THE ROGERS-RAMANUJAN RECIPROCAL AND MINC'S PARTITION FUNCTION

George E. Andrews

Abstract

The reciprocals of the Rogers-Ramanujan identities are considered, and it it shown that the results yield identities for restricted compositions. The same technique is applied to obtain a generating function for partitions previously treated by H. Minc.

1. Introduction. The celebrated Rogers-Ramanujan identities were first presented in their analytic form as follows:

$$
\begin{gather*}
1+\frac{q}{1-q}+\frac{q^{4}}{(1-q)\left(1-q^{2}\right)}+\frac{q^{9}}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)}+\cdots \tag{1.1}\\
=\prod_{n=0}^{\infty} \frac{1}{\left(1-q^{5 n+1}\right)\left(1-q^{5 n+4}\right)} ; \\
1+\frac{q^{9}}{1-q}+\frac{q^{6}}{(1-q)\left(1-q^{2}\right)}+\frac{q^{12}}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)}+\cdots \\
=\prod_{n=0}^{\infty} \frac{1}{\left(1-q^{5 n+2}\right)\left(1-q^{5 n+3}\right)}
\end{gather*}
$$

The fascinating story of their discovery by L. J. Rogers [8] and their subsequent rediscovery by S. Ramanujan (see [5; p.91]) and I.J. Schur [9] has been told many times [1; Ch. 7], [2; Ch. 3], [5; Ch. 6]. P. A. MacMahon [6] and I.J. Schur [9] observed that (1.1) and (1.2) are equivalent to the following assertions in additive number theory:

ThEOREM R_{1}. The number of partitions of n into parts that differ by at least 2 equals the number of partitions of n into parts of the forms $5 m+1$ and $5 m+4$.

Theorem R_{2}. The number of partitions of n into parts that differ by at least 2 and contain no ones equals the number of partitions of n into parts of the forms $5 m+2$ and $5 m+3$.

Apart from Schur's two ingenious proofs in [9], all other proofs effectively rely on establishing the following two variable result:

$$
\begin{align*}
F_{1}(z) & \equiv 1+\sum_{n=1}^{\infty} \frac{z^{n} q^{n^{2}}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)} \\
& =\left\{\prod_{n=1}^{\infty} \frac{1}{\left(1-z q^{n}\right)}\right\}\left\{1+\sum_{n=1}^{\infty} \frac{(z q)_{n-1}\left(1-z q^{2 n}\right)\left(-z^{2}\right)^{n} q^{n(5 n-1) / 2}}{(q)_{n}}\right\} \tag{1.3}
\end{align*}
$$

where $(A)_{n}=(1-A)(1-A q) \cdots\left(1-A q^{n-1}\right),(A)_{0}=1$.
The reciprocal of $F_{1}\left(-z q^{-1}\right)$ was utilized by Carlitz and Riordan [4; p. 386, eq. (10.7)] in their work on q-analogs of two element lattice permutation numbers; however they give no indication that in fact $1 / F_{1}(-z)$ is the generating function for certain simply restricted compositions. In another paper Carlitz [3] treats classes of restricted compositions which he calls "up-down" and "down-up" partitions. These he shows are generated by reciprocals of q-analogs of the Olivier functions. In fact arguments similar to those given by Carlitz may be utilized to prove the following assertion.

Theorem 1. Let $C_{d}(m, n)$ denote the number of representations of n in the form

$$
n=c_{1}+c_{2}+\cdots+c_{m}, \quad \text { where } 1 \leqq c_{i+1} \leqq c_{i}+d
$$

Then for $d \geqq 0$,

$$
\begin{equation*}
\sum_{m, n \geq 0} C_{d}(m, n) z^{m} q^{n}=\frac{1}{F_{d}(-z)}, \tag{1.4}
\end{equation*}
$$

where

$$
F_{d}(z)=\sum_{n=0}^{\infty} \frac{q^{d\binom{n}{2}+\binom{n+1}{2}}}{(q)_{n}} .
$$

We note that $C_{0}(m, n)$ is just the number of partitions of n into m parts and (1.4) reduces to a well-known generating function identity [1; p.16] since

$$
\begin{equation*}
F_{0}(z)=\prod_{n=1}^{\infty}\left(1+z q^{n}\right), \quad[1 ; \text { p. 19] } \tag{1.6}
\end{equation*}
$$

