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POLYNOMIAL NEAR-FIELDS?

YONG-SlAN SO

It is well known that all finite fields can be obtained as
homomorphic images of polynomial rings. Hence it is natural
to raise the question, which near-fields arise as homomorphic
images of polynomial near-rings.

It is the purpose of this paper to give the surprising
answer: one gets no proper near-fields at all—in dramatic
contrast to ring and field theory. Another surprising result
is the fact that all near-fields contained in the near-rings of
polynomials are actually fields.

Homomorphic images are essentially factor structures. So we
take a commutative ring R with identity, from the near-ring R[x]
of all polynomials over R (or the near-ring R0[x] of all polynomials
without constant term over R) and look for ideals I such that R[x]/I
becomes a near field. With this notation (and containing the one of
[1] and [2]) we get our main result:

THEOREM 1. If R[x]/I (or R0[x]/I) is a near-field then it is iso-
morphic to R/M (where M is a maximal ideal of R) and hence a
field.

The proof requires a series of lemmas as well as a number of
results on near-fields.

Our first reduction is the one of R[x] to R0[x].

LEMMA 1. If I is an ideal of (the near-ring) R[x] such that
R[x]/I is a near-field, then there exists an ideal J of R0[x] with
R[x]/I = RQ[x]/J.

Proof. R0[x] £ / implies x e I, hence R[x] £ /, a contradiction.
So we have R0[x] S I and—since I must be maximal in order to get
a near-field—RQ[x] + I = R[x]. By a version of the isomorphic theo-
rem (which is valid in our case) we get

R[x]/I = (RQ[x] + 1)11 = R0[x]j(If) R0[x])

and J:= R0[x] Π / will do the job.

REMARK 1. The converse of Lemma 1 does not hold: Take
J: = {a2x

2 + a,xz + •'•• + anx
n/n eN, n^2, a.eR). Then R0[x]/J ^ R

is a (near) field, but the near-ring R[x] is simple ([2] or [3], 7.89),
so there is no I<3i?[x] with R[x]/I= R.
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We can therefore reduce our search to get suitable ideals of
R0[x] which yield near-field factors.

LEMMA 2. Let 1^2 R0[x] = : N. Then R0[x]/I is a near-field iff I
is a maximal N-subgroup of N.

Proof. =>: Suppose that N/I is a near-field. Then N/I is N/I-
simple by ([3], 8.3). Consider the canonical epimorphism h:N->N/I
with kernel I. If M is some iV-subgroup strictly between / and N
then h(M) turns out to be a proper iV/I-subgroup of N/I, which is a
contradiction. Hence J is a maximal iV-subgroup of N.

<=: Let I be a maximal iSΓ-subgroup of N and take h as above.
If M is a proper JV/I-subgroup of N/I then h~\M) is an JV-subgroup
of N strictly between I and N, which cannot happen. Hence N/I is
JV/J-simple and again by ([3], 8.3) a near-field.

Due to the works of Clay-Doi [2], Brenner [1] and Straus [5] we
know quite a bit about maximal ideals of R[x]. These informations
can be used to find all ideals I of R0[x] which are maximal R0[x]-
subgroups of R0[x] and which we call "strictly maximal" ones (from
now on).

First we need some

NOTATIONS.

( i ) ((x2)): = {a2x
2 + + anx

n/neN,n^2,aίeR}.
(ii) If / ̂  R0[x] then / x : = {a e R/some ax + a2x

2 + + anx
n e 1}

Γ := {aeR/axel}.
(iii) If M < R then Mx := {mx/m e M}.

LEMMA 3. ( i ) (O2)) is an ideal of RQ[x] with R0[x]K(x2)) = R.
(ii) iί and Γ are ideals of R with Γ £ It.

Proof. Straightforward.

LEMMA 4. Let I be a strictly maximal ideal of R0[x] and h: R —>
R/Γ the canonical epimorphism. We define hf as follows: hf: R0[x] —>
(R/Γ\[x\

anx
n + + axx i > h(an)xn + + h(aλ)x .

Then J: = h'(I) is a strictly maximal ideal in (R/Ir)0[x] = h\R0[x])
and J' is the zero ideal in R/Γ.

