POLYNOMIAL NEAR-FIELDS?

Yong-Sian So

Abstract

It is well known that all finite fields can be obtained as homomorphic images of polynomial rings. Hence it is natural to raise the question, which near-fields arise as homomorphic images of polynomial near-rings.

It is the purpose of this paper to give the surprising answer: one gets no proper near-fields at all-in dramatic contrast to ring and field theory. Another surprising result is the fact that all near-fields contained in the near-rings of polynomials are actually fields.

Homomorphic images are essentially factor structures. So we take a commutative ring R with identity, from the near-ring $R[x]$ of all polynomials over R (or the near-ring $R_{0}[x]$ of all polynomials without constant term over R) and look for ideals I such that $R[x] / I$ becomes a near field. With this notation (and containing the one of [1] and [2]) we get our main result:

Theorem 1. If $R[x] / I$ (or $R_{0}[x] / I$) is a near-field then it is isomorphic to R / M (where M is a maximal ideal of R) and hence a field.

The proof requires a series of lemmas as well as a number of results on near-fields.

Our first reduction is the one of $R[x]$ to $R_{0}[x]$.
Lemma 1. If I is an ideal of (the near-ring) $R[x]$ such that $R[x] / I$ is a near-field, then there exists an ideal J of $R_{0}[x]$ with $R[x] / I \cong R_{0}[x] / J$.

Proof. $\quad R_{0}[x] \subseteq I$ implies $x \in I$, hence $R[x] \subseteq I$, a contradiction. So we have $R_{0}[x] \nsubseteq I$ and-since I must be maximal in order to get a near-field $-R_{0}[x]+I=R[x]$. By a version of the isomorphic theorem (which is valid in our case) we get

$$
R[x] / I=\left(R_{0}[x]+I\right) / I \cong R_{0}[x] /\left(I \cap R_{0}[x]\right)
$$

and $J:=R_{0}[x] \cap I$ will do the job.
Remark 1. The converse of Lemma 1 does not hold: Take $J:=\left\{a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n} / n \in \boldsymbol{N}, n \geqq 2, a_{i} \in \boldsymbol{R}\right\}$. Then $\boldsymbol{R}_{0}[x] / J \cong \boldsymbol{R}$ is a (near) field, but the near-ring $R[x]$ is simple ([2] or [3], 7.89), so there is no $I \cong \boldsymbol{R}[x]$ with $\boldsymbol{R}[x] / I \cong \boldsymbol{R}$.

We can therefore reduce our search to get suitable ideals of $R_{0}[x]$ which yield near-field factors.

Lemma 2. Let $I \geqq R_{0}[x]=: N$. Then $R_{0}[x] / I$ is a near-field iff I is a maximal N-subgroup of N.

Proof. \Rightarrow : Suppose that N / I is a near-field. Then N / I is N / I simple by ([3], 8.3). Consider the canonical epimorphism $h: N \rightarrow N / I$ with kernel I. If M is some N-subgroup strictly between I and N then $h(M)$ turns out to be a proper N / I-subgroup of N / I, which is a contradiction. Hence I is a maximal N-subgroup of N.
\Longleftarrow : Let I be a maximal N-subgroup of N and take h as above. If M is a proper N / I-subgroup of N / I then $h^{-1}(M)$ is an N-subgroup of N strictly between I and N, which cannot happen. Hence N / I is N / I-simple and again by ([3], 8.3) a near-field.

Due to the works of Clay-Doi [2], Brenner [1] and Straus [5] we know quite a bit about maximal ideals of $R[x]$. These informations can be used to find all ideals I of $R_{0}[x]$ which are maximal $R_{0}[x]$ subgroups of $R_{0}[x]$ and which we call "strictly maximal" ones (from now on).

First we need some
Notations.
(i) $\left(\left(x^{2}\right)\right):=\left\{a_{2} x^{2}+\cdots+a_{n} x^{n} / n \in N, n \geqq 2, a_{i} \in R\right\}$.
(ii) If $I \leqq R_{0}[x]$ then $I_{1}:=\left\{a \in R /\right.$ some $\left.a x+a_{2} x^{2}+\cdots+a_{n} x^{n} \in I\right\}$ $I^{\prime}:=\{a \in R / a x \in I\}$.
(iii) If $M \triangleleft R$ then $M x:=\{m x / m \in M\}$.

Lemma 3. (i) (($\left.\left.x^{2}\right)\right)$ is an ideal of $R_{0}[x]$ with $R_{0}[x] /\left(\left(x^{2}\right)\right) \cong R$. (ii) I_{1} and I^{\prime} are ideals of R with $I^{\prime} \cong I_{1}$.

Proof. Straightforward.

Lemma 4. Let I be a strictly maximal ideal of $R_{0}[x]$ and $h: R \rightarrow$ R / I^{\prime} the canonical epimorphism. We define h^{\prime} as follows: $h^{\prime}: R_{0}[x] \rightarrow$ $\left(R / I^{\prime}\right)_{0}[x]$

$$
a_{n} x^{n}+\cdots+a_{1} x \longmapsto h\left(a_{n}\right) x^{n}+\cdots+h\left(a_{1}\right) x .
$$

Then $J:=h^{\prime}(I)$ is a strictly maximal ideal in $\left(R / I^{\prime}\right)_{0}[x]=h^{\prime}\left(R_{0}[x]\right)$ and J^{\prime} is the zero ideal in R / I^{\prime}.

