Wy)psl S h < q.  Let N, oo, N\ 4y, ---, #, € R such that
S Mz + i We = 0 in the Lie algebra ®.. If we expand W,
in ®as W, =3".8Z(eR), we get v,=—331_, &itty, and

g
(*) hz_‘alﬂhsz(ndegwh — ndegzi) =0 Vi= 1’ 2’ cee,p, YR D> 1.

Fix 7 1 <17 < p. The linear system with ¢ equations and the ¢ un-
knowns p,& 1 < h < q obtained by writing down (*) for n = 2,
2% ..., 2 has determinant

Qkitt 1 ... Qkite _ 1

A = 2degziq(q+1)/2
v .
Qutki+) 1 ... 2q(k,+q) —1

with k, = deg Z, — deg Z, = 0.

Clearly 4, ~ 2WesZithitva@nz T . (27 — 2'), ¢ — + o, so that
for large q, 5, =0 Vh=12--.q,vi=1,2.--p. Then )\ =---=
A, = y=---=p, =0 for large ¢, i.e., the elements Z}, ..., Z} W7,
..., W, are linearly independant in ®.. This completes the proof.

REMARK. There exists X, Ye® satisfying the hypothesis of
Lemma 4 if and only if the finite dimensional real Lie algebra ® is
not nilpotent.

LEMMA 5. The Lie subalgebra of 3o(n) n > 2 generated by

0 1 0------ 0 01 0---0
~1 01 ~10 0---0
X=| 0-10 -. and Y=| 00 0.---0
S SRS

0 vvvnnnn “170 00 0---0

has dimension =n.

Proof. It is enough to note that for 1<p=<=n — 2.
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& (IEEEEEE 0

A, 0 Q--vv-- 0
(@dXyYY=|—¢, 0 0 0:---- 0
00 0 Q------ 0

00 0 0:cv--- 0!

where A,e80(p + 1), ¢,=£1.
LEMMA 6. In the Lie algebra 3p(n) n > 2, let

01
01----0
X | x s 0---0 0
X = — win x.=| % | x-= Do
-X,| X, we T R I o o
0---—10 '
10--0 0
01 0---0
1
Y = ——) with Y,=| 0 0 0---0
O’YI : Do
l 00 0---0

The Lie subalgebra of 3p(n) generated by X and Y has dimension
=[n/2] + 1, where [-] denotes entire part.

Proof. It is enough to note that for 2p < n — 1

Zpy | Zpy
(@dX)yY =
'_'ZP,Q Zp,l
p+1 p—1
. ———
**...*GPQ...O**...*
where Z,,=|[ 0 0 0 . .
S A S S
p p
* % *0 0-..0 * *... %
* % *0 0...0 * * *
Z,,= SR
* ok *0 0-.-0 * * *
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and ¢,=+1, a, e R.

Recall now that the universal covering group of a connected
locally compact group defined in [10] is a LP-group which is in
general not locally compact.

PROPOSITION 6. A conmnected locally compact group s almost
Lie if and only if its universal covering group is HXA with H
simply connected Lie group and A direct product of copies of the
additive group R.

Proof. Let G be a locally compact connected group. Its Lie
algebra & has the form HxXAXF, with § finite dimensional Lie
algebra, A direct product of 1-dimensional Lie algebras and & =
II:c; ®, direct product of simple compact finite dimensional Lie alge-
bras. Each &, is isomorphic to one of the classical types A4, =
su(l+1) =1, B,=802l+1) 1=2 C,=8p(l) 1 =3, D,=3802l) l =4 or
one of the exceptional E, E, E, F, G,. Suppose G is almost Lie.
From Lemma 4, there is but a finite number of indices 7¢J, with
&, isomorphic to an exceptional type, and for fixed [, there is only
a finite number of indices ieJ with ®, isomorphic to A, B, C, or
D,. From Lemma 5 the set of I’s for which there exists a &, of
the type A,, B,, or D, is finite, and from Lemma 6 the set of I’s for
which there exist a &, of the type C, is finite. Hence § is finite
dimensional, and the result follows.

Suppose now that the universal covering group of G is G =
Hx A, with H simply connected Lie group and A direct product of
copies of the additive group R. The canonical continuous homo-
morphism w: G — G is in general neither open nor onto, but its
kernel D is a central totally disconnected subgroup and its range
G, is the dense subgroup of G algebraically generated by the set
{exptX, Xc®, teR}. By Lemma 3 (i), G is an almost Lie topolog-
ical group. Let 0,(t) =exptX,(i=1,2), X,e€®, be continuous one-
parameter subgroups of G and &, continuous one-parameter subgroups
of G such that w(d,(t)) = 6,(t)vte R. Denote by H (resp. H) the
subgroup of G (resp. G) algebraically generated by 0,(R) U 0,(R)
(resp. G,(R) U G,(R)). Then H = w(H) and the map w*: H/y., — H
induced by w is an algebraic isomorphism which is continuous when
H is equipped with its Lie group structure. Hence G is almost Lie.

ExAMPLE. The compact group G = [[i, G, where G, = SU(2)
vn =1 is not almost Lie. In particular, G is not of the form
(Lx M)/H, with L compact connected Lie group, M compact con-
nected abelian group and H normal closed subgroup of L x M.
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