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AN INEQUALITY FOR THE DISTRIBUTION
OF ZEROS OF POLYNOMIALS

AND ENTIRE FUNCTIONS

THOMAS CRAVEN AND GEORGE CSORDAS

An inequality is established which provides a unifying
principle for the distribution of zeros of real polynomials
and certain entire functions. This inequality extends the
applicability of multiplier sequences to the class of all
real polynomials. The various consequences obtained gener-
alize and supplement several results due to Hermite-Poulain,
Laguerre, Marden, Obreschkoff, Polya and Schur.

1* Introduction* In the vast literature dealing with the
distribution of zeros of real polynomials and real entire functions,
an important role is played by linear transformations T which
possess the following property:

(1) Zc(T[f]) <ί Zc(f) ,

where / is a polynomial and Zc(f) denotes the number of nonreal
zeros of /, counting multiplicities. If T — D — djdx, then the above
inequality is a consequence of Rollers theorem. If h is a real poly-
nomial with only real zeros and T = h{D), then (1) follows from
the classical Hermite-Poulain theorem [12, p. 4]. There are many
other linear transformations T which satisfy inequality (1). Indeed,
let Γ = {Ύkί^o be a sequence of real numbers and for an arbitrary
real polynomial f(x) = ΣlU akx

k define Γ[f] by

(2) Γ[f(x)\ = ±akykx
k .

fc=o

If 0(x) — ̂ akx
k is a real entire function, then set Γ[Φ(x)] = Σak7k%ic>

whenever this series converges. Now let Q(x) be a real polynomial
with only real negative zeros. Let Γ = {Q(k)}Z=0. Then Laguerre's
theorem [12, p. 6] asserts that

^ Zc(f) ,

where f(x) = ΣJU a^χk ι s a n arbitrary real polynomial.
The real sequences Γ = {yk} for which Γ[f] has only real zeros

whenever / is a real polynomial with only real zeros, have been
completely characterized by Pόlya and Schur in their celebrated
paper [20] entitled, ΐlber zwei Arten von Faktorenfolgen in der
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Theorie der algebraischen Gleichungen. In this paper Pόlya and
Schur called a sequence Γ = {yk}t=o of real numbers a multiplier
sequence of the first kind if Γ takes every real polynomial f{x)
which has only real zeros into a polynomial Γ[f(x)] (defined by (2))
of the same class. These authors termed a sequence Γ — {7j?=0 of
real numbers a multiplier sequence of the second kind if Γ takes
every real polynomial f(x), all whose zeros are real and of the same
sign, into a polynomial all of whose zeros are real. Thus, with
this nomenclature, the aforementioned theorem of Laguerre states,
in particular, that the sequence Γ = {Q(k)}k=0 is a multiplier sequence
of the first kind. We hasten to add that there are several other
multiplier sequences of the first kind which are known to enjoy
inequality (1) (see, for example, [12, Satz 5.8, Satz 5.13 and Satz
5.14]).

In §2 we shall introduce a new family of multiplier sequences
of the first kind which depend continuously on a parameter t
(Theorem 2). With the aid of these sequences and one of our
previous results (Theorem 1), we shall completely characterize all
real sequences Γ = {yk} which satisfy the inequality

(3) Zc(Γ[f])^Zc(f)f

where / is an arbitrary real polynomial and where Γ[f] is defined
by (2) (Corollary 4). Indeed, our main result, the fundamental
inequality, (we will use this epithet to distinguish inequality (3)
from the numerous inequalities that the reader will encounter in
the sequel) asserts that if Γ is a multiplier sequence of the first
kind, then inequality (3) holds for all real polynomials / (Theorem
3). We shall also discuss conditions when strict inequality holds in
(3) (Theorem 4 and Theorem 5). At the end of this section, we
shall show that, in a certain sense, inequality (3) is best possible.