Proof. By ([4], 4.6), h^{\prime} is a near-ring epimorphism and we get
$R_{0}[x] / I \cong h^{\prime}\left(R_{0}[x]\right) / h^{\prime}(I)=\left(R / I_{I^{\prime}}\right)_{0}[x] / J$. So J must be strictly maximal in $\left(R / I^{\prime}\right)_{0}[x]$, by arguments as in Lemma 2. Observe that $\left(I^{\prime}\right)_{0}[x] \cong I$.

Now suppose that $r^{\prime} \in R / I^{\prime}$ is in J^{\prime}. Then $r^{\prime} x \in J=h^{\prime}(I)$ and there is some $i \in I$ with $h^{\prime}(i)=r^{\prime} x$. Let $i=a_{1} x+\cdots+a_{n} x^{n}$. Then $h^{\prime}(i)=$ $h\left(a_{1}\right) x+\cdots+h\left(a_{n}\right) x^{n}=r^{\prime} x$, whence $-r x+a_{1} x+\cdots+a_{n} x^{n} \in \operatorname{Ker} h^{\prime}=$ $\left(I^{\prime}\right)_{0}[x] \cong I$ for some $r \in R$ with $h(r)=r^{\prime}$. Hence $r x$ must be in I, so $r \in I^{\prime}$ and consequently r^{\prime} is the zero element of R / I^{\prime}. This shows that J^{\prime} is the zero ideal of R / I^{\prime}.

By using the second isomorphism theorem, we therefore can confine our attention to strictly maximal ideals I with $I^{\prime}=\{0\}$. But then the worst cases are behind of us:

Lemma 5. Let I be a strictly maximal ideal in $R_{0}[x]$ with $I^{\prime}=$ $\{0\}$. Then R is an integral domain.

Proof. Let $a, b \in R, a \neq 0, b \neq 0$ and $a b=0$. Then $a x \circ b x=$ $a b x=0 \in I$. If both $a x \notin I, b x \notin I$ then $(a x+I) \circ(b x+I)=a b x+I=I$; a contradiction to the fact that a near-field has no divisors of zero. So we get $a x \in I$ or $b x \in I$, whence $a \in I^{\prime}$ or $b \in I^{\prime}$, a contradiction. R is therefore an integral domain.

By ([3], 8.9), the characteristic of a near-field is either 0 , a prime $\neq 2$ or $=2$. We treat these 3 cases separately, and start with:

Lemma 6. Let I be a strictly maximal ideal of $R_{0}[x]$ with $I^{\prime}=$ $\{0\}$ and $\operatorname{Char} R_{0}[x] / I=0$. Then there exists a maximal ideal M of R with $R_{0}[x] / I=R / M$.

Proof. By Lemma 5, R is an integral domain. It is easy to see that in our case Char $R=$ Char $R_{0}[x]=$ Char $R_{0}[x] / I=0$, hence R is infinite.

Case 1. $\quad\left(\left(x^{2}\right)\right) \subseteq I . \quad$ Since I_{1} cannot be $=R$ (otherwise $\left.I=R_{0}[x]\right)$, I_{1} is contained in a maximal ideal M of $R . \quad I=\left(\left(x^{2}\right)\right)+I_{1} x \subseteq\left(\left(x^{2}\right)\right)+$ $M x$ which is a proper ideal of $R_{0}[x]$. But I is a strictly maximal ideal, hence $I=\left(\left(x^{2}\right)\right)+M x$ and $R_{0}[x] / I \cong(\{a x / a \in R / M\},+, 0) \cong(R / M,+, \cdot)$.

Case 2. $\quad\left(\left(x^{2}\right)\right) \nsubseteq I$. Since I is a strictly maximal ideal we get $I+\left(\left(x^{2}\right)\right)=R_{0}[x]$. Then $I_{1}=R$ and we can select a polynomial $i=$ $b_{n} x^{n}+\cdots+b_{1} x \in I$ with $b_{1} \neq 0$ and n minimal for being a polynomial in I with nonzero coefficient of x. If $r \in R$ then $i \circ(r x)-r x \circ i \in I-$ $I=I$. But $i \circ(r x)-r x \circ i=b_{n-1}\left(r^{n}-r^{n-1}\right) x^{n-1}+\cdots+b_{2}\left(r^{n}-r^{2}\right) x^{2}+$
$b_{1}\left(r^{n}-r\right) x$. Since R is an integral domain, hence embeddable into a field, the set of all $s \in R$ with $s^{n}=s$ has cardinality $\leqq n$. Since R is infinite, we can take $r \in R$ so that $r^{n} \neq r$. Then $i \circ(r x)-r x \circ i$ is a polynomial in I with nonzero coefficient of x and a degree $\leqq n-1$ which is a contradiction. So Case 2 cannot occur.

Hence we have proved our Theorem 1 in the case when Char $R_{0}[x] / I=0$. Now we consider the case of characteristic $p \neq 2$.

Lemma 7. Let I be a strictly maximal ideal of $R_{0}[x]$ with Char $R_{0}[x] / I \neq 2$. Then there exists a maximal ideal M of R with $I=M x+\left(\left(x^{2}\right)\right)$, hence $R_{0}[x] / I \cong R / M$.

Proof. First we show: $x^{2} \in I$. Since $x \notin I,-x \notin I$. If $x^{2} \notin I$ we have: $\left(x^{2}+I\right) \circ(-x+I)=-\left(\left(x^{2}+I\right) \circ(x+I)\right)=-\left(x^{2}+I\right)=-x^{2}+I$ by ([3], $8.10(\mathrm{~b})) . \quad$ But $\left(x^{2}+I\right) \circ(-x+I)=x^{2} \circ(-x)+I=x^{2}+I . \quad$ So we have $2 \dot{x}^{2} \in I$. Since $(p, 2)=1$ there are $a, b \in Z$ with $1=a \cdot p+$ $b \cdot 2$. $x^{2}=(a \cdot p+b \cdot 2) x^{2}=a p x^{2}+2 b x^{2} \in I$ because $p x^{2} \in I$ as a result of Char $R_{0}[x] / I=p$. This is contradiction, hence $x^{2} \in I$. Then we have $x^{2 n}=x^{2} \circ x^{n} \in I$ for all $n \in N$.