Proof. By ([4], 4.6), hf is a near-ring epimorphism and we get
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R0[x]/I = h'(R0[x])/h'(I) = (R/Γ)o[x]/J. So J must be strictly maximal
in (R/Γ)0[x], by arguments as in Lemma 2. Observe that (Γ)0[x] £ I.

Now suppose that r 'eRjΓ is in J ' . Then r'xeJ = h'(I) and there
is some i 6 / with h'(ϊ) = r'x. Let i = αx# + + α%#\ Then &'(i) =
/ (̂αjx + + h(an)xn = r'x, whence — rx + αx# + + α ^ e Ker h' =
(Γ)0[x] Q I for some r eR with h(r) = r'. Hence rx must be in /,
so r e / ' and consequently r' is the zero element of RjΓ. This shows
that J ' is the zero ideal of R/I'.

By using the second isomorphism theorem, we therefore can con-
fine our attention to strictly maximal ideals I with V = {0}. But
then the worst cases are behind of us:

LEMMA 5. Let I be a strictly "maximal ideal in R0[x] with Γ =
{0}. Then R is an integral domain.

Proof. Let a,beR, a Φ 0, 6 ^ 0 and ab = 0. Then ax ° bx =
abx = 0 e I. If both ax<£l,bχ(£l then (ax + I) ° (bx + J) = abx + I = /;
a contradiction to the fact that a near-field has no divisors of zero.
So we get axel or δ#6 J, whence aeΓ or b el', a contradiction,
i? is therefore an integral domain.

By ([3], 8.9), the characteristic of a near-field is either 0, a
prime Φ 2 or = 2 . We treat these 3 cases separately, and start
with:

LEMMA 6. Let I be a strictly maximal ideal of R0[x] with Γ =
{0} and Char R0[x]/I = 0. Then there exists a maximal ideal M of R
with R0[x]/I = RjM.

Proof. By Lemma 5, R is an integral domain. It is easy to see
that in our case Char R = Char R0[x] = Char R0[x]/I = 0, hence R is
infinite.

Case 1. ((x2)) Q I. Since /x cannot be = R (otherwise / = R0[x\),
Ix is contained in a maximal ideal M of R. I = ((x2)) + Ixx £ ((#2)) +
Λfa? which is a proper ideal of RQ[x]. But / is a strictly maximal ideal,
hence 1 = ((α;2)) + Λfo and .βo[>]/7= ( { α φ e J?/ikΓ}, + , 0) = (R/M, + , •)•

Case 2. ((x2)) g 7. Since I is a strictly maximal ideal we get
I + ((x2)) = i?oM Then Ix = R and we can select a polynomial i =
bnx

n + + bλx 6 / with δx Φ 0 and w minimal for being a polynomial
in I with nonzero coefficient of x. lΐ r eR then ΐ o (rx) — rχo%el —
1=1. But i o ( r a ) _ r ^ o i = 6%_1(rίι - r - 1 ) ^ - 1 + + 62(r* - r2)a?2 +
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δi(rn — r)x. Since R is an integral domain, hence embeddable into
a field, the set of all seR with sn = s has cardinality ^ n. Since
R is infinite, we can take reR so that rn Φ r. Then io(r&) — rχo%
is a polynomial in / with nonzero coefficient of x and a degree ^ n — 1
which is a contradiction. So Case 2 cannot occur.

Hence we have proved our Theorem 1 in the case when
Char R0[x]/I = 0. Now we consider the case of characteristic p Φ 2.

LEMMA 7. Let I be a strictly maximal ideal of R0[x] with
Char R0[x]/I Φ 2. Then there exists a maximal ideal M of R with
1= Mx + ((x2)), hence R0[x]/I = R/M.

Proof First we show: x2el. Since x&I, -x£l. If x2£l we
have: (x2 + /) o ( - » + / ) = - ( ( x

2 + /) o (a? + /)) = - ( ^ 2 + /) - - α 2 + I

by ([3], 8.10(b)). But (x2 + I)o(-χ + I) = x2o(-χ) + I = tf + I. So
we have 2x2 e I. Since (p, 2) = 1 there are a,beZ with 1 = α p +
δ 2. α?2 = (α p + b-2)x2 = αpa;2 + 2 δ ^ 2 e / because px2el as a result
of Char ϋ?0M// = p. This is contradiction, hence x2 e I. Then we have
x2n = x2oχ*el for all neN.