Section 3 is devoted to several applications and consequences of
the fundamental inequality. Indeed, the various corollaries in this
section demonstrate that inequality (3) serves as a unifying principle
for many results of the type we cited above. In particular, in this
section we shall extend the theorems of Laguerre (Corollary 11),
Hermite-Poulain (Corollary 14), Pόlya and Schur (Corollary 7), Pόlya
(Corollary 8 and Corollary 9) and Schur (Corollary 12).

2* The fundamental inequality* In [20] Pόlya and Schur
provided both algebraic and transcendental characterizations of
multiplier sequences. We begin this section with a brief review
of the transcendental characterizations of these sequences. Let
Γ = {TjJίU be a sequence of real numbers. Then in order that Γ
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be a multiplier sequence of the first kind, it is necessary and
sufficient that the series Φ(x) = Σ (7fc/&!)#fc converge in the entire
plane, and that the entire function Φ(x) or Φ(—x) can be represented
in the form

( 4 ) Φ{x) = ceσxxm Π ( l +

where σ ^ 0, xn > 0, ceR, ΣϊU #» * < °° and m is a nonnegative
integer. In order that the sequence Γ be a multiplier sequence of
the second kind, it is necessary and sufficient that the series Φ(x) —
Σ(7*/A!)ίcfc converge in the entire plane, and that the entire func-
tion Φ{x) can be represented in the form

(5 ) Φ(x) = ce-aχ2+?xxm Π ( l - —

where a ^ 0, c, /3 and ccΛ are real, ΣϊU ^ 2 < °° a n d w is a nonnega-
tive integer. In the sequel we will adhere to the following nomen-
clature. A real entire function Φ is called a function of type II in
the Laguerre-Pόlya class if it admits a representation of the form
(5). Entire functions which admit a representation of the form (4)
are termed functions of type I in the Laguerre-Pόlya class. The
significance of the Laguerre-Pόlya class in the theory of entire
functions (Levin [7, Chapter 8]) is natural since Pόlya [13] has
shown that functions of the type II, and only those, are the uniform
limits, on compact subsets of the plane, of polynomials with only
real zeros.

The inequality we shall establish in Theorem 3 may be derived
from any one of several results that the authors obtained in con-
nection with their investigations of the structure of certain real
algebraic curves. In the present setting, it will be fruitful to use
the following theorem that we proved in [3].

THEOREM 1. Let h(x) = Xo bkx
k be a real polynomial with only

real nonpositive zeros and let f(x) be an arbitrary real polynomial.
Then

?(4)(aθ) S Zc(f) .

We remark that in the special case when / has only real zeros
this theorem was first proved by Pόlya and Schur [20, p. 107] (see
also Pόlya [15] or [1]). With the aid of Theorem 1, we shall show
below that a certain family of sequences which depend continuously
on a parameter t is a family of multiplier sequences of the first
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kind.
In order to facilitate our description of these sequences, we

require some additional notation and terminology. For an arbitrary
real polynomial f(x) of degree n, we define f*(x) = xnf(x~1). If m
is a positive integer, we set

m \ m / \ m / \ m

o,o .

Then /w, also known as the multiplier sequence of Jensen, is a
multiplier sequence of the first kind (see Levin [7]). Hence, if
Γ = {Taj, Ύk ̂  0, is a multiplier sequence of the first kind, then it
follows that the zeros of the polynomials

gk(t) = (Γ[(l + t)k]), k = 0, 1,2, . . . ,

and

/=ί \ m / \ m

where μ = min (k, m), are all real and nonpositive. We also note
that if Φ(x) = Γ[ex], so that Φ(x) is a function of type I in the
Laguerre-Pόlya class, then the polynomials g* are generated by
e**Φ(x); that is,

k\

But for a fixed t > 0, extΦ(x) is also a function of type I in the
Laguerre-Pόlya class. Therefore, by the aforementioned trans-
cendental characterizations of multiplier sequences, for each fixed
to > 0, the sequence {flr*(to)}ϊU is a multiplier sequence of the first
kind.

Preliminaries aside, we shall now prove that for each positive
integer m the sequence {g*im (to)}ϊU, U > 0, constructed above satisfies
inequality (3).