Now we show: $x^{n} \in I$ for all $n \in N$ and $n \geqq 2$. Let $n \geqq 2$. Then $x^{2} \circ\left(x^{n}+x^{n-1}\right)=x^{2 n}+2 x^{2 n-1}+x^{2 n-2} \in I$, and we get $2 x^{2 n-1} \in I$ because $x^{2 n} \in I$ for $n \geqq 1$. As above, we have $x^{2 n-1} \in I$. Hence we have: $x^{n} \in I$ for $n \geqq 2$. And as a result of this we have $\left(\left(x^{2}\right)\right) \cong I$ and, similarly to the proof of Lemma 6, we have $I=M x+\left(\left(x^{2}\right)\right)$ where M is a maximal ideal of R. Therefore $R_{0}[x] / I \cong R / M$.

So it remains the case that Char $R_{0}[x] / I=2$, which-as usualcauses the most trouble.

Lemma 8. Let I be a strictly maximal ideal in $R_{0}[x]$ with Char $R_{0}[x] / I=2 . \quad$ Then $(2 R)_{0}[x] \subseteq I$.

Proof. Since $x+I \in R_{0}[x] / I$ we have $2 x+I=I$. Hence $2 x \in I$. But for all $f \in R_{0}[x] 2 x \circ f=2 f \in I$, hence $(2 R)_{0}[x] \subseteq I$.

Lemma 9. Let I be a strictly maximal ideal in $R_{0}[x]$ with Char $R_{0}[x] / I=2$. Also, let $h: R \rightarrow R / 2 R$ be the canonical epimorphism and $h^{\prime}: R_{0}[x] \rightarrow(R / 2 R)_{0}[x]: a_{n} x^{n}+\cdots+a_{1} x \rightarrow h\left(a_{n}\right) x^{n}+\cdots+h\left(a_{1}\right) x$. Then $R_{0}[x] / I \cong(R / 2 R)_{0}[x] / h^{\prime}(I)$.

The proof is similar to the one of Lemma 4 and therefore omitted.
In view of this result, we only have to look at the case: Char $R=$ Char $R_{0}[x] / I=2, R$ an integral domain and $I^{\prime}=\{0\}$.

We now treat the infinite case:

Lemma 10. Let I be a strictly maximal ideal in $R_{0}[x]$ with Char $R=$ Char $R_{0}[x] / I=2, R$ an infinite integral domain and $I^{\prime}=\{0\}$. Then there exists a maximal ideal M of R with $I=\left(\left(x^{2}\right)\right)+M x$, hence $R_{0}[x] / I=R / M$.

Proof. Suppose there is no maximal ideal M of R with $I=$ $\left(\left(x^{2}\right)\right)+M x$. Then we get $I_{1}=R$, otherwise I_{1} would be in a maximal ideal M_{1} of R and $I \subseteq\left(\left(x^{2}\right)\right)+M_{1} x$.

Let $U:=\left\{a_{n} x^{n}+\cdots+a_{1} x \in I / n \in N, a_{1} \neq 0\right\}$. Clearly $U \neq\{0\}$, since $I_{1}=R$. Let m be the minimum of the degrees of nonzero polynomials in U. Since $I^{\prime}=\{0\}, m$ is $\geqq 2$. Let $e \in R \backslash\{0,1\} \neq \varnothing$. Let $b_{m} x^{m}+\cdots+b_{1} x \in U \subseteq I . \quad\left(b_{m} x^{m}+\cdots+b_{1} x\right) \circ(e x)+e^{m} x \circ\left(b_{m} x^{m}+\cdots\right.$ $\left.+b_{1} x\right)=b_{m-1}\left(e^{m}+e^{m-1}\right) x^{m-1}+\cdots+b_{1}\left(e^{m}+e\right) x \in I$. Since m is minimal, $b_{1}\left(e^{m}+e\right)=0$. We get $e^{m}+e=0, e^{m-1}+1=0$, because R is an integral domain. But $1^{m-1}+1=0$, so we get for all $e \in R \backslash\{0\}$ $e^{m-1}+1=0$.

So $m-2 \geqq 1$; consequently $e^{m-1}=e \cdot e^{m-2}=1$ and hence e^{m-2} is the inverse of e in $R . \quad R$ is then a field with $e^{m-1}=1$ for all $e \in R \backslash\{0\}$, hence with infinitely many roots of unity, a contradiction.

So there is a maximal ideal M of R with $I=\left(\left(x^{2}\right)\right)+M x$.
In particular, if R is a field, we get $I=\left(\left(x^{2}\right)\right)$.
We still have to look at the case: Char $R=2, R$ a finite integral domain, $I^{\prime}=\{0\}$. But a finite integral domain is a field. So for our R we have either $R=Z_{2}$ or $R=G F\left(2^{n}\right)$ with $n \geqq 2$.

First some preparations:
Lemma 11. Let F be a field with Char $F=2,|F|>2$. Let I be a strictly maximal ideal in $F_{0}[x]$. If $x^{m} \in I$ then $x^{m+i} \in I$ for $m+i \geqq 4$ where $i \in N$.