Now we show: xne I for all neN and w ^ 2. Let w ^ 2. Then
x2 o (ίc% + α^-1) = χ2ίi + 2cc2ίl-1 + x2n~2 e /, and we get 2x2n~ι e I because
#2ίl e / for n ^ 1. As above, we have x2*1"1 e /. Hence we have: xn el
for n :> 2. And as a result of this we have ((x2)) £ / and, similarly
to the proof of Lemma 6, we have I = Mx + ((x2)) where M is a
maximal ideal of R. Therefore R0[x]/I = iϊ/Λf.

So it remains the case that Ghs,rRQ[x]/I = 2, which—as usual—
causes the most trouble.

LEMMA 8. Let I be a strictly maximal ideal in R0[x] with
Char R0[x]/I = 2. Then (2R)0[x] £ I.

Proof Since x + IeR0[x]/I we have 2x + / = J. Hence 2# e /.
But for all feR0[x] 2χof = 2/e/, hence (2i2)0[α] £ J.

LEMMA 9. Lei I be a strictly maximal ideal in R0[x] with
Char R0[x]/I = 2. Aiso, Zeί h: R —> R/2R be the canonical epimorphism
and h'\ R0[x] -> (J?/2J?)0[a?]: α ^ H hαx^ -> h(an)xnΛ Vh{a^)x. Then

R0[x]/I=(R/2R)0[x]/h'(I).

The proof is similar to the one of Lemma 4 and therefore omitted.
In view of this result, we only have to look at the case: Char R =

Char RQ[x]II = 2, R an integral domain and I ' = {0}.
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We now treat the infinite case:

LEMMA 10. Let I be a strictly maximal ideal in R0[x] with
Char R = Char R0[x]/I = 2, R an infinite integral domain and Γ = {0}.
Then there exists a maximal ideal M of R with I — ((x2)) + Mx,
hence R0[x]/I = R/M.

Proof. Suppose there is no maximal ideal M of R with / =
((x2)) + Mx. Then we get ii = R, otherwise Ix would be in a maximal
ideal M1 of R and I £ ((x2)) + M,x.

Let U: = {anx
n + + αxx e I/neN, axΦ 0}. Clearly £7 Φ {0},

since Ix = R. Let m be the minimum of the degrees of nonzero
polynomials in U. Since / ' = {0}, m is ^ 2 . Let eeR\{0, 1} ^ 0 .
Let δmxm + -. + bxx e U £ /. (bmxm + + bλx) o (ex) + emx ° (&mαw + •
+ δia:) = δm_i(em + e™-1)^-1 + + bx{em + e)a? e I. Since m is minimal,
bx{em + e) = 0. We get βw + e = 0, β171"1 + 1 = 0, because R is an
integral domain. But I™-1 + 1 = 0, so we get for all e e R\{0}
e™-1 + 1 = 0.

So m — 2 ^ 1; consequently e m - 1 = β em~2 = 1 and hence em~2 is
the inverse of e in R. R is then a field with em~l = 1 for all e e iϋ\{0},
hence with infinitely many roots of unity, a contradiction.

So there is a maximal ideal M of R with / = ((#2)) + Mx.

In particular, if R is a field, we get / = ((#2)).

We still have to look at the case: Char R = 2, R & finite integral
domain, Γ = {0}. But a finite integral domain is a field. So for our
R we have either R = Z2 oτ R = GF(2n) with w ̂  2.

First some preparations:

LEMMA 11. Let F be a field with C h a r F = 2, \F\>2. Let I
be a strictly maximal ideal in F0[x]. If xmel then xm+ίel for
m + i ^ 4 where ieN.

Proof. x2m+1 + xm+2 = (xm + xf + x3 + # 3 w e I. Since |JFΊ > 2, it
is possible to choose a with a Φ 0, α ̂  1. From (#TO + αcc)3 + (ax)3 e I
we get ax2m+1 + α2αm+2 e /. But ax o (x2w+1 + xw+2) = αίc2w+1 + axm+2 e I.
By adding of these two polynomials we get (a2 + a)xm+2 e I. Since
a2 + α Φ 0, we have ccw+2 6 J. So we have: xm, xm+2, xm+\ xm+\ - e l .

