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SOME REMARKS ABOUT C°° VECTORS IN
REPRESENTATIONS OF CONNECTED

LOCALLY COMPACT GROUPS

L. MAGNIN

Given a continuous representation U of a connected
locally compact group 6 in a quasi-complete locally convex
topological vector space E9 one may introduce the space E^
of C°°-vectors which contains the dense space F^ of regular
vectors. Natural questions are then: (1) does F^—E^ hold?
(2) is the differential U^ of U a representation of the Lie
algebra of G on EJ? We here prove that answer to (1) is
"yes" when G is a quotient of a direct product of compact
connected Lie groups and E has a continuous norm, and
that answer to (2) is always "yes". Of special interest are
locally compact groups which are almost Lie in the sense
that any subgroup algebraically generated by two continu-
ous one-parameter subgroups is a Lie group in a finer con-
nected topology. We prove that a connected locally com-
pact group is almost Lie if and only if its universal cover-
ing in the sense of Lashof is HxA with H simply con-
nected Lie group and A direct product of copies of R.

Let G be a connected locally compact group and {Ha, a e 1} a di-
rected decreasing family of normal compact subgroups of G such that

(1) Ga — G/Ha is a Lie group for each ael (by a Lie group we
shall always mean a finite dimensional real Lie group),

and

( 2 ) Π Ha = {e} , e identity of G .

We shall identify G to the projective limit of the Gα's. Denote by
® the Lie algebra of G, which is the projective limit of the Lie
algebras ®a of the Lie groups Ga. If X = (Xa) e®,teR, denote by
exp t X the element (exp t Xa) of G. Let U be a continuous repre-
sentation of G in a quasi-complete locally convex topological vector

space E. For a el, introduce Aa = \ U(h)dμa(h), with μa normal-

ized Haar measure of Ha. Aa is a continuous endomorphism of E
([2], Prop. 10(a), p. 17).

LEMMA 1.

( i ) For each ael, Aa is a projector of E (i.e., A% = Aa),
orthogonal if E is a Hilbert space and U unitary; its range is the
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closed subspace Ea = {αe E; U(h)a = aVh e Ha} which is stable under
U.

(ii) F = \JaeiEcc is a dense vector subspace of E which does
not depend on the family {Haf a el).

Proof ( i ) Al=\ (U(k)o\ U(h)dμa(h))dμa(k)=\ ([ U(kh)

dμa(h))dμa(k) = Aa. If E is a Hubert space and U a unitary repre-

sentation, At = 1 U(h~ι)dμa{h) = Aa. It is obvious that Ea = AaE

and Ea is closed. If a e Ea, x e G, h e J5Γα, i/(fc) Ϊ7(a;)α = U(x) U(χ-1hx)a =
U(x)a, so i?α is [/-stable.

(ii) Let ε > 0, aoeE, q any continuous seminorm on 2?and α e ί

such that q(U(h)a0 — α0) < εV/i e Hα. Then g(Aαα0 — α0) ^ I q(U(h)a0 —

a>o)dμa(h) ^ ε, hence JP is dense. The remaining assertion of (ii) fol-

lows from ([6], p. 45, Lemma 1).

COROLLARY (R. Lipsman, C.C. Moore). If U is irreducible, or
if E is a Hilbert space and U unitary factorial, there exists ace I
such that U{h) = 1 VheHa, i.e., F = E.

Proof The irreducible case is clear. Now suppose E Hilbert
and U unitary factorial, and choose ael such that i?α =£ {0}. The
restriction Ua of U to Ea is quasiequivalent to U, hence there exists
cardinals m, n with mUa = nU, and the result follows.

This result is well-known ([11] Th. 2.1, Th. 3.1) ([14] Prop. 2.2),
but the foregoing proof based on the projector Aa9 though probably
well-known, does not appear in the literature, to the author's know-
ledge.

DEFINITION 1. A vector aeE is said to be C°° for U if for
every X e © the mapping t -> Z7(exp t X)a from R into E is C°°. If
E is a Hilbert space, aeE is said to be analytic for U if the above
mapping is analytic.

In the sequel, when considering analytic vectors, we shall al-
ways implicitly assume that E is a Hilbert space.