Proof. $x^{2 m+1}+x^{m+2}=\left(x^{m}+x\right)^{3}+x^{3}+x^{3 m} \in I$. Since $|F|>2$, it is possible to choose a with $a \neq 0, a \neq 1$. From $\left(x^{m}+a x\right)^{3}+(a x)^{3} \in I$ we get $a x^{2 m+1}+a^{2} x^{m+2} \in I$. But $a x \circ\left(x^{2 m+1}+x^{m+2}\right)=a x^{2 m+1}+a x^{m+2} \in I$. By adding of these two polynomials we get $\left(a^{2}+a\right) x^{m+2} \in I$. Since $a^{2}+a \neq 0$, we have $x^{m+2} \in I$. So we have: $x^{m}, x^{m+2}, x^{m+4}, x^{m+6}, \cdots \in I$.

But $x^{2 m}=x^{m} \circ x^{2} \in I$, we also have $x^{2 m+2} \in I . \quad x^{2 m+2}=\left(x^{m+1}\right) \circ x^{2} \in I$, so we have either $x^{2} \in I$ or $x^{m+1} \in I$ since $F_{0}[x] / I$ is a near-field and has no zero-divisor.

If $x^{m+1} \in I$ we get: $x^{m+i} \in I$ for all $i \in N$.
If $x^{2} \in I$ then $x^{4}+x^{5}=\left(x^{2}+x\right)^{3}+x^{3}+x^{6} \in I$. Hence then $x^{5} \in I$.

So we have: $x^{2}, x^{4}, x^{6}, \cdots \in I, x^{5}, x^{7}, x^{9}, \cdots \in I$.
Hence $x^{m+i} \in I$ for $m+i \geqq 4$, where $i \in N$.
Lemma 12. Let $I \neq F_{0}[x]$ be an ideal of $F_{0}[x]$, when F is a field of characteristic 2. If there is an $n \geqq 2$, so that $x^{m} \in I$ for all $m \geqq n$, then $I \subseteq\left(\left(x^{2}\right)\right)$.

Proof. Suppose $I \nsubseteq\left(\left(x^{2}\right)\right)$. Then there is some $f \in I \backslash\left(\left(x^{2}\right)\right)$. Without loss of generality, we can assume $f=x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}$.

$$
\begin{aligned}
& f \circ x^{n-1}=x^{n-1}+a^{2}\left(x^{n-1}\right)^{2}+\cdots+a_{n-1}\left(x^{n-1}\right)^{n-1} \in I \\
& x^{n-1}=f \circ x^{n-1}+a_{2}\left(x^{n-1}\right)^{2}+\cdots+a_{n-1}\left(x^{n-1}\right)^{n-1} \in I
\end{aligned}
$$

since the degrees of second, third, \cdots terms are $\geqq n$. Therefore we can reduce n and we get: $x^{n-2}, x^{n-3}, \cdots, x^{2} \in I$. But then $x=f+$ $a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} \in I$, a contradiction. Hence $I \subseteq\left(\left(x^{2}\right)\right)$.

Lemma 13. Let I be a maximal ideal in $F_{0}[x]$, when F is a field of characteristic 2 and $|F|>2$. If there is some $n \in N$ with $n \geqq 2$, so that $x^{m} \in I$ for all $m \geqq n$, then $I=\left(\left(x^{2}\right)\right)$.

Proof. Use Lemma 12.
Lemma 14. Let I be a strictly maximal ideal in $F_{0}[x]$, when F is a field of characteristic 2 and $|F|>2$. If there is an $n \in N$ with $n \geqq 2, x^{n} \in I$, then $I=\left(\left(x^{2}\right)\right)$.

Proof. According to Lemma 11 we have: $x^{m} \in I$ for all $m \geqq$ $\max (n, 4)$. Lemma 13 will do the rest of the job.

Lemma 15. Let F be a field of characteristic 2 and I a strictly maximal ideal of $F_{0}[x]$. Then there is an odd number t with $x^{t}+\cdots+a_{1} x \in I$.

Proof. Since $I \neq\{0\}$, there is a $k \in N$ with $x^{2 k}+\cdots+b_{1} x \in I$, otherwise our assertion is already proved.
$\left(x^{2 k}+\cdots+b_{1} x+x\right)^{3}+x^{3}=\left(x^{2 k}+\cdots+b_{1} x\right)^{3}+\left(x^{2 k}+\cdots+b_{1} x\right)^{2} x+$ $\left(x^{2 k}+\cdots+b_{1} x\right) x^{2} \in I$. We get $x^{4 k+1}+\cdots+x^{2 k+2}+\cdots \in I$. For $n \geqq 1$, $4 k+1$ is greater than $2 k+2$ and so there is a polynomial of degree $4 k+1$ (an odd number) in I.

Lemma 16. Let F be a finite field of characteristic 2 and I a strictly maximal ideal of $F_{0}[x]$. Then the near-field $F_{0}[x] / I$ is finite.

Proof. We know from Lemma 15 that there is an odd number
t with $x^{t}+\cdots+a_{1} x \in I$.

