COVERINGS OF A PROJECTIVE ALGEBRAIC MANIFOLD

KIYOSHI WATANABE

Let M be a projective algebraic manifold. Suppose $\pi: D \to M$ is a covering of M. If D satisfies $H^1(D, O^*)=0$, then D is a Stein manifold with $H^2(D, Z)=0$, where O^* is the sheaf of germs of nowhere-vanishing holomorphic functions and Z is the additive group of integers.

Let D be a domain in C^* and Γ be a discrete subgroup of Aut (D). It is well-known that if the quotient manifold D/Γ is compact, then D is a domain of holomorphy. Recently, Carlson-Harvey [1] showed that if D is a domain in a Stein manifold and $D \to M$ is a covering of a compact Moisheson manifold M, then Dis a Stein manifold. On the other hand, we showed in [4] that if a pseudoconvex domain D in a projective algebraic manifold satisfies $H^1(D, O^*) = 0$, then D is a Stein manifold with $H^2(D, Z) = 0$.

In this paper, we study the case where a covering of a manifold is not contained in a larger manifold. We shall prove the following:

THEOREM. Let M be a projective algebraic manifold. Suppose $\pi: D \to M$ is a covering of M. If D satisfies $H^1(D, O^*) = 0$, then D is a Stein manifold with $H^2(D, Z) = 0$.

We remark that the condition $H^1(D, O^*) = 0$ cannot be replaced by $H^1(D, O) = 0$, where O is the sheaf of germs of holomorphic functions. To see this it is enough to consider the case $D = M = P_2(C)$ and π is the identity mapping.

Proof of theorem. Let $\{V_i\}$ be an open covering of M such that each V_i is a local coordinate neighborhood and is biholomorphic to a connected component $\pi^{-1}(V_i)$. Since M is a projective algebraic manifold, there is a positive line bundle F over M. Choosing a suitable refinement $\{U_j\}$ of $\{V_i\}$, we can represent F by a system of transition functions $\{f_{jk}\}$ and find a Harmitian metric $\{a_j\}$ along the fibers of F which satisfies the following conditions:

(i) Each a_j is a C^{∞} , real-valued and positive function on U_j ,

(ii) If $U_j \cap U_k \neq \phi$, then we have $a_k = |f_{jk}|^2 a_j$,

(iii) For every point P in M, the Hessian of $-\log a_j$ relative to a local coordinate system (z_1, \dots, z_n) at P

$$egin{aligned} L(-\log a_j;P) &= \left(-rac{\partial^2 \log a_j}{\partial z_lpha \partial \overline{z}_eta}(P)
ight)\ &(lpha,\,eta=1,\,\cdots,\,n) \end{aligned}$$

is positive definite. By the compactness of M, M has a finite open coverning $\{U_j: j = 1, \dots, m\}$.

Since U_j is biholomorphic to each of the connected components of $\pi^{-1}(U_j)$, we have the functions $\{a_j \circ \pi\}$ which satisfies the following conditions:

(i) Each $a_j \circ \pi$ is a C^{∞} , real-valued and positive function on $\pi^{-1}(U_j)$,

(ii) If $\pi^{-1}(U_j) \cap \pi^{-1}(U_k) \neq \phi$, then we have $a_j \circ \pi = |f_{jk} \circ \pi|^2 a_k \circ \pi$, (iii) $W(-\log a_j \circ \pi; P)$ is positive at every point P in D, where

$$W(\phi; P):=\min\left\{\sum_{lpha,eta}rac{\partial^2\phi}{\partial w_lpha\partial \overline{w}_eta}(P)\lambda_lpha\overline{\lambda}_eta:\sum_lpha|\lambda_lpha|^2=1\ ,\quad lpha,\ eta=1,\ \cdots,\ n
ight\}$$

and (w_1, \dots, w_n) is a local coordinate at P.

Since $U = {\pi^{-1}(U_j)}$ is an open covering of D, ${f_{jk} \circ \pi}$ defines an element of $H^1(U, O^*)$. By the assumption of $H^1(D, O^*) = 0$, there is a cochain ${f_j}$ of $C^0(U, O^*)$ such that $f_{jk} \circ \pi = f_k/f_j$. We can define a C^{∞} function ϕ on D in the following way:

$$\phi(P)$$
: = $-\log(a_j \circ \pi(P) |f_j(P)|^2)$

for P in $\pi^{-1}(U_j)$. Since M is paracompact, M has a finite open covering $\{W_j: j = 1, \dots, m\}$ with $\overline{W}_j \subset U_j$. By the property (iii) there is a positive constant C_j such that $W(\phi; P) > C_j$ for P in $\pi^{-1}(W_j)(j = 1, \dots, m)$. Hence we have

(1)
$$W(\phi; P) > C: = \min \{C_j: j = 1, \dots, m\}$$

for P in D. We remark that D is not finitely sheeted, because D has the strongly plurisubharmonic function ϕ .