THEOREM 2. Let Γ = {τfc}?=o, 7fc ^ 0, be a multiplier sequence
of the first kind. For each positive integer m let ΛUm = {gtmit)}.
Let f(x) = Σfc=o a<k%k be an arbitrary real polynomial of degree n.
Then for each fixed t > 0,

Zc(f) .
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In particular Λttm is a multiplier sequence of the first kind.

Proof. It suffices to consider the case when possibly some but
not all of the terms of Γ — {yk} are zero. Since Γ is a multiplier
sequence of the first kind the relations 7//z Φ 0 and yk — 0 for any
k, j <k <l, cannot hold at the same time (see, for example, Craven
and Csordas [2, Theorem 3.4(b), p. 807]). Furthermore, we note
that if 70 = 7i = = ΎP = 0, 7P+1 Φ 0 and m <Ξ p, then Λhm[f] = 0.
Thus, if Γ has precisely p + 1 leading zero terms, then, to avoid
trivialities, we let m ^ p + 1.

Now we set

gm(t) = Γ[(l + t) ]

and observe that the degree of gm(t) need not be m. If Dt denotes
differentiation with respect to t, then for each fixed x

gm(Dt)f(xt) = ΣΣ ί

Thus, for a fixed but arbitrary t0 > 0, we obtain

If we set y — xtQ, then

= Σ

Since Γ is a multiplier sequence of the first kind, the polynomial

Σ Cfc) ΎkUkyk has only real nonpositive zeros. Therefore, we may

invoke Theorem 1 and conclude that

and consequently that

Zc([gm(Dt)f(xt)]t=t0) tί Zc(f) .

Now a computation shows that

' k\ mlμ
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where μ = min (&, ra). In this formulation we added the stipulation
that μ — min (k, m) since we allow the positive integer m to be
less than the degree of /. If we replace in the right-hand side of
the expression t0 by tom and x by m~xx, then the inequality on the
number of nonreal zeros is preserved and thus we obtain

where μ — min (k, m). That is, for each fixed t > 0,

Zc(f) .

Finally, if / has only real zeros, then the above inequality implies
that Λttm[f] has also only real zeros. In particular, the sequence
ΛUm is a multiplier sequence of the first kind. This completes the
proof of Theorem 2. •

As a consequence of Theorem 2, we obtain the following funda-
mental inequality.

THEOREM 3 (The Fundamental Inequality), Let Γ = {7&}i£=o be
a multiplier sequence of the first kind and let f(x) = Σ£=o <*>k&k be
an arbitrary real polynomial of degree n. Then

( 6 ) Zc(Γ[f]) <ί Zc(f) .

Proof. First we assume that yk ^ 0 for k = 0, 1, 2, . Then
by Theorem 2 for each positive integer m, m > n and for each
t0 > 0 the following inequality holds

Now we take the limit as m —> °o followed by the limit as ί0 —
> 0.

Under these limiting processes the above inequality prevails by
Hurwitz's theorem and thus we conclude that if yk ^ 0, then

Zc(Γ[f]) <ί Zc(f) .

Since Γ = {yk} is a multiplier sequence of the first kind the terms
jk either all have the same sign or they have alternating signs. In
the latter case we apply the above argument to the sequence
{(-l)*+i7*}?=o, where i = 0 if y2k ^ 0 and i = 1 if y2k+1 ^ 0. Thus,
we see that inequality (6) remains valid if the terms yk have alter-
nating signs and so the proof of the theorem is complete. •
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REMARK. If Γ = {yk} is a multiplier sequence of the first kind,
then the terms yk either all have the same sign or they have alter-
nating signs. For reasons of convenience we shall often assume in
the sequel that yk ^ 0 for all k. Indeed, if Φ(x) — Γ[ex] is a
function of type I in the Laguerre-Pόlya class, then so is the
function Φ{—x).