We show: For all $n \geqq 6 t$ there is some $x^{n}+\cdots+b_{1} x \in I$.
For all $l \geqq 1,\left(x^{t}+\cdots+a_{1} x+x^{t+l}\right)^{3}+\left(x^{t+l}\right)^{3} \in I$. Hence $\left(x^{t+l}\right)^{2}\left(x^{t}+\cdots\right.$ $\left.+a_{1} x\right)+\left(x^{t+l}\right)\left(x^{t}+\cdots+b_{1} x\right)^{2} \in I$, whence $x^{3 t+2 l}+\cdots+x^{3 t+l}+\cdots \in I$. Since $\left(x^{t}+\cdots+a_{1} x\right)^{3}=x^{3 t}+\cdots \in I$, there are polynomials of following degrees in $I: 3 t, 3 t+2,3 t+4, \cdots$. Since $3 t$ is odd, we have: For all odd numbers $k \geqq 3 t$, there is some normed polynomial of degree k in I.

$$
\begin{aligned}
& \left(x^{t}+\cdots+a_{1} x\right)^{6}=x^{6 t}+\cdots \in I \\
& \left(x^{t}+\cdots+a_{1} x\right)^{2}=x^{2 t}+\cdots+e_{1} x \in I \\
& \left(x^{2 t+l}+x^{2 t}+\cdots+e_{1} x\right)^{3}+\left(x^{2 t+l}\right)^{3} \in I
\end{aligned}
$$

Hence $\left(x^{2 t+l}\right)^{2}\left(x^{2 t}+\cdots\right)+\left(x^{2 t+l}\right)\left(x^{2 t}+\cdots\right)^{2} \in I$, whence $x^{6 t+2 l}+\cdots+$ $x^{6 t+l}+\cdots \in I$. Therefore there are also polynomials of following degrees in $I: 6 t, 6 t+2,6 t+4, \cdots$.

We get: For all $k \geqq 6 t$ there exists some polynomial $x^{k}+\cdots+$ $b_{1} x \in I$. Hence $\left|F_{0}[x] / I\right| \leqq|F|^{6 t}$, which is finite.

Lemma 17. Let F be $G F\left(2^{n}\right), n \geqq 2$ and I a strictly maximal ideal of $F_{0}[x]$. Then $I=\left(\left(x^{2}\right)\right)$.

Proof. Lemma 16 tells us that $K:=F_{0}[x] / I$ is a finite near-field. By 8.34 of [3], all finite near-fields (except 7 exceptional cases of orders $5^{2}, 11^{2}, 7^{2}, 23^{2}, 11^{2}, 29^{2}, 59^{2}$) are Dikson near-fields. Our K cannot be exceptional, so it is a Dickson near-field. In this case, we know from 3.3 of [6] that the center $C(K):=\{f \in K / f \circ g=g \circ f$ for all $g \in K\}$ is closed with respect to addition.

Since, by the well-known rules how to calculate in $G F\left(2^{n}\right), x+I$ and $x^{2^{n}}+I$ belong to $C(K)$, so does their sum $x+x^{2^{n}}+I$. So we get $\quad\left(x^{2^{2}}+x+I\right) \circ\left(x^{2^{n}-1}+I\right)=\left(x^{2^{2}-1}+I\right) \circ\left(x^{2^{n}}+x+I\right)$. $\quad\left(x^{2^{2}-1}\right)^{2^{n}}+$ $x^{2^{n-1}}+I=\left(x^{2^{2}}+x\right)^{2^{2}-1}+I=\left(x^{2^{n}}\right)^{2^{n}-1}+\left(x^{2^{n}}\right)^{2^{n}-2}+\cdots+x^{2^{n}} x^{2^{n}-2}+x^{2^{n}-1}+$
 But $2^{n} k+\left(2^{n}-1-k\right)=\left(2^{n}-1\right) k+\left(2^{n}-1\right)=\left(2^{n}-1\right)(k+1)$, so $\sum_{k=1}^{2^{n}-2} x^{\left(2^{n}-1\right)(k+1)}=\sum_{k=1}^{2^{n}-2}\left(x^{2^{n}-1}\right)^{k+1}=\left(\sum_{k=1}^{2^{n-2}} x^{k+1}\right) \circ x^{2^{n}-1} \in I$. Since K is a near-field, either $\sum_{k=1}^{2^{n}-2} x^{k+1} \in I$ or $x^{2^{n-1}} \in I$. If $x^{2^{n}-1} \in I$, we are through, for we get $I=\left(\left(x^{2}\right)\right)$ by Lemma 14. So we may assume that $\sum_{k=1}^{2^{n-2}} x^{k+1}=x^{2^{n}-1}+\cdots+x^{2} \in I$.