But x2m = xmoχ2el, we also have x2m+2 e I . α;2m+2 = (xm+1) oχ2el,

so we have either x2el or xm+1 e / since FQ[x]/I is a near-field and
has no zero-divisor.

If xm+ί 6 1 we get: xm+ί e I for all i e N.
If x2 e I then #4 + xδ = (x2 + x)3 + x3 + x6 6 /. Hence then x5 e /.
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So we have: x2, x\ x\ e 7, x\ x\ x\ • • • € / .

Hence xm+i e / for m + i ^ 4, where i e ΛΓ.

LEMMA 12. Let Iφ FQ[x] be an ideal of F0[x], when F is afield
of characteristic 2. If there is an n ^ 2, so that xm e //or αί£ m ^ n,
then IQ ((x2)).

Proof. Suppose J g ((x2)). Then there is some/e/\((x2)). Without
loss of generality, we can assume f = x + a2x

2 + + an^xn~l.

fox*-1 = x*-1 + a\xn-x)2 + + α^O^-y-1 e I

x z= j ° x H~ a%\X ) -j- -|- an_ι{x ) G 1

since the degrees of second, third, terms are ^ n. Therefore we
can reduce n and we get: x%~2

9 x
n~z, •• , # 2 G I . But then x = f +

a2x
2 + + a^x1"-1 G J, a contradiction. Hence IQ

LEMMA 13. Let I be a maximal ideal in F0[x]9 when F is a
field of characteristic 2 and \F\ > 2. // ίΛ,βre is some neN with
n ^ 2, so ίftαί xm e I for all m ^ n, then I = ((x2)).

Proof. Use Lemma 12.

LEMMA 14. Let I be a strictly maximal ideal in F0[x], when F
is a field of characteristic 2 and \F\ > 2. // there is an neN with
n^2, xnel, then I = ((x2)).

Proof. According to Lemma 11 we have: xm e I for all m ^
max (n, 4). Lemma 13 will do the rest of the job.

LEMMA 15. Let F be a field of characteristic 2 and I a strictly
maximal ideal of FQ[x\. Then there is an odd number t with
xι + + aλx 6 I.

Proof. Since / Φ {0}, there is a k e N with x2k + + bλx e I,
otherwise our assertion is already proved.

(x2k + + bxx + xf + xz = (x2k + + b&γ + (̂ 2fc + + b,x)2x +
(αj2fc + + b,x)x2 e I. We g e t xik+1 + + α;2fc+2 + e J . For w ^ 1,

4& + 1 is g r e a t e r t h a n 2k + 2 and so t h e r e is a polynomial of degree

4fc + 1 (an odd number) in /.

LEMMA 16. Let F be a finite field of characteristic 2 and I a
strictly maximal ideal of F0[x]. Then the near-field F0[x]/1 is finite.

Proof. We know from Lemma 15 that there is an odd number
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t with xt + + dixel.

We show: For all n ^ 6t there is some xn + + bxx e I.

For all I ^ 1, (α>*+ + aλx + ccw) 8 + (^ί+03 6 1 . Hence (αt+I)2(α>'+ • .
+ a,x) + (α?'+I)(a>* + + δ^) 2 e I, whence α3ί+2Z + + £ 3 ί + ' + •••el.
Since (&* H h α^) 3 = x3ί H e l , there are polynomials of following
degrees in I: 3£, Zt + 2, 3£ + 4, . Since 3£ is odd, we have: For all
odd numbers ft ^ Zt, there is some normed polynomial of degree ft in I.

(a?* + + a&γ = xu + e I .

(&*+•••+ α^) 2 = #2ί + + e&el.

(x2t+ι + x2t + . . + e^)3 + (cc2ί+z)3 e I.

Hence (α2ί+θ2(#2ί + •) + (x2t+ι)(x2t + )2 e ^ whence x6ί+2Z + +
%M+ι _}_ . . . G /. Therefore there are also polynomials of following
degrees in /: 6ί, 6ί + 2, 6ί + 4,

We get: For all ft ^ 6ί there exists some polynomial xk + +

&!&€/. Hence li^M/ZI ^ I^T, which is finite.