The significance of inequality (6) is, in part, due to the fact
that it extends the applicability of multiplier sequences of the first
kind to the class of all real polynomials. In particular, we have
solved here the following problem: characterize all real sequences
Γ •= {jk} which satisfy inequality (6) for all real polynomials /. The
solution to this problem is summarized in the following corollary.

COROLLARY 4. Let Γ = {yk} be a sequence of real numbers.
Then Γ is a multiplier sequence of the first kind if and only if
for any real polynomial f

Zc(Γ[f]) £ Zc{f) .

In dealing with inequalities it is always important to know
when or under what conditions on inequality of the form " <| "
can reduce to an equality. A complete specification of the conditions
under which equality holds in (6) seems to be difficult since this
inequality depends both on the multiplier sequence Γ and on the
polynomial /. On the other hand, if Γ is of a particularly simple
form, as for example is the case if Γ — {1, r, r2, •}, r Φ 0, then
clearly for any real polynomial /, Zc(Γ[f]) — Zc(f). Another problem
of interest is to characterize multiplier sequences Γ and polynomials
/ for which Zc(Γ[f]) = 0, when / possesses some nonreal zeros. The
following two theorems provide a partial solution to the above
cited problems.

T H E O R E M 5 (See Obreschkoff [12, p. 126]). Let f(x) = Σ £ = o akx
k

be a real polynomial with zeros zlf •••, zn. Suppose for some non-

negative integer p, 0 ^ p ^ n,

|args f c | < - — - 4 , k = 1, •••, p ,
2n + 2 — p

and that the remaining zeros of /, if any, satisfy

|argzfc - π\ < π .
n + p + 2

Let Γ — {yk}, yk > 0, be a multiplier sequence of the first kind and
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let A = \ ί JLJTA; [. Then A is a multiplier sequence of the first kind

and

Zc(A[f]) = 0 .

Proof. It is easy to see that if {γfc} and {y'k} are any two
multiplier sequences of the first kind, then the composite sequence
{τ&7jfc} is also a multiplier sequence of the first kind. Thus, if we
compose the multiplier sequence of Jensen, Jn, with the sequence
{nk}k and then compose this resulting sequence with {yk/k\} we obtain
A. Therefore, we conclude that A is a multiplier sequence of the
first kind. Since the zeros of the polynomial Γ[(l + x)n] are all real
and negative, the conclusion that Zc(A[f]) = 0 now follows from
Obreschkoff's theorem [12, p. 126]. •

Our next theorem brings into a sharper focus the dependence
of the fundamental inequality (6) on the multiplier sequence Γ and
on the polynomial /.

THEOREM 6. Let Φ{x) = Σ (Ίkjk\)xk be an entire function of
type I in the Laguerre-Pόlya class and suppose that Φ has an
infinite number of zeros. Let Γ — {yk} and let f{x) = Σfc=o a^ be
a real polynomial of degree n. Then there exists a constant K =
K(Γ, / ) , which depends on Γ and /, such that for all real a, |α|>UL

Z0(Γ[f(x + a)]) = 0 .

Proof. We may assume, without loss of generality, that 7&>0
for all k. For each positive integer m, let gm(x) = Γ[(l + x)m].
Then the hypotheses about Φ imply that gm(x) has only real, simple
zeros (see Csordas and Williamson [5]). Next, a simple calculation
shows that for a real, a Φ 0,

Γ[f(x + a)] = Σ,L

Ίψ
lΎkx

k

fc=o V Oί

Thus for a Φ 0, the polynomials P{x)=Σt=oaka
kgk{x) and Γ[f{x + a)]

have the same number of real zeros. We now select n + 1 real
numbers ί0, , tn such that ί0 > tx > > t%9 g'%(t5) = 0 for j =
1, , n — 1, gn(Q > 0 and ( — ΐ)ngn(tn) > 0. This is possible since
the zeros of gn are all real and simple. Let

M = (max Σ I Λ(«i) I )(min | gn(t5) I)-1

fc=0 / 3

(
\
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and let

K = max (M max ~^- , 1) .