The multiplicative group of $G F\left(2^{n}\right)$ is cyclic. Therefore there is some $c \in G F\left(2^{n}\right)$ of order $2^{n}-1$. We know: $c \neq 0, c \neq 1$. $c^{2^{n-1}}=1$ and for all $l<2^{n}-1 c^{l} \neq 1$ and for all $l, j \leqq 2^{n}-1, l \neq j: c^{l}+c^{j} \neq 0$. Since $c^{2^{n-1}} x^{2^{n}-1}+\cdots+c x^{2}=\left(x^{2^{n}-1}+\cdots+x^{2}\right) \circ(c x) \in I, c^{2^{n-1}} x^{2^{n-1}}+\cdots$ $+c^{2^{2}-1} x^{2}=c^{2^{n}-1} x \circ\left(x^{2^{n-1}}+\cdots+x^{2}\right) \in I$, we get $\left(c^{2^{n}-1}+c^{2^{n-2}}\right) x^{2^{n}-2}+\cdots$
$+\left(c^{2^{n}-1}+c^{2}\right) x^{2} \in I$. Also $\left(c^{2^{n}-1}+c^{2^{n}-2}\right) c^{2^{n}-2} x^{2^{n}-2}+\cdots+\left(c^{2^{n}-1}+c^{2}\right) c^{2} x^{2}=$ $\left(\left(c^{2^{n}-1}+c^{2^{n}-2}\right) x^{2^{n}-2}+\cdots+\left(c^{2^{n}-1}+c^{2}\right) x^{2}\right) \circ(c x) \in I$ and $\left(c^{2^{n}-1}+c^{2^{n}-2}\right) c^{2^{n}-2} x^{2^{n-2}}+$ $\cdots+\left(c^{2^{n}-1}+c^{2}\right) c^{2^{n}-2} x^{2}=\left(c^{2^{n}-2} x\right) \circ\left(\left(c^{2^{n}-1}+c^{2^{n}-2}\right) x^{2^{n}-2}+\cdots+\left(c^{2^{n}-1}+c^{2}\right) x^{2}\right) \in I$. Hence $\left(c^{2^{n}-1}+c^{2^{n}-3}\right)\left(e^{2 n-2}+c^{2^{n}-3}\right) x^{2^{n}-3}+\cdots+\left(c^{2^{n}-1}+c^{2}\right)\left(c^{2^{n}-2}+c^{2}\right) x^{2} \in I$. If we continue this procedure, we finally arrive at $\left(c^{2^{n}-1}+c^{2}\right)\left(c^{2^{n}-2}+\right.$ $\left.c^{2}\right) \cdots\left(c^{3}+c^{2}\right) x^{2} \in I$ where the coefficient of $x^{2} \neq 0$. So $x^{2} \in I$ and we get $I=\left(\left(x^{2}\right)\right)$ again by Lemma 14 .

Our last case is $R=Z_{2}$. This case is rather complicated and so the way is longer. Brenner has shown in [1] that there are only two maximal ideals in $\boldsymbol{Z}_{2}[x]$. One of them is $T:=$ the subgroup generated by $\left\{1, x+x^{2}, x^{3}, x+x^{4}, x+x^{5}, x^{6}, x+x^{7}, x+x^{8}, x^{9}, \cdots\right\}$. The other one is V, the subgroup generated by $\left\{1, x+x^{2}, x+x^{3}\right.$, $\left.x+x^{4}, \cdots\right\}$. We define T_{0}, V_{0} as follows: $T_{0}:=T \cap\left(\boldsymbol{Z}_{2}\right)_{0}[x]$ and $V_{0}:=$ $V \cap\left(\boldsymbol{Z}_{2}\right)_{0}[x] . \quad T_{0}$ and V_{0} are easily shown to be ideals in $\left(\boldsymbol{Z}_{2}\right)_{0}[x]$. They are even strictly maximal ideals as will be demonstrated in the following. Together with $\left(\left(x^{2}\right)\right)$, there are just three strictly maximal ideals in $\left(\boldsymbol{Z}_{2}\right)_{0}[x]$.

Lemma 18. Let I be a strictly maximal ideal in $\left(\boldsymbol{Z}_{2}\right)_{0}[x]$ with $x^{2} \in I$, then $I=\left(\left(x^{2}\right)\right)$.

Proof. Since $x^{2} \in I, x^{2 k}=x^{2} \circ x^{k} \in I$ for all $k \in N$. Hence $\left(x^{4}+x\right)^{3}+$ $x^{3} \in I$, whence $x^{9} \in I$. But $x^{9}=x^{3} \circ x^{3}$ so $x^{3} \in I$ since $\left(\boldsymbol{Z}_{2}\right)_{0}[x] / I$ has no divisors of zero. Therefore $x^{6 k}+x^{4 k+3}+x^{2 k+6}+x^{9}=\left(x^{2 k}+x^{3}\right)^{3} \in I$, from which we get that $x^{4 k+3} \in I$ for all $k \in N$. Also, $\left(x^{2 k}+x\right)^{3}+x^{3} \in I$ gives us $x^{4 k+1} \in I$ for all $k \in N$. All x^{4} and $x^{4 k+2}=x^{2} \circ x^{2 k+1}$ are also in I, so, putting altogether, $x^{n} \in I$ for $n \geqq 2$, which means $I=\left(\left(x^{2}\right)\right)$.

Lemma 19. Let I be a strictly maximal ideal in $\left(\boldsymbol{Z}_{2}\right)_{0}[x]$ with $x^{2} \notin I, x^{3} \in I$. Then $I=T_{0}$

Proof. By Lemma 16 and the information in the proof of Lemma 17, we know $\left(\boldsymbol{Z}_{2}\right)_{0}[x] / I$ is a finite Dickson near-field of characteristic 2 , so it has order 2^{t} (by 8.13 of [3]). Since $x^{2}+I \neq 0+I$, the order k of $x^{2}+I$ divides $2^{t}-1$. So we have $x^{2 k}+I=\left(x^{2}+I\right) \circ\left(x^{2}+I\right) \circ \ldots$ 。 $\left(x^{2}+I\right)=x+I$ and $k / 2^{t}-1$. Hence k is odd, whence $3 / 2^{k}+1$. Let $2^{k}+1=: 3 j$. For all $s \in N, s \geqq 3$, we get $x^{3} \circ\left(x^{s}+x^{s-1}\right) \in I$ whence $x^{3 s-1}+x^{3 s-2} \in I$ and $x^{3} \circ\left(x^{s}+x^{s-2}\right) \in I$ whence $x^{3 s-2}+x^{3 s-4} \in I$. Hence $x^{3 s-1} \equiv x^{3 s-2} \equiv x^{3 s-3} \equiv x^{3 s-5} \equiv \cdots \equiv x^{5} \equiv x^{4}(\bmod I)$. In particular, $x \equiv$ $x^{2^{l /}}=x^{3 j-1} \equiv x^{4}$ and we get $x^{n}+x \in I$ for all $n \in N, 3 \nmid n, n \geqq 4$. Also, from $\left(x^{2}+I\right) \circ\left(x^{2}+I\right)=x^{4}+I=x+I$ we get $x^{2}+I=x+I$ by 8.10.a of [3]. Hence all the additive generators of T_{0} are in I, whence $T_{0} \subseteq I$. But T_{0} is a subgroup of $\left(\boldsymbol{Z}_{2}\right)_{0}[x]$ of order 2 , hence $T_{0}=I$.