Definition 1 generalizes the classical definition when G is a Lie
group, by Goodman's theorem in the C°° case and by [8] in the an-
alytic case. We shall denote by ^(resp. Eω) the space of C°° (resp.
analytic) vectors. Introduce the space (2?α)«, (resp. (Ea)ω) of C°° (resp.
analytic) vectors of Ea for the representation of Ga defined by U,
and define Fo* = U«βi(^«)»= FnE^ (resp. Fω = \Ja*i(E«)* = FpiEJ.
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Foo may be called the space of regular vectors for U; it is the
Garding domain introduced in [13], by ([7] Th. 3.3), if E is a
Frechet space.

For Xe® and αejEΌo, define

= [JL U(exp t X)a\ .
L dt Jί=o

PROPOSITION 1. F«> (resp. Fω) is dense in E and UΌo is a repre-
sentation of the Lie algebra © on Foo (resp. FJ. If E is a Hilbert
space and U unitary, UΌo(X) is essentially skew-adjoint on F^ and Fω

for every X e @, and its closure is the generator of the 1-parameter
group ί —> U(exj>tX).

This proposition is straightforward since F is dense in E and
stable under Ϊ7(exptX) teR,Xe®.

Now, Eoo and Eω are C/-stable, since for aeEoo (resp. Eω), X =
(Xa) e®,x=(χa) e G, ?7(exp t X) U(x)a = U(x) Z7(exp t AdG{x~ι)X)a9 where
AdQ(x~ι)X = (AdgJXa^Xa) 6 ©. Hence, if .& is a Hilbert space and Z7
unitary, UΌo(X) is essentially skew-adjoint on £Όo and l?ω for each
I e @ . Moreover, the continuous mapping (s, t) —> C7(expsXexpίYr)α,
X, 7e@, is separately C°° (resp. analytic) from R2 into £7.

LEMMA 2. Le£ aeE^ X, Ye®. Then mapping

(s, t) • C/(exp s X exp t Y)a

from R2 into E is differentίablef its differential at (s0, t0) e R2 being
(s, t) -> s Uoo(X) C/(exp s0 X exp t0 Y)a + t Z7(exp s0X exp ί0 Γ) t/«o( Y)a.

This lemma follows at once from the equality

ί7(exp(s0 + s)Xexp(£0 + t)Y)a — U(exps0X expί0 Y)a —
exptQY)a - tU(exvs0Xexiρt0Y)Uoo(Y)a = Z7(exp(s0 + s)X
(expίΓ)α - a - tUJJΓ)a) + ίJ7(expβo^)(^(exp8-X"expt0Γ)l7co(Γ)α -
U(exptQY)Uoo(Y)a) + J7(exp(s0 + s)XexvtQY)a - Z7(exps0Xexpi0F)a -
sUo>(X)U(exvs0Xexvt0Y)a and ([16] p. 220, (c)).

PROPOSITION 2. Lei aeE™. The mapping X-^Uoa(X)a from ®
wίo E is continuous linear.

Proof. The linearity is proven exactly as in ([1], p. 226, Lemma
2.2) using Lemma 2. Now, the Lie algebra © is a direct product
of finite dimensional Lie algebras [10], hence a Baire space ([4], p.
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114 Ex: 16(a)). This implies that the linear mapping Z H UΌo(X)a
which is the point wise limit of the continuous mapping Xv^>n(U
(exj}(l/n)X)a — a), n-+ + °°, is continuous ([4], p. 115, Ex. 20(b)).

DEFINITION 2 ([15]). A vector aeE is said to be weakly regular
for the representation U if for any continuous linear form α' on E
the mapping x—> (U(x)a, α'> is regular in the sense of [6].

Denote by R the space of weakly regular vectors. Then j ^ c
RcEoo and £/«> is a representation of (S on R.

PROPOSITION 3. Suppose G is any quotient of a direct product
of compact connected Lie groups. Then: (i) Eoo — R; (ii) if there
exists a continuous norm on E, Fo* = E^.

Proof. Let aeE™. Suppose first G = ΐliejGif Gt compact con-
nected Lie group. Then © is the direct product of the Lie algebras
®i of the Lie groups Gt. For X = (Xt) e © and Jo finite subset of
J, define

X - (Y)e® Y - \Xi i e J °
J o ~ ' ' 1 0 i $ Jo .