Then for | a \ > K the following estimates hold:

max
A;

<
M max

)(maxΣlΛ(ίi)l)

•ojΓmax -ίi-ΠΓmax Σ lfir*(i,)l 1
L * o. IJL J *=o J

The strict inequality implies that P(tQ) and ana
ngn{tά) have the same

sign for each j . Thus, P(a ) has n sign changes and a fortiori n
real roots ίor\a\>K. But then Zc(Γ[f(x + α)]) = 0 for |α|>ϋΓ. Π

At this point it should be noted that while the linear operators
Γ and D — d/dx enjoy many similar properties (see, for example,
Corollaries 9 and 14 below), Γ, in general, is not translation in-
variant. In fact, simple (although somewhat laborious) examples
show that if Γ is a multiplier sequence of the first kind, then, in
general,

Zc(Γ[f(x + a)]) Φ Zc(Γ[f]) .

The elusive character of multiplier sequences Γ of the first kind is
further underscored by examples which show that, in general,

Zc(Γ[f]) Φ Z0(Γ[f*]) ,

where /*(#) = xnf(l/x) and f(x) is a real polynomial of degree n.
In the remainder of this section, we shall demonstrate that in

a certain sense inequality (6) is best possible. If Γ is a multiplier
sequence of the second kind and if / is a polynomial with only
real nonpositive zeros, then Pόlya has shown that Zc(Γ[f]) — 0. In
the absence of additional assumptions on /, it is easy to see that,
in general Zc(Γ[f]) ^ Zc(f). But even if we impose on / the addi-
tional restriction that all of its zeros lie in the left half-plane (i.e.,
have nonpositive real part), inequality (6) may still fail as the
following example shows.
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EXAMPLE. Let Φ(x) = Σϊ-oCr*/*!)** = (*2 - l)2cosa;. Clearly, Φ
is a function of type II in the Laguerre-Pόlya class, and hence Γ —
{Ύ*} = {1, 0, —5, 0, 49, 0, •} is a multiplier sequence of the second
kind. If /(»)= (x + 1)2(«2 + 1), then Γ[f(x)] = 1- lOαr2 + 49a;4. Thus,
Z0(Γ[f]) = 4, while Zc{f) = 2.

3* Extensions and applications • This section is devoted to a
brief treatment of some of the consequences of Theorem 1 and
Theorem 3. (For different kinds of applications of Theorem 1, we
refer the reader to [4].) As we shall see below, the principal
leitmotif that underlies the various ramifications of inequality (6)
is that this inequality serves as a unifying principle for many results
of the type we cited in the Introduction.

Before we provide several generalizations of Theorem 1, we call
attention to the following interesting partial converse of this
theorem. If h(x) = Σϊ=o bkx

k is a real polynomial and if for all
polynomials /

then h(x) has only real zeros. The proof of this assertion will be
readily supplied by the reader.

Our first corollary shows that Theorem 1 remains valid if the
polynomial h(x) in this theorem is replaced by an entire function
of type I in the Laguerre-Pόlya class.

COROLLARY 7. If Φ(x) = Σ(7fc/&!)α;fc, yk ^ 0, is a function of
type I in the Laguerre-Pόlya class and if f(x) is an arbitrary
real polynomial of degree m, then

Proof. Let gn(x) = Σϊ=o (fo)Ύkχk a n ( * aPP13r Theorem 1 to f(x)
with h(x) = gn(x/ri), and then consider the limit as w—> ©o. •

We remark, parenthetically, that Corollary 7 extends a theorem
of Pόlya and Schur [20, p. 107]. It is interesting to note that this
area of investigation is intimately connected with the various con-
sequences of the Hermite-Poulain theorem [14, p. 238]. (For related
theorems see also Obreschkoff [10] and [11].)