Let us call a representation of n of the form $c_{1}+c_{2}+\cdots+c_{m}$ where $1 \leqq c_{i+1} \leqq c_{i}+1$ a restricted composition, and let $K_{e}(j ; n)$ (resp. $K_{0}(j ; n)$) denote the number of restricted compositions with each $c_{i} \geqq j$ and with an even (resp. odd) number of parts. Also let $L_{e}(j ; n)$ (resp. $L_{0}(j ; n)$) denote the number of partitions of n into an even (resp. odd) number of parts each $\equiv \pm j(\bmod 5)$. Then equations (1.1) and (1.2) together with Theorem 1 imply:

Theorem 2. For all $n \geqq 0$,

$$
\begin{align*}
& K_{e}(1 ; n)-K_{0}(1 ; n)=L_{e}(1 ; n)-L_{0}(1 ; n) \tag{1.7}\\
& K_{e}(2 ; n)-K_{0}(2 ; n)=L_{e}(2 ; n)-L_{0}(2 ; n) \tag{1.8}
\end{align*}
$$

Both Theorems 1 and 2 will be proved in §2. In § 3 we apply
these methods to H. Minc's partition function $\nu(1, n)$, the number of representations of n in the form $n=1+c_{1}+c_{2}+\cdots c_{m}$ where $1=c_{0}$ and $c_{i+1} \leqq 2 c_{i}$ for $0 \leqq i \leqq m-1$. Minc [7] reduced an enumeration problem in groupoids to the determination of $\nu(1, n)$, and he provided a recurrence whereby $\nu(1, n)$ could be computed. We shall present the generating function for $\nu(1, n)$:

Theorem 3.

$$
\sum_{n=1}^{\infty} \nu(1, n) q^{n}=\frac{q}{\sum_{j=0}^{\infty} \frac{(-)^{i} q^{2 j+1-j-2}}{(1-q)\left(1-q^{3}\right)\left(1-q^{7}\right) \cdots\left(1-q^{2 j-1}\right)}} .
$$

2. The Rogers-Ramanujan reciprocal. We begin by proving Theorem 1. From the definition of $C_{d}(m, n)$ we see that

$$
\begin{align*}
& \sum_{n \geq 0} C_{d}(m, n) q^{n} \equiv \gamma_{m}=\sum_{c_{1}=1}^{\infty} \sum_{c_{2}=1}^{c_{1}+d} \sum_{c_{3}=1}^{c_{2}+d} \cdots \sum_{c_{m}=1}^{c_{m-1}+d} q^{c_{1}+c_{2}+\cdots+c_{m}} \\
& =\sum_{c_{1}=1}^{\infty} \sum_{c_{2}=1}^{c_{1}+d} \cdots \sum_{c_{m-1}=1}^{c_{m-2}+d} q^{c_{1}+c_{2}+\cdots+c_{m-1}} \frac{\left(q-q^{c_{m-1}+d+1}\right)}{(1-q)} \\
& =\frac{q}{1-q} \gamma_{m-1}-\frac{q^{d+1}}{1-q} \sum_{c_{1}=1}^{\infty} \sum_{c_{2}=1}^{c_{1}+d} \cdots \sum_{c_{m-2}=1}^{c_{m-3}+d} q^{c_{1}+c_{2}+\cdots+c_{m-2}} \frac{\left(q^{2}-q^{2 c_{m-2}+2 d+2}\right)}{\left(1-q^{2}\right)} \\
& =\frac{q}{1-q} \gamma_{m-1}-\frac{q^{d+3}}{(1-q)\left(1-q^{2}\right)} \gamma_{m-2} \\
& (2.1) \quad+\frac{q^{3 d+3}}{(1-q)\left(1-q^{2}\right)} \sum_{c_{1}=1}^{\infty} \sum_{c_{2}=1}^{c_{1}+d} \cdots \sum_{c_{m-3}=1}^{c_{m-4}^{+1+1}} q^{c_{1}+c_{2}+\cdots+c_{m-3}} \frac{q}{1-q} \gamma_{m-1}-\frac{\left(q^{3}-q^{3 c_{m-3}+3 d+3}\right)}{\left(1-q^{3}\right)} \tag{2.1}\\
& \quad-\frac{q^{d+3}}{(1-q)\left(1-q^{2}\right)} \gamma_{m-2}+\frac{q^{3 d+6}}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)} \sum_{c_{1}=1}^{\infty} \sum_{c_{2}=1}^{c_{1}+d} \cdots \sum_{c_{m-4}=1}^{c_{m-5}+d} q^{c_{1}+\cdots+c_{m-4}} \frac{\left(q^{4}-q^{4 c_{m-4}+4 d+4}\right)}{\left(1-q^{4}\right)} \\
& =
\end{align*}
$$