Lemma 20. Let I be a strictly maximal ideal of $\left(\boldsymbol{Z}_{2}\right)_{0}[x]$ with $x^{2} \notin I, x^{3} \notin I, x^{2}+x^{3} \in I$. Then $I=V_{0}$.

Proof. Since $x^{2}+x^{3} \in I$, also $\left(x^{2}+x^{3}\right) \circ\left(x^{3}+x\right) \in I$, whence $x^{2 s+1}+$ $x^{s+2} \in I$ and $\left(x^{2}+x^{3}\right) \circ\left(x^{s}+x^{2}\right) \in I$, implying that $x^{28+2}+x^{s+4} \in I$. From the first result we get $x^{5} \equiv x^{4}, x^{7} \equiv x^{5}, x^{9} \equiv x^{6}(\bmod I)$ and from the second we derive $x^{8} \equiv x^{7}, x^{10} \equiv x^{8}, x^{12} \equiv x^{9}, \cdots(\bmod I)$, so (since also $\left.\left(x^{2}+x^{3}\right) \circ x^{2}=x^{4}+x^{6} \in I\right)$ we get $x^{4} \equiv x^{5} \equiv x^{6} \equiv \cdots(\bmod I)$. Since $x^{2} \notin I$, there is some $k \in N$ with $x^{2^{k}}+x \in I$ (same reason as in the proof of Lemma 19). Hence $x \equiv x^{2^{k}} \equiv x^{4}(\bmod I)$. Also $\left(x^{2^{k}}+x\right) \circ x^{2} \in I$, whence $x^{2} \equiv x^{2^{k+1}} \equiv x^{4}(\bmod I)$. Since $x^{2}+x^{3} \in I$, we get $x^{2} \equiv x^{3}(\bmod$ $I)$, and therefore $x \equiv x^{2} \equiv x^{3} \equiv x^{4} \equiv \cdots \equiv x^{n} \equiv \cdots(\bmod I)$. Thus for all $n \in N x^{n}+x \in I$, hence $V_{0} \subseteq I$. But V_{0} is a subgroup of index 2 in $\left(Z_{2}\right)_{0}[x]$, so $V_{0}=I$.

Lemma 21. Let I be a strictly maximal ideal of $\left(\boldsymbol{Z}_{2}\right)_{0}[x]$. Then I is either $=\left(\left(x^{2}\right)\right)$ or $=T_{0}$ or $=V_{0}$.

Proof. Suppose $I \neq\left(\left(x^{2}\right)\right), I \neq T_{0}, I \neq V_{0}$. Applying Lemmas 18, 19 and 20 we have: $x^{2} \notin I, x^{3} \notin I, x^{2}+x^{3} \notin I$. As in the proof of Lemma 17, let $C(K)$ be the center of $K:=\left(\boldsymbol{Z}_{2}\right)_{0}[x] / I$. Obviously $x+I \in C(K), x^{2}+I \in C(K)$, hence $x+I+x^{2}+I=x+x^{2}+I \in C(K)$. So $\left(x^{2}+x+I\right) \circ\left(x^{3}+I\right)=\left(x^{3}+I\right) \circ\left(x^{2}+x+I\right)$, hence $x^{6}+x^{3}+I=$ $x^{6}+x^{5}+x^{4}+x^{3} \in I$ and $x^{5}+x^{4} \in I$. Also, $\left(x^{5}+x^{4}\right) \circ\left(x^{2}+x\right)=x^{10}+$ $x^{9}+x^{6}+x^{5}+x^{8}+x^{4} \in I$. Since $\left(x^{5}+x^{4}\right) \circ x^{2}=x^{10}+x^{8} \in I$ and $x^{5}+x^{4} \in I$, we have $x^{9}+x^{6} \in I$. But $I=x^{9}+x^{6}+I=\left(x^{3}+x^{2}+I\right) \circ\left(x^{3}+I\right)$, implying that either $x^{3}+x^{2} \in I$ or $x^{3} \in I$, both being contradictions.

Lemma 22. Let I be a strictly maximal ideal of $\left(\boldsymbol{Z}_{2}\right)_{0}[x]$. Then $\left(\boldsymbol{Z}_{2}\right)_{0}[x] / I \cong \boldsymbol{Z}_{2}$.

Proof. Applying Lemma 21, we know I is either $=\left(\left(x^{2}\right)\right)$ or $=T_{0}$ or $=V_{0} . \quad$ But $\left[\left(\boldsymbol{Z}_{2}\right)_{0}[x]:\left(\left(x^{2}\right)\right)\right]=\left[\left(\boldsymbol{Z}_{2}\right)_{0}[x]: T_{0}\right]=\left[\left(\boldsymbol{Z}_{2}\right)_{0}[x]: V_{0}\right]=2$. So we have in all of these three cases: $\left(\boldsymbol{Z}_{2}\right)_{0}[x] / I \cong \boldsymbol{Z}_{2}$.