LEMMA 17. Let F be GF(2n), n ^ 2 and I a strictly maximal

ideal of F0[x\. Then I = ((x2)).

Proof. Lemma 16 tells us that K: = F0[x]/I is a finite near-field.
By 8.34 of [3], all finite near-fields (except 7 exceptional cases of
orders 52, 1Γ, 72, 232, II2, 292, 592) are Dikson near-fields. Our K can-
not be exceptional, so it is a Dickson near-field. In this case, we
know from 3.3 of [6] that the center C(K) := {feK/fog = goffoτ

all g e K} is closed with respect to addition.
Since, by the well-known rules how to calculate in GF{2n), x + I

and x2n + I belong to C(K), so does their sum x + x2% + /. So we
get (x2n + x + J) o (x2"-1 + /) - (x2*-1 + I) o (χ2% + χ + i)m (χ2n-γ +
a**-* + I = (χ2n + a )« -i + / = (χ2yn-^ + (χ2yn-2 + . . + α>2V"-8 + x2"-1 +
I = x{2n~mn + Σ ϊ l Ί 2 x 2 ^ ^ - 1 - ^ + OJ271-1 + I. Hence Σί=72 x2%fc+(2%-1-&) e J.
But 2nk + (2% - 1 - ft) - (2W - l)ft + (2n - 1) - (2W - l)(ft + 1), so
Σϊ=Ί2&(2*~1)(*+1) = Σ ^ Since if is a
near-field, either ΣΓ=Ί2 xh+16 / or x2%~x e I. If a;2"-1 e /, we are through,
for we get / = ((x2)) by Lemma 14. So we may assume that
Σ ϊ l Ί 2 s * + 1 = a2*-1 + + x2 6 /.

The multiplicative group of GF(2n) is cyclic. Therefore there is
some c e GF(2n) of order 2% - 1. We know: c Φ 0, c Φ 1. c2""1 = 1
and for al l ϊ < 2n - 1 cι Φ 1 and for all Z, i ^ 2n - 1, ί ^ j : cι + c5" ̂  0.
Since c2"-V""1 + - + ex2 = (x2*-1 + + x2) o (COJ) e J, c 2 " " 1 ^- 1 + - - •
+ c2%-V = c271-1^ o (αΓ-1 + . . . + χ2) e J, we get (c2""1 + c 2 " - V " 2 + . - -
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+ (c2"-1 + c2)x2 6 I. Also (c2"-1 + c2*-2)c2%-2£2%-2 + . + (c2"-1 + c2)c2x2 =
((c2%-1 + G2n-2)x2%-2 + +(c 2"- 1 + c2)£2) o {ex) 6 / and (c2%-1H-c2ίl-2)c2U-V"-2 +
• +(c2 %-1 + c2)c2"-V = (c2"-2ίc) o ((c^-'H- c 2 "- 2 )^- 2 + . . + (c2"-1 + c> 2 ) 6 /.
Hence (c2*-1 + c2%-3)(e2*-2 + c 2 *- 8 )^- 8 + + (c2*"1 + c2)(c2*-2 + c2)α2 6 1 .
If we continue this procedure, we finally arrive at (c2n~ι + c2)(c2n~2 +
c2) (c3 + c2)x2 e I where the coefficient of x2 Φ 0. So ίc2 6 / and we
get / = ((x2)) again by Lemma 14.

Our last case is R = Z2. This case is rather complicated and so
the way is longer. Brenner has shown in [1] that there are only
two maximal ideals in Z2[x]. One of them is Γ : = t h e subgroup
generated by {1, x + x2, x3, x + x\ x + x\ x6, x + x\ x + x8, x\ •}.
The other one is V, the subgroup generated by {1, x + x2, x + #3,
x + x\ •}. We define Γo, F o as follows: TQ: = Tf] (Z2\[x] and VQ : =
F Π (Z2)o[x]. Γo and F o are easily shown to be ideals in (Z2)Q[x]. They
are even strictly maximal ideals as will be demonstrated in the fol-
lowing. Together with (O2)), there are just three strictly maximal
ideals in (Z2)Q[x].