We have Uoo(XjQ)a = [d/dt α(expίX/o)]ί==o where a denotes the map-
ping x —> U(x)a from G into E. Choose for each i e J a coordinate
system of the first kind for Gf in a neighborhood of the identity e<
of Gi9 and denote by D^a the differential of the restriction of a to
G, evaluated at e,. Then Uoo(XJo)a = Σiejo(AS)(^)- Now, by Pro-
position 2, Uoo(X)a = limJθ6^- Uoo(XJo)a, ά^ denoting finite subsets of
J and lim being in the obvious sense hence the family ((D$)(Xi))ieJ is
summable in E, and ΣtβjίΆδX-Σi) = UΌo(X)a. As I e @ is arbitrary,
if there exists a continuous norm on E, then there exists a finite
subset Jo of J such that A& = 0 Vΐ ί Jo> i e > 2 = 2°P/0

 w ^ e r e P v ^ ""̂
Π<ejo^i is the projection. This proves that aeF. Suppose now
that G = G/H, with G = ILe^C?* as above and ί ί normal closed sub-
group of G, and let π: G->G denote the projection. Choose a direct-
ed decreasing family of compact normal subgroups {Ha; a el} of G
with properties (1) and (2). Then the family {π(Ha), a el} of com-
pact normal subgroups of G has the same properties. The vector
a is C°° for the representation fj = U<>π of G, so there exists a e I
such that U(π(h))a — a VheHa, which implies aeF. This proves
(ii). (i) follows easily by putting in the above reasoning aΌfi, in
place of α, with α' any continuous linear form on E.

EXAMPLE. Let G = Π»=i &«> Gn compact connected Lie group,
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and U the left regular representation on L\G). Then F (resp. E*)
consists of those feL\G) such that there exists neN and fne
L\G1 x x GJ (resp. Coβ(Gι x x GJ) with / = fnoPn where p.: G ->
Gxx xGΛ is the projection.

PROPOSITION 4. // G ΐs compact, F contains the set of G-finite
vectors.

Proof. Let G the unitary dual of G and Pλ = I πλ(x)U(x)dμ(x),

χeG,πλ = dim(λ)Z;, X; character of λ, μ normalized Haar measure of
G. Pλ is a projector of 2£, Eλ = P ĴSr) is the λ-type isotypic compo-
nent of E, and the set of G-finite vectors of E is the algebraic
direct sum Σ*e£ Eλ. For λeG, there exists, by corollary to Lemma
1, a 6 / such that Tr̂ &as) = 7Γ̂ (ίc)Vίc e Gvfc 6 iία; then ?7(fe)P; = P̂ Vλ €
iία which proves the result.

Any locally compact connected group being locally isomorphic to
HxK with H connected Lie group and K compact connected group,
one still has E*> = -Poo when K is a quotient of a direct product of
compact connected Lie groups and E has a continuous norm. For
other groups like the p-adie solenoid Σp = (RxZp)/B (p a prime),
where Zp denotes the additive group of p-adic integers and B ==
{(n, n)eRxZp, neZ}, the question of whether or not E* = JPOO is here
left open. We shall see that for general locally compact connected
G, Uco is a representation of the Lie algebra © on Eoo and Eω.

DEFINITION 3. A topological group G is said to be almost Lie
if the following condition is satisfied: for any two continuous one-
parameter subgroups θl9 θ% of G, there exists on the subgroup G(θlf

θ2) of G algebraically generated by Θ^R) U 02(R) a finer connected
topology for which G(θl9 θ2) is a Lie group.

Such a topology a G{βu θ2) is unique if it exists, and has the
same continuous one-parameter subgroups as the topology induced
by G. ([12], Lemma 2).

EXAMPLES.

(1) Any connected nilpotent topological group is almost Lie

[12].
(2) Any Lie group is almost Lie ([3], p. 177, Prop. 9).

LEMMA 3.

( i ) The direct product of two almost Lie topological groups is
almost Lie.
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(ii) Any quotient of an almost Lie topological group by a
locally compact normal subgroup is almost Lie.