This completes the proof of Theorem 1.
As a byproduct, we have a complete knowledge of all strictly maximal ideals in polynomial near-rings:

Corollary. Let I be a strictly maximal ideal of $R_{0}[x]$. Then there exists a maximal ideal M of R with $I=\left(\left(x^{2}\right)\right)+M x$, unless $R=Z_{2}$. In this case, I might as well be $=T_{0}$ or $=V_{0}$.

In particular, for a field $R \neq \boldsymbol{Z}_{2}$, there is just one strictly maximal ideal, namely (($\left.x^{2}\right)$).
G. Pilz suggested to investigate near-fields which are contained in $R[x]$. Since all near-fields with the exception of a trivial one ([3], 8.1-we exclude this one from our considerations) are zero-symmetric, we only need to search them in $R_{0}[x]$.

Lemma 23. Let R be an integral domain and F a near-field in $R_{0}[x]$. Then there is a subfield K of R such that $F=\{a x / a \in K\}$.

Proof. Straightforward.
Lemma 24. Let F be a near-field in $R_{0}[x], 0 \neq f=a_{n} x^{n}+\cdots+$ $a_{1} x \in F$. Then $a_{2}, a_{3}, \cdots, a_{n} \in \mathfrak{P}(R)$ (prim-radical of R) and a_{1} is a unit in R.

Proof. We use the following epimorphisms: $h: R \rightarrow R / M$ where M is a prime ideal of $R, h^{\prime}: R_{0}[x] \rightarrow(R / M)_{0}[x]$:

$$
a_{n} x^{n}+\cdots+a_{1} x \longmapsto h\left(a_{n}\right) x^{n}+\cdots+h\left(a_{1}\right) x .
$$

In $(R / M)_{0}[x]$ we can apply Lemmas 2, 3 and get: $h\left(a_{2}\right)=h\left(a_{3}\right)=\cdots=$ $h\left(a_{n}\right)=0$. So we have $a_{2}, \cdots, a_{n} \in \mathfrak{F}(R)$.

Since $f \neq 0, a_{1}$ cannot be $=0$, otherwise f has no inverse in F.
Suppose a_{1} were not a unit, so a_{1} is in a maximal ideal M_{1} of R. Let $h: R \rightarrow R / M_{1}$ and $h^{\prime}: R_{0}[x] \rightarrow\left(R / M_{1}\right)_{0}[x]$ be as above and we get $h^{\prime}\left(a_{n} x^{n}+\cdots+a_{1} x\right)=h\left(a_{1}\right) x=0$, a contradiction to the fact that $h^{\prime}(F)=\{a x / a \in K\}$ for some subfield K of $h(R)$.

Theorem 2. Let F be a near-field contained in $R_{0}[x], F_{1}:=$ $\left\{a_{1} /\right.$ some $\left.a_{n} x^{n}+\cdots+a_{1} x \in F\right\}$. Then $F \cong F_{1} x$.

Proof. Define $h: F \rightarrow F_{1} x$.

$$
a_{n} x^{n}+\cdots+a_{1} x \longmapsto a_{1} x
$$

h is surjective. We show it is injective, too. Let $f_{1}, f_{2} \in F$ with $f_{1}=a_{n} x^{n}+\cdots+a_{1} x$ and $f_{2}=b_{m} x^{m}+\cdots+a_{1} x$. Then $f_{1}-f_{2}=\cdots+$ $\left(a_{2}-b_{2}\right) x^{2}+0 x \in F$. But then $f_{1}-f_{2}=0$ by Lemma 24. Hence $f_{1}=f_{2}$ and h is $1-1$.

It is easy to show that h is a near-ring homomorphism, so h is a near-ring isomorphism.

Examples. Take $R:=\boldsymbol{Z}_{2}[t] /\left(t^{4}+t^{2}+1\right)$. Then $K_{1}:=\{0, x\}, K_{2}:=$ $\left\{0, x, t^{2} x,\left(t^{2}+1\right) x\right\}$ and $K_{3}:=\left\{0, x,\left(t^{2}+t+1\right) x^{2}+t^{2} x,\left(t^{2}+t+1\right) x^{2}+\right.$
$\left.\left(t^{2}+1\right) x\right\}$ are examples of subnear-fields of $R_{0}[x]$. Note that K_{3} contains non-liear polynomials.

Application. Let P be a planar near-ring with identity which is either contained in some $R_{0}[x]$ or a factor of $R_{0}[x]$. Then P is a field and isomorphic to a subfield or a factorfield of R. This holds because a planar near-ring with identity is accurately a near-field, as can be easily seen.

References

1. J. L. Brenner, Maximal ideals in the near-ring of polynomials mod 2, Pacific J. Math., 52 (1974), 595-600.
2. J. R. Clay and D. K. Doi, Maximal ideals in the near-ring of polynomials over a field. In Colloqu. Math. Soc. Janus Bolyai 6, Rings, Modules and Radicals (ed. by A. Kertesz), pp. 117-133. Amsterdam, North Holland, 1973.
3. G. Pilz, Near-rings, Amsterdam, North Holland, 1977.
4. Y.S. So, Polynom Fast-ring, Dissertation, Univ. Linz, 1978.
5. E. G. Straus, Remarks on the paper "Ideals in near-rings of polynomials over a field", Pacific J. Math., 52 (1974), 601-603.
6. H. Wähling, Bericht über Fastkörper, Jahresbericht Dt. Math. Ver., 76 (1975), 41-103.

Received December 15, 1979. I would like to thank Günter Pilz for his unselfish help and encouragement and to "Österreichischen Forschungsfonds" for the financial assistance (Project number 3479).

Institute für Mathematik
Johannes-Kepler Universität
A-4045 Linz-Auhof, Austria.