Thus applying mathematical induction we may rigorously establish that the above iterative process yields

$$
\sum_{j=0}^{m} \gamma_{m-j} \frac{(-1)^{j} q^{d\left(\frac{j}{j}\right)+\binom{j+1}{2}}}{(q)_{j}}=\left\{\begin{array}{lll}
0 & \text { if } & m>0 \tag{2.2}\\
1 & \text { if } & m=0
\end{array}\right.
$$

Hence (2.2) is equivalent to

$$
\begin{equation*}
\sum_{m=0}^{\infty} \gamma_{m} z^{m} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{d\binom{n}{2}+\binom{n+1}{2}}}{(q)_{n}}=1 . \tag{2.3}
\end{equation*}
$$

Consequently by (2.3),

$$
\begin{align*}
\sum_{n, m \geqq 0} C_{d}(m, n) z^{m} q^{n} & =\sum_{m \geqq 0} \gamma_{m} z^{m} \\
& =\frac{1}{F_{d}(-z)} . \tag{2.4}
\end{align*}
$$

Therefore Theorem 1 is established.
As we remarked in the introduction, Theorem 2 follows immediately from Theorem 1 and the Rogers-Ramanujan identities. Namely

$$
\begin{array}{rlrl}
\sum_{n=0}^{\infty} & \left(K_{e}(1 ; n)-K_{0}(1 . n)\right) q^{n} & \\
& =\sum_{n, m \geq 0} C_{1}(m, n)(-1)^{m} q^{n} & & \text { (by definition) } \\
& =\frac{1}{F_{1}(1)} & & \text { (by Theorem 1 } \tag{2.5}\\
& =\prod_{n=0}^{\infty}\left(1-q^{5 n+1}\right)\left(1-q^{5 n+4}\right) & & (\text { by }(1.1)) \\
& =\sum_{n=0}^{\infty}\left(L_{e}(1 ; n)-L_{0}(1 ; n)\right) q^{n}
\end{array}
$$

Equation (1.7) follows immediately from (2.5) when we compare coefficients of q^{n} in the extreme terms. Similarly for (1.8) we see that

$$
\begin{aligned}
\sum_{n=0}^{\infty}(& \left.K_{e}(2 ; n)-K_{0}(2 ; n)\right) q^{n} \\
& =\sum_{n, m \geq 0} C_{1}(m, n)(-q)^{m} q^{n} \\
& =\frac{1}{F_{1}(q)} \\
& =\prod_{n=0}^{\infty}\left(1-q^{5 n+2}\right)\left(1-q^{5 n+3}\right) \\
& =\sum_{n=0}^{\infty}\left(L_{e}(2 ; n)-L_{0}(2 ; n)\right) q^{n}
\end{aligned}
$$

3. Minc's partition function. If μ_{m} denotes the generating function for Minc's partitions with m parts then as in § 2:

$$
\begin{align*}
\mu_{m} & =\sum_{c_{1}=1}^{2} \sum_{c_{2}=1}^{2 c_{1}} \cdots \sum_{c_{m}=1}^{2 c_{m-1}} q^{1+c_{1}+c_{2}+\cdots+c_{m}} \\
& =\sum_{c_{1}=1}^{2} \sum_{c_{2}=1}^{2 c_{1}} \cdots \sum_{c_{m-1}=1}^{2 c_{m-2}} q^{1+c_{1}+c_{2}+\cdots+c_{m-2}} \frac{\left(q-q^{2 c_{m-1}+1}\right)}{(1-q)} \\
& =\frac{q}{1-q} \mu_{m-1}-\frac{q}{1-q} \sum_{c_{1}=1}^{2} \cdots \sum_{c_{m-2}=1}^{2 c_{m-3}} q^{1+c_{1}+\cdots+c_{m-2}} \frac{\left(q^{3}-q^{6 c_{m-2}+3}\right)}{\left(1-q^{3}\right)} \tag{3.1}\\
& =\frac{q}{1-q} \mu_{m-1}-\frac{q^{4}}{(1-q)\left(1-q^{3}\right)} \mu_{m-2}
\end{align*}
$$

$$
\begin{aligned}
& \quad+\frac{q^{4}}{(1-q)\left(1-q^{3}\right)} \sum_{c_{1}=1}^{2} \cdots \sum_{c_{m-3}=1}^{2 c_{m-4}} q^{1+c_{1}+\cdots+c_{m-3}} \frac{\left(q^{7}-q^{1 c_{m-3}+7}\right)}{\left(1-q^{7}\right)} \\
& =
\end{aligned}
$$