A companion result which generalizes a theorem of Pόlya [14,
p. 238] is the following corollary.
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COROLLARY 8. Let Φ(x) = E ? ^ ^ / * ! ) ^ , yk ^ 0, be a function
°f type I in the Laguerre-Polya class. Let Ψx(x) = Ψ(x)f(x), where
Ψ{x) is a function of type II in the Laguer re-Poly a class and f is
an arbitrary polynomial. Then

Proof. We first note that standard methods from the theory
of entire functions show that the series

k=o k\

converges in the whole plane. Let

and

gk\χ) — s j

3

Then the sequence A = {gk(l)}ΐ=0 is a multiplier sequence of the first
kind (see the preliminary remarks in § 2). Hence by Theorem 3
for each positive integer n

x)]) ^ Zc(ψn) .

Now by a result of Pόlya [14, p. 246]

Zc(ψn) ^ Zc(f) , n = 1, 2,

If we let pn(x) = Σk=o\J£)gk(l)ttk%kf then the above inequalities
imply that for each n9 Zc(pn) ^ Zc(f). Since the polynomials pn(x/n)
converge uniformly on compact subsets of the plane to the entire
function

we conclude that
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But now a calculation shows that

and thus the conclusion of the corollary follows. •

The same type of argument establishes, mutatis mutandis, the
validity of our next corollary.

COROLLARY 9. If Γ = {7AJ?=O, 7* ^ 0 , is α multiplier sequence
of the first kind and if Ψ(x) is a function of type II in the
Laguerre-Pόlya class, then for any real polynomial f(x)

Zc(Γ[Ψ(x)f(x)]) ^ Zc(f) .

We pause here for a moment to examine the scope of the fore-
going results. Let Γ(o) = {1, 1, 1, •}, Γ(1) = {0, 1, 2, • -} and for a
positive integer m, m ^ 2, let Γ{m) = {7*}ίU, where 70 = 71= =
Ύm-i = 0 and ym+k — (m + k)l/k\, k = 0, 1, 2, . Then for each non-
negative integer m, Γ{m) is a multiplier sequence of the first kind
(just consider the Taylor coefficients of the function xmex) and Γ (w)

is the multiplier sequence which corresponds to the operator Dm,
where D — d/dx. More precisely if Φ is an entire function, then

x

mDmΦ = Γ{m)[Φ] .

Thus, Corollary 9 asserts in this case that Zc(Γ{m)[Ψ(x)f(x)}) ^Zc(f),
where Ψ is a function of type II in the Laguerre-Pόlya class and
/ is an arbitrary real polynomial. Now a fifty-year old conjecture
(see, for example, Pόlya [17], [18] and [19] and Wiman [26]) asserts,
when expressed in our nomenclature, that there is a positive integer
m, sufficiently large, such that

Zc(Γ^[W(x)f(x)]) = 0 .

Thus, this conjecture may be viewed as a special case of the more
general problem we referred to in the discussion preceding Theorem 5.

We shall mention here a consequence of Corollary 9 which
generalizes Theorem 3 and a theorem of Pόlya [14] in yet a differ-
ent direction.

COROLLARY 10. // Φ(x) = ΣfcU(7fc/&!)β\ 7fc ^ 0, is a function
of type I in the Laguβrre-Pόlya class and if f(x) = Σfc=o β>kχh is an
arbitrary polynomial, then for any fixed real number t
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Proof, Let Γ = {τfc}Γ=o, so that Γ is a multiplier sequence of
the first kind. Then a computation shows that

Γ[e9tf(x)] = Σ akx
kΦ{k)(xt) .

Hence by Corollary 9 for each fixed t

^Zc(f). •

It is instructive to note that in the special case when t — 0,
Corollary 10 reduces to Theorem 3.

We shall now briefly describe the connection between Laguerre's
theorem and Theorem 1 and Theorem 3. Let h(x) — Σ£=o bkx

h be a
real polynomial with only real negative zeros. Let f{x) = Σ?=o akχk

be a real polynomial and let θ = x(d/dx). Then

= Σ α

and by Laguerre's theorem

Z0(h(θ)f) £ Zaif) .