On the other hand, M is a projective algebraic manifold, so D has a real-analytic Kähler metric. Let d(P, Q) be the distance between P and Q measured by the Kähler metric. Let us fix a point P_0 in D and define a continuous function ψ on D in the following way:

$$\psi(P):=d(P_0,P)$$

for P in D. We see that for every c > 0, the set $\{P \in D: \psi(P) < c\}$ is relatively compact in D. Denotes by $\Gamma(P, \varepsilon)$ the set $\{Q \in D: d(P, Q) < \varepsilon\}$, where a positive constant ε is chosen so that $\pi(\Gamma(P, \varepsilon))$ is contained in some U_j and $\Gamma(P, \varepsilon)$ is homeomorphic to a hypersphere. We define the following operator A_{ε} mapping continuous function f on D into C^1 function on D:

$$A_{\scriptscriptstyle arepsilon} f(P)
arrow = rac{1}{V} {\int_{\Gamma_{(P,\,arepsilon)}}} f(Q) dv$$
 ,

where dv is the volume element determined by the Kähler metric and V is the volume of $\Gamma(P, \varepsilon)$. We see that the set $\{P \in D: A_{\varepsilon}\psi(P) < c\}$ is relatively compact in D. Let define

$$\psi_1 = A_arepsilon \psi_1 = A_arepsilon \psi_1$$
 and $\psi_2 = A_arepsilon \psi_1$

on *D*, then ψ_2 is C^2 and the set $\{P \in D: \psi_2(P) < c\}$ is also relatively compact in *D*. Let compute the Hessian of ψ_2 . Since *D* has a real-analytic Kähler metric, there are a local coordinate (w_1, \dots, w_n) of $\Gamma(P, \varepsilon)$ and a positive constant K_1 such that

$$|\psi(Q) - \psi(Q')|^2 \leq K_1 \{|w_1 - w_1'|^2 + \cdots + |w_n - w_n'|^2\}$$

for two points $Q = (w_1, \dots, w_n)$ and $Q' = (w'_1, \dots, w'_n)$ in $\Gamma(P, \varepsilon)$ (see [3] Lemma 1). By the compactness of M, K_1 can be chosen independent of P. Choosing K_1 large enough if necessary, we have

$$\left|\frac{\partial\psi_1}{\partial w_j}(P)\right| \leq K_1 \quad (j=1, \cdots, n)$$

and consequently

$$\left| \frac{\partial^2 \psi_2}{\partial w_j \partial \bar{w}_k}(P) \right| \leq K_1 \quad (j, k = 1, \cdots, n)$$

for P in D. Therefore a positive constant K can be chosen so that

for P in D. Now we define a C^2 function Φ on D in the following way:

$$arPert(P)$$
: $= K \cdot \phi(P) + C \cdot \psi_2(P)$

for P in D. Then (1) and (2) induce

$$W(\Phi; P) \ge K \cdot W(\phi; P) + C \cdot W(\psi_2; P) > 0$$

for P in D. Hence Φ is a strongly plurisubharmonic function on D and the set $\{P \in D: \Phi(P) < c\}$ is relatively compact in D for every c > 0. Therefore D is a Stein manifold by Narasimhan [2]. Moreover from the exact sequence $0 \rightarrow Z \rightarrow O \rightarrow O^* \rightarrow 0$ we obtain the exact cohomology sequence

KIYOSHI WATANABE

 $\cdots \longrightarrow H^{1}(D, 0) \longrightarrow H^{1}(D, 0^{*}) \longrightarrow H^{2}(D, Z) \longrightarrow H^{2}(D, 0) \longrightarrow \cdots$

Since $H^2(D, O) = 0$ by the Cartan's Theorem B and $H^1(D, O^*) = 0$ by the assumption, we have $H^2(D, Z) = 0$. This completes the proof.

References

1. J. A. Carlson and R. Harvey, A remark on the universal cover of a Moishezon space, Duke Math. J., 43 (1976), 497-500.

2. R. Narasimhan, The Levi problem for complex spaces II, Math. Ann., 146 (1962), 195-216.

3. A. Takeuchi, Domaines pseudoconvexes sur les variétés köhlériennes, J. Math. Kyoto Univ., 6 (1967), 323-357.

4. K. Watanabe, Cousin domains in an algebraic surface, Mem. Fac. Sci. Kyushu Univ., **29** (1975), 355-359.

Received December 20, 1978.

Kobe University Nada, Kobe, 657 Japan