LEMMA 18. Let I be a strictly maximal ideal in (Z2)0[x] with
x2el, then 1= ((x2)).

Proof. Since x2 e I, x2k = x2 ° xk e I for all k e N. Hence (x* + xf +
x*el, whence x9el. But x9 = xzoχ* so x 3 e / since (Z2)Q[x]/I has no
divisors of zero. Therefore x6k + xik+3 + cc2fc+6 + x9 = (x2k + x3)3 e I, from
which we get that x*k+d e I for all k e N. Also, (x2k + #)3 + x3 e I gives
us X 4 A ; + 1 G / for all keN. All ίc4 and x4k+2 = f o ^ + 1 are also in /, so,
putting altogether, xnel for w ̂  2, which means J = ((α?2)).

LEMMA 19. Let I be a strictly maximal ideal in (Z2)Q[x] with
x2 <£I, x*e I. Then I = To

Proof. By Lemma 16 and the information in the proof of Lemma
17, we know (Z2)Q[x]/I is a finite Dickson near-field of characteristic
2, so it has order 2* (by 8.13 of [3]). Since x2 + I Φ 0 + I, the order
k of x2 + / divides 2* - 1. So we have x2k + I = (α2 + /) <> (#2 + I) ° °
(of + /) = a + j and fc/2* - 1. Hence k is odd, whence 3/2fc + 1. Let
2& + 1 = : 3jΓ. For all seN, s ^ 3, we get x3 o (x* + x8-1) e J whence

χzs-i + ^3S-2 € j a n ( j X3 o ^ β + χS-η e i w ] i e n c e ^ - 2 + χzs-ι e j Hence

χss-i Ξ ^ - 2 Ξ 3.3,-3 Ξ ^s -β Ξ . . . = 3.5 Ξ χ4 ( m 0 ( j jy j n p a r t i c u l a r , α? Ξ

x2k = a-8/-1 = χ4 and we get #% + x e I for all n e iV, 3 1 n, n ^ 4. Also,
from (#2 + /) o (χ2 + I) = x* + I = x + J we get x2 + I = x + I by
8.10.a of [3]. Hence all the additive generators of To are in /, whence
To £ I. But TQ is a subgroup of (Z2)0[&] of order 2, hence JΓ0 = I.
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LEMMA 20. Let I be a strictly maximal ideal of (Z2)0[x] with
x2 ίl, xs $ 7, x2 + xs e I. Then I = F o .

Proof. Since x2 + x3e 7, also (x2 + x3) ° (xs + x) e 7, whence x2s+1 +
xs+2 6 7 and (x2 + xz) o (x8 + x2) e I, implying that x28+2 + x8+* e I. From
the first result we get x5 = x\ x7 = x\ cc9 = xβ (mod /) and from the
second we derive x* = x\ xί0 = xs, x12 == x\ (mod 7), so (since also
{x2 + xz) oχ2 = χi + χQeI) we get x* = x* = χQ == . . . (mod / ) . Since
x2 $ I, there is some keN with Z + ^ e ί (same reason as in the
proof of Lemma 19). Hence x = x2k = cc4 (mod I ) . Also (x2k + x)oχ2el,
whence x2 = α?2fe+1 Ξ aj4 (mod / ) . Since x2 + x3 e JΓ, we get x2 = α;3 (mod
7), and therefore x = x* == a* = x* = . . . = #* = . . . (mod I ) . Thus
for all n e N xn + x e I, hence VQ £ /. But Vo is a subgroup of index
2 in (Z2)oM, so Fo = I.

LEMMA 21. Lei I be a strictly maximal ideal of (Z2)0[x]. Then
I is either = ((x2)) or = To or = Vo.