Proof.
( i ) results from Example (2), and (ii) follows from ([9], Lemma 1).
If G is connected locally compact almost Lie, then for αeJSΌo

(resp. Eω), X, Fe®, the mapping (s, t) —> ?7(expsXexp£Y)a is jointly
C°° (resp. analytic) and Uoo is a representation of the Lie algebra @
of G on Eoo (resp. Eω).

PROPOSITION 5. Let G be any connected locally compact group.
Uoo is a strongly continuous representation of the Lie algebra © of
G on Eoo, and on Eω, by essentially skew-adjoint operators if E is
a Hilbert space and U unitary.

Proof. We already noted that G is locally isomorphic to HxK,
with H connected Lie group and K compact connected group. Now,
K is isomorphic to (PxA)/H, with P direct product of compact con-
nected Lie groups, A abelian compact connected group and H closed
normal subgroup of PxA. Proposition 5 then follows from Proposi-
tion 3 and from the fact that A is almost Lie, observing that, for
a representation or local representation of a product of two locally
compact groups, a vector is C°° (resp. analytic) if and only if it is
separately C°° (resp. analytic) on each factor (this results of [17],
p. 186, Ex. 92 in the C°° case and of [5] in the analytic case).

We now turn to the characterization of locally compact connect-
ed almost Lie groups.

Let © a Lie algebra and X, Ye®. A formal commutator of X
and Y is any expression Z = [Xlf [X2, [ -[Xn-lf Xn]- •] where Xi=X
o r Y Vi = 1, 2, , n. n = deg Z is the degree of the formal com-
mutator Z. Any formal commutator of X and Y defines an element
of © which we shall again denote by the same letter Z; the formal
commutator Z will be said to be ^0 if the corresponding element
Ze® is Φθ. The set of all formal commutators of X and Y is
clearly ordered as follows:

X, Y, [X, Y], [X, [X, Y]], [Y9 [X, Y]], [X, [X, [X9 Y]]] ,

[Y[x, [x, Y]]), [x, [Y, [x, Y]]], [Y,[Y, [x, Y]]],...

LEMMA 4. Let ® be a finite dimensional real Lie algebra and
©oo = Πn=i®Λ, where ®n = ©Vw ^ 1. Fix X, Ye® and define X°,
Y°e®oo by X° = {nX)n^, Y° = (nY)n^. If there is an infinite
sequence of formal commutators of X and Y which are Φθ, then
the Lie subalgebra of ©oo generated by X° and Y° is infinite dimen-
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sional.

Proof. We may suppose that © is generated as a Lie algebra
by {X, Y). Denote by Zλ = X, Z2 = Y, Zz, - , Zp(p = dim©) the p
first (with respect to the order) formal commutators of X and Y
with the property that the family {Zl9 , ̂ } of the corresponding
elements of © is linearly free. For each qeN, choose =£0 formal
commutators Wh(h — 1, 2, , q), such that deg Wh — deg Zp + h.
Denote by Zϊ, Wk 1 ̂  i ^ p, 1 ̂  h ^ q the formal commutators of
X° and Γ° in ©«, analogous to Zif Wh formed with X° and Y° in
place of X and Γ. We have Z\ = (^deg^ Z,) ai 1 ̂  ΐ ^ p, Wl =
(ΛdβϊF* PΓO iil ^h^q. Let λx, , λPf μl9 ---,μqeR such that
Σ?=iλ,Z? + Σ L i A C = 0 in the Lie algebra ©«. If we expand T7Λ

in © as IF, = Σ?=i £iW* 6 Λ), we get λ ^ - Σ U i ί ΐ Λ , and

(*)
/ ι = l

- 0 Vi = 1, 2, , p, Vn > 1 .

Fix i 1 ̂  i ^ p. The linear system with q equations and the q un-
knowns μhξl 1 <; ft ̂  q obtained by writing down (*) for n = 2,
22, , 29 has determinant

with kt = deg Zp - deg Z< ̂  0.
Clearly j < f ί - 2<

dβ***+*<+1»<«+1)'ί Π « « i ^ (2y - 2Z), g -> + - , so that
for large q, μhξi = 0 Vλ = 1, 2 g, Vi = 1, 2 p. Then λx = • =
χp =: μx-=z... =μq = 0 for large q, i.e., the elements Zί, , Zp°, Wί,
•••, Wg° are linearly independant in ©<*. This completes the proof.