Thus, the sequence {h(k)}ΐ=0 is a multiplier sequence of the first
kind. In light of Theorem 3 it is clear now that the fundamental
inequality is an extension of Laguerre's theorem (for other kinds
of extensions of Laguerre's theorem, see [16]). Indeed, there are
real polynomials p(x), not all of whose zeros are real, for which
the sequence {p(k)}k=0 is a multiplier sequence of the first kind
(consider, for example, p(x) = 1 + x + x2). The next corollary pro-
vides a method for constructing multiplier sequences of the form
just mentioned.

COROLLARY 11. Let h(x) = Σ£=o bkx
k be a real polynomial with

only real negative zeros. Let h(x) denote the polynomial

h(x) = Σ bkx(x - 1) •(& - fc + 1) .
fc=0

If f(χ) = ΣΓ=o cbkχk is an arbitray real polynomial, then

Σ akh(k)xk) £ Zc(f) .
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In particular, the sequence {fe(fc)}?=0 is a multiplier sequence of the
first kind.

Proof. If θ = x(d/dx), then an easy induction shows that
θ(θ - 1). .(0 - k + 1)/ = xkf{k\x). Hence

Since by assumption h(x) has only real negative zeros, we may
invoke Theorem 1 and deduce that

Zc{h{θ)f) rg Zc(f) .

On the other hand,

, =o *=i (fc-j)!

= Σ α* Σ &ifc(fc - 1) •(* - 3 + I)*"

= Σ akh(k)xh .

Consequently,

( t ) Z c ( f ) . Π

The observations introduced in the course of the proof of
Corollary 11 allow us to reformulate Theorem 1 in terms of the
differential operator θ and the polynomial h(x), where h(x) has only
real negative zeros. That is, the inequality in Theorem 1 may now
be written as

zMθ)f) ^ zc(f).

We hasten to add that the polynomial h(x) need not have any real
zeros even if all the zeros of h{x) are real and negative (set h(x) =
(1 + xf). However, if h(x) has only real positive zeros, then it is
known [21, V, #185] that h(x) has also only real positive zeros. For
related results about polynomials of the form h(x), where h(x) is an
arbitrary real polynomial, we refer the reader to Pόlya and Szego
[21, V, #182-188] and Obreschkoff [12].

The remarkable properties of multiplier sequences were first
derived from the Schur Composition Theorem [22], [9], [12] and
[20]. Thus, in light of the foregoing developments, it is not sur-
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prising that the fundamental inequality also implies the following
extension of the Schur Composition Theorem.

COROLLARY 12. Let h(x) — Σ*=o bkx
k, K Φ 0, be a real poly-

nomial with only real negative zeros and let f(x) = Σk=oakx
k

f Λ Λ ^ 0 ,
be an arbitrary real polynomial. Then

Jfc=0

Proof. If we write h(x) — Σk=ok\(bk/kl)xk, then it follows from
the transcendental characterization of multiplier sequences of the
first kind (see §2), that the sequence Γ — {k\ δA}£U is a multiplier
sequence of the first kind. Hence by Theorem 3

Zc{Γ[f}) = zJ Σ k\ bkakx
k) <: Zc(f) .

Since the sequence {1/kl} is a multiplier sequence of the first kind,
it follows once again from Theorem 3 that

Zc(±bkakx
k)^Zc(f). •

The various composition theorems of Grace [12], De Bruijn and
Springer [6], Marden [8], Obreschkoff [12], Szego [24] and Weisner
[25] just to mention a few, belong to the same circle of ideas that
we have been investigating in this paper. (A clear account of
these results is given in Marden [9, Chapter IV]; see also Obreschkoff
[12, Chapter II].) However, these beautiful geometric theorems
treat, for the most part, only the location of the nonreal zeros. In
contrast, our results give information on the number of nonreal
zeros of the composite polynomials. It is in this sense that the
fundamental inequality and its consequences supplement the existing
knowledge in the theory of distribution of zeros of polynomials and
entire functions.

In this short list of direct consequences of Theorem 3, we shall
also include a Stieltjes integral representation of Γ[f], since it leads
to an interesting open problem.