Proof. Suppose / Φ ((x2)), I Φ To, I Φ Vo. Applying Lemmas 18,
19 and 20 we have: x2 $ /, xs $ I, x2 + x5 £ L As in the proof of
Lemma 17, let C(K) be the center of K:= (Z2)Q[x]/I. Obviously
x + IeC(K), x2 + IeC(K), h e n c e x + I+x2 + I = x + x2 + IeC(K).
So (x2 + x + I)o(χ* + /) = (x* + /)O(ΛJ2 + a? + / ) , hence a;6 + xz + / =
x6 + #5 + a;4 + xz 6 J and x5 + #4 6 1 . Also, (a;5 + a;4) o (χ2 + x) = χ10 +
a?9 + x* + #5 + xs + #4 € / . Since (x* + ίc4) o χ2 = x10 + x*el and α;5 + x" e 7,
we have x* + x6 e 7. But 7 - α9 + xQ + I = (ίc8 + x2 + 7) o (χ5 + 7),
implying that either x3 + x2 e 7 or x3 6 7, both being contradictions.

LEMMA 22. Lei I be a strictly maximal ideal of (Z2)0[x\. Then

Proof. Applying Lemma 21, we know 7 is either =((x2)) or
- T o or - F o . But [(Z2)oM: ((a?))] - l(Zt\[x]: ΓJ = [(Z2)O[OJ]: F J = 2.
So we have in all of these three cases: (Z2)0[#]/7 = Z2.

This completes the proof of Theorem 1.

As a byproduct, we have a complete knowledge of all strictly
maximal ideals in polynomial near-rings:

COROLLARY. Let I be a strictly maximal ideal of RQ[x]. Then
there exists a maximal ideal M of R with I = ((x2)) + Mx, unless
R = Z2. In this case, I might as well be =TQ or = F o .
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In particular, for a field R Φ Z2, there is just one strictly maxi-
mal ideal, namely ((#2)).

G. Pilz suggested to investigate near-fields which are contained
in R[x], Since all near-fields with the exception of a trivial one ([3],
8.1—we exclude this one from our considerations) are zero-symmetric,
we only need to search them in i20[#]

LEMMA 23. Let R be an integral domain and F a near-field in
R0[x], Then there is a sub field K of R such that F = {ax/aeK}.

Proof. Straightforward.

LEMMA 24. Let F be a near-field in R0[x], 0 Φ f = anx
n + +

aλx e F. Then a2, α3, , an e $β(i2) (prim-radical of R) and ax is a
unit in R.

Proof. We use the following epimorphisms: h: R —»R/M where
M is a prime ideal of R, h': R0[x] -* (R/M)0[x]:

anx
n + + axx i > h(an)xn + + h{a^)x .

In (R/M)0[x\ we can apply Lemmas 2, 3 and get: h(a2) = h(aB) = =
h(an) = 0. So we have α2, , αn e ̂ β(i2).

Since / Φ 0, aλ cannot be = 0, otherwise / has no inverse in F.
Suppose a1 were not a unit, so αx is in a maximal ideal Λfx of

R. Let h: R —>R/M1 and h'\ R0[x] —> (R/M^lx] be as above and we get
h\anx

n + + aγx) — h(aλ)x = 0, a contradiction to the fact that
h'(F) = {ax/aeK} for some subfield K of h(R).

THEOREM 2. Let F be a near-field contained in RQ[x]f Fλ: =
{ajsome anx

n + + axx e F). Then F = Fλx.

Proof. Define h: F -> Fxx.

anx
n + + aγx i > atx

h is surjective. We show it is injective, too. Let fl9 f2eF with
/i = anx

n + + axx and f2 = δmccm + + α^. Then fx — f2 = +
(α2 - 62)α?2 + Ox e F. But then fλ - /2 = 0 by Lemma 24. Hence Λ - /2

and fc is 1 — 1.
It is easy to show that h is a near-ring homomorphism, so h is

a near-ring isomorphism.

EXAMPLES. Take R : = Z2[t]l(t* + f + 1). Then i ^ : = {0, x}, K2: =
{0, a>, t2a?, (ί8 + l)α?} and Kz := {0, x, (t2 + t + l)x2 + ί2α?, (ί2 + t + l)tf2 +
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(t2 + l)x} are examples of subnear-fields of i?0[#]. Note that Kz

contains non-liear polynomials.

Application. Let P be a planar near-ring with identity which
is either contained in some R0[x] or a factor of R0[x]. Then P is a
field and isomorphic to a subfield or a factor field of R. This holds
because a planar near-ring with identity is accurately a near-field,
as can be easily seen.
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