REMARK. There exists X, Ye® satisfying the hypothesis of
Lemma 4 if and only if the finite dimensional real Lie algebra © is
not nilpotent.

LEMMA 5. The Lie subalgebra of %o(n) n > 2 generated by
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has dimension >n.

Proof. It is enough to note that for 1 ̂  p <| n — 2.
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(adX)"Y =

εp 0

0 0

- ε , 0 0 0

0 0 0 0

\ 0 0 0 0 0/
where Ap e£o(p + 1), e p = ± 1 .

LEMMA 6. In the Lie algebra 8p(n) n > 2, let

-X,
with

Y — with

0 l O \

- l o' .

: •• 1

o - i o /

/ o l o ••• oy
- l o o o

o o o o

\ o o o o/

/O O 1\

O O 0

O O 0

\1O O 0'/

The Lie subalgebra of Sp(ri) generated by X and Y has dimension
^[n/2] + 1, where [•] denotes entire part.

Proof. I t is enough to note that for 2p £Ξ n — 1

Z..,

where ZPtl =

p+l

* *

jp-1

* εp 0 0 * * * \

* 0 O O * * . . . *

0 O O * *
V P_

* * 7 7 7 * o O O * * * \
* * . . . * Q O O * * *

* * . . . * o o o * *...
1 * * * a, 0 0 * * */
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and ε p = ± l , apeR.

Recall now that the universal covering group of a connected
locally compact group defined in [10] is a LP-group which is in
general not locally compact.

PROPOSITION 6. A connected locally compact group is almost
Lie if and only if its universal covering group is HxA with H
simply connected Lie group and A direct product of copies of the
additive group R.

Proof. Let G be a locally compact connected group. Its Lie
algebra ® has the form φxSίx^, with ξ> finite dimensional Lie
algebra, Sί direct product of 1-dimensional Lie algebras and $ =
ΐliej®i direct product of simple compact finite dimensional Lie alge-
bras. Each ®t is isomorphic to one of the classical types At =
Su(Z + l) Z ^ l , Bι = $o(2l + l) 1^:2, Cι = 2p(l) I ^ 3, Dι = So(2Z) I ^ 4 or

one of the exceptional Eβ, EΊ, E8, F4, G2. Suppose G is almost Lie.
From Lemma 4, there is but a finite number of indices i e J, with
®i isomorphic to an exceptional type, and for fixed ί, there is only
a finite number of indices ieJ with ®t isomorphic to Ah Bh Ct or
Di. From Lemma 5 the set of Γs for which there exists a ©< of
the type Ah Bu or Όx is finite, and from Lemma 6 the set of Z'sfor
which there exist a ®t of the type Cx is finite. Hence $ is finite
dimensional, and the result follows.

Suppose now that the universal covering group of G is G =
HxA, with H simply connected Lie group and A direct product of
copies of the additive group R. The canonical continuous homo-
morphism w: G —> G is in general neither open nor onto, but its
kernel D is a central totally disconnected subgroup and its range
Go is the dense subgroup of G algebraically generated by the set
{expίX, I e @ , t eR}. By Lemma 3 (i), G is an almost Lie topolog-
ical group. Let θτ(t) = exp tXt(i = 1, 2), Xi e ®, be continuous one-
parameter subgroups of G and Θi continuous one-parameter subgroups
of G such that wiS^t)) = θt{t)yft e R. Denote by H (resp. H) the
subgroup of G (resp. G) algebraically generated by Θ±(R) U Θ2(R)
(resp. ΘX(R) U B2{R)). Then H = w(H) and the map w*: H/TIΓ.D -> H
induced by w is an algebraic isomorphism which is continuous when
H is equipped with its Lie group structure. Hence G is almost Lie.

EXAMPLE. The compact group G = Π»=i Gn where Gn = SU(2)
Vn ^ 1 is not almost Lie. In particular, G is not of the form
(LxM)/H, with L compact connected Lie group, M compact con-
nected abelian group and H normal closed subgroup of LxM.
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