COROLLARY 13. Let Γ = {TJ, 7O Φ 0> be a multiplier sequence
of the first kind. Then there is a function β(t) of bounded varia-
tion on (0, oo) with the following properties:

(a) The moment constants
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Ίk =

all

In

exist.
(b) For any

particular

polynomial

Γ[f]~-

f,

Jo

£ Zc{f) .

Since the polynomial set {gk(%)/k\}%=o, where g*(x) = (Γ[l + #fc])*,
is an Appell set, Corollary 13 is a direct consequence of well-known
results (see, for example, Sheffer [23]) and Theorem 3.

The open problem we alluded to may be formulated as follows.
Characterize the measures dβ for which the inequality (b) of
Corollary 13 holds for all real polynomials /.

Thus far we have witnessed several similarities between the
linear operators Γ and D, D = d/dx. In conclusion, we shall cite
two results which further elucidate the relationship between these
operators. In the formulation of Corollary 14, we require the
following additional terminology. Let Γ = {τ*}ϊU be a multiplier
sequence of the first kind. By a shift of Γ, we mean the sequence
{7m, 7w+i, 7m+2, •••} for some nonnegative integer m. The mth shift
of Γ will be denoted by Γm — {Ύm+k}ΐ=0, Γo = Γ. It is easy to see
that Γm is also a multiplier requence of the first kind. In the
following two corollaries, the assumption that 7A>0, k = 0, 1, 2, •••,
is essential.

COROLLARY 14 (The Hermite-Poulain Theorem). Let h{x) =
Σfc=o bkx

k, bn — 1, be a real polynomial with only real negative
zeros. Let f be an arbitrary real polynomial and let Γ = {jk}, 7&>0,
be a multiplier sequence of the first kind. Define

and

where Γk denotes the kth shift of Γ. Then (a) Zc{φ) ^ Zc(f) and
(b) Zc(ψ) ^ Zc(f).

Proof. Let h(x) = (x + α j -(as + α j , where aό > 0, and form
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the polynomial

F(x) = a

where Γx is the first shift of Γ. Let A = αxΓ + Γx so that Λ =
{(Xiϊk + Tfc+i}?=o Since aι > 0, it follows from the classical Hermite-
Poulain theorem [12, p. 4], [14, p. 238] and a theorem of Pόlya
and Schur [20, p. 110] that Λ is a multiplier sequence of the first
kind. Hence by Theorem 3

ZC{F) = ^ ( 4 / ] ) ^ Zo<J) .

Next we form the sequence a2Λ + Λx, where Aλ denotes the first
shift of A. As before we obtain

Zc((a2A + ΛJlf]) £ Zc(f) .

Repeated applications of the above argument yield Zc(φ) ^ Zc{f),
and thus we have proved part (a) of the corollary. Part (b) of the
corollary is an immediate consequence of Theorem 3. •

It is instructive to note that if in the above definitions of the
polynomials φ and ψ we replace Γk by Dk, where Dk = dk/dxk, then
part (a) of Corollary 14 reduces to the classical Hermite-Poulain
theorem, while part (b) becomes the fundamental inequality with
the multiplier sequence {h(k)}ΐ=0.

COROLLARY 1.5. Let Γ = {yk}9 jk > 0, k = 0, 1, 2, , be a

multiplier sequence of the first kind and let f be an arbitrary
real polynomial. Suppose that Zc(Γ[f]) = Zc(f). If Γ[f] possesses
a multiple real zero, then so does f.

Proof. If / does not have a multiple real zero, then Zc(f) =
Zc(f + s) for [ε| sufficiently small. But then with the appropriate
sign for ε, Γ[f + s] = Γ[f] + γoε will have more nonreal zeros than
Γ[f]. That is,

ZG(Γ[f + ε]) > Zc(Γ[f]) = Zc{f) = Zc(f + ε) .

This contradicts the fundamental inequality and hence the proof of
the corollary is complete.
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