As before applying mathematical induction we may rigorously establish that the above iterative process yields

$$
\sum_{i=0}^{m} \mu_{m-i} \frac{(-1)^{j} q^{1+3+7+\cdots+\left({ }_{2}-1\right)}}{(1-q)\left(1-q^{3}\right)\left(1-q^{7}\right) \cdots\left(1-q^{2-1}\right)}=\left\{\begin{array}{lll}
0 & \text { for } \quad m>0 \tag{3.2}\\
q & \text { for } \quad m=0
\end{array}\right.
$$

Therefore as in Theorem 1

$$
\sum_{n=1}^{\infty} \nu(1, n) q^{n}=\sum_{m=0}^{\infty} \mu_{m}=\frac{q}{\sum_{j=0}^{\infty} \frac{(-1)^{j} q^{1+3+7_{+} \cdots+\left(2^{j}-1\right)}}{(1-q)\left(1-q^{3}\right)\left(1-q^{7}\right) \cdots\left(1-q^{j^{j}-1}\right)}}
$$

and this is clearly seen to be equivalent to Theorem 3 once we recall that $\sum_{j=0}^{s}\left(2^{j}-1\right)=2^{s+1}-s-2$.
4. Conclusion. The method here could obviously be applied more generally; for example, the role of 2 in Minc's partitions could clearly be played by any positive integer k. Of course similar methods are used by Carlitz [3] to treat up-down and down-up partitions. After first discovering Theorem 1, I had hoped that it might be possible to find similar results in general for

$$
\frac{1}{f_{\mathscr{E}}(-z, q)}
$$

where $f_{\mathscr{E}}(z, q)$ is the two variable generating function for the linked partition ideal \mathscr{C} (see [1; Ch. 8] for an explanation of linked partition ideals). Unfortunately the coefficients are not even positive in general.

There is a natural way of providing a common generalization of Theorems 1 and 3. Namely the difference conditions bounding c_{i+1} can be extended to $1 \leqq c_{i+1} \leqq d+a_{0} c_{i}+a_{1} c_{i-1}+\cdots+a_{j} c_{i-j}$. For example the generating function for representations of n of the form

$$
n=1+1+c_{1}+c_{2}+\cdots+c_{m}
$$

subject to $c_{-1}=c_{0}=1$ and $c_{i+1} \leqq c_{i}+c_{i-1}$ is

$$
\sum_{n=0}^{\infty} \frac{q^{2}}{\left.\frac{q^{u_{1}+\cdots+u_{n}-n}(-1)^{n}}{\left(1-q^{u_{1}-1}\right)\left(1-q^{u_{2}-1}\right.}\right) \cdots\left(1-q^{u_{n}-1}\right)}
$$

where u_{i} are shifted Fibonacci numbers $u_{1}=2, u_{2}=3, u_{n}=u_{n-1}+u_{n-2}$ for $n>2$. In general the Fibonacci exponent $u_{i}-1$ in the generating function will be replaced by the sum of the 1st i terms of the recurrent sequence arising from the recurrence $c_{n+1}=d+a_{0} c_{n}+$ $a_{1} c_{n-1}+\cdots+a_{j} c_{n-j}$.

References

1. G. E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and Its Applications, Vol. 2, Addison-Wesley, Reading, 1976.
2. ——, Partitions: Yesterday and Today, New Zealand Math. Soc., Wellington, 1979.
3. L. Carlitz, Up-down and down-up partitions, Studies in Foundations and Combinatorics, G.-C. Rota ed., Academic Press, New York, 1978, 101-129.
4. L. Carlitz and J. Riordan, Two element lattice permutation numbers and their q-generalization, Duke Math. J., 31 (1964), 371-388.
5. G. H. Hardy, Ramanujan, Cambridge University Press, London and New York, 1940 (Reprinted: Chelsea, New York).
6. P. A. MacMahon, Combinatory Analysis, Vol. 2, Cambridge University Press, London and New York, 1916 (Reprinted: Chelsea, New York).
7. H. Minc, A problem in partitions: enumeration of elements of a given degree in the free commutative entropic groupoid, Proc. Edinburgh Math. Soc., 11 (1959), 223-224. 8. L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc., 25 (1894), 318-343.
8. I. J. Schur, Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrü̈che, S.-B. Preuss. Akad. Wiss. Phys.-Math. Kl., 302-321 (Reprinted in I. Schur, Gesammelte Abhandlungen, Vol. 2, 117-136. Springer, Berlin, 1973).

Received March 14, 1980. Partially supported by National Science Foundation Grant MCS-75-19162.

The Pennsylvania State University
University Park, PA 16802

