POLYNOMIAL NEAR-FIELDS?

YONG-SIAN SO

It is well known that all finite fields can be obtained as homomorphic images of polynomial rings. Hence it is natural to raise the question, which near-fields arise as homomorphic images of polynomial near-rings.

It is the purpose of this paper to give the surprising answer: one gets no proper near-fields at all—in dramatic contrast to ring and field theory. Another surprising result is the fact that all near-fields contained in the near-rings of polynomials are actually fields.

Homomorphic images are essentially factor structures. So we take a commutative ring R with identity, from the near-ring R[x] of all polynomials over R (or the near-ring $R_0[x]$ of all polynomials without constant term over R) and look for ideals I such that R[x]/I becomes a near field. With this notation (and containing the one of [1] and [2]) we get our main result:

THEOREM 1. If R[x]/I (or $R_0[x]/I$) is a near-field then it is isomorphic to R/M (where M is a maximal ideal of R) and hence a field.

The proof requires a series of lemmas as well as a number of results on near-fields.

Our first reduction is the one of R[x] to $R_0[x]$.

LEMMA 1. If I is an ideal of (the near-ring) R[x] such that R[x]/I is a near-field, then there exists an ideal J of $R_0[x]$ with $R[x]/I \cong R_0[x]/J$.

Proof. $R_0[x] \subseteq I$ implies $x \in I$, hence $R[x] \subseteq I$, a contradiction. So we have $R_0[x] \not\subseteq I$ and—since I must be maximal in order to get a near-field— $R_0[x] + I = R[x]$. By a version of the isomorphic theorem (which is valid in our case) we get

$$R[x]/I = (R_{\scriptscriptstyle 0}[x] + I)/I \cong R_{\scriptscriptstyle 0}[x]/(I \cap R_{\scriptscriptstyle 0}[x])$$

and $J := R_0[x] \cap I$ will do the job.

REMARK 1. The converse of Lemma 1 does not hold: Take $J := \{a_2x^2 + a_3x^3 + \cdots + a_nx^n/n \in N, n \ge 2, a_i \in R\}$. Then $R_0[x]/J \cong R$ is a (near) field, but the near-ring R[x] is simple ([2] or [3], 7.89), so there is no $I \le R[x]$ with $R[x]/I \cong R$.

We can therefore reduce our search to get suitable ideals of $R_0[x]$ which yield near-field factors.

LEMMA 2. Let $I \leq R_0[x] =: N$. Then $R_0[x]/I$ is a near-field iff I is a maximal N-subgroup of N.

Proof. \Rightarrow : Suppose that N/I is a near-field. Then N/I is N/Isimple by ([3], 8.3). Consider the canonical epimorphism $h: N \to N/I$ with kernel *I*. If *M* is some *N*-subgroup strictly between *I* and *N* then h(M) turns out to be a proper N/I-subgroup of N/I, which is a contradiction. Hence *I* is a maximal *N*-subgroup of *N*.

 \Leftarrow : Let *I* be a maximal *N*-subgroup of *N* and take *h* as above. If *M* is a proper *N/I*-subgroup of *N/I* then $h^{-1}(M)$ is an *N*-subgroup of *N* strictly between *I* and *N*, which cannot happen. Hence *N/I* is *N/I*-simple and again by ([3], 8.3) a near-field.

Due to the works of Clay-Doi [2], Brenner [1] and Straus [5] we know quite a bit about maximal ideals of R[x]. These informations can be used to find all ideals I of $R_0[x]$ which are maximal $R_0[x]$ -subgroups of $R_0[x]$ and which we call "strictly maximal" ones (from now on).

First we need some

NOTATIONS.

LEMMA 3. (i) ((x²)) is an ideal of $R_0[x]$ with $R_0[x]/((x^2)) \cong R$. (ii) I_1 and I' are ideals of R with $I' \subseteq I_1$.

Proof. Straightforward.

LEMMA 4. Let I be a strictly maximal ideal of $R_0[x]$ and $h: R \rightarrow R/I'$ the canonical epimorphism. We define h' as follows: $h': R_0[x] \rightarrow (R/I')_0[x]$

$$a_n x^n + \cdots + a_1 x \longmapsto h(a_n) x^n + \cdots + h(a_1) x$$
.

Then J := h'(I) is a strictly maximal ideal in $(R/I')_0[x] = h'(R_0[x])$ and J' is the zero ideal in R/I'.

Proof. By ([4], 4.6), h' is a near-ring epimorphism and we get

 $R_0[x]/I \cong h'(R_0[x])/h'(I) = (R/_{I'})_0[x]/J.$ So J must be strictly maximal in $(R/I')_0[x]$, by arguments as in Lemma 2. Observe that $(I')_0[x] \subseteq I.$

Now suppose that $r' \in R/I'$ is in J'. Then $r'x \in J = h'(I)$ and there is some $i \in I$ with h'(i) = r'x. Let $i = a_1x + \cdots + a_nx^n$. Then h'(i) = $h(a_1)x + \cdots + h(a_n)x^n = r'x$, whence $-rx + a_1x + \cdots + a_nx^n \in \text{Ker } h' =$ $(I')_0[x] \subseteq I$ for some $r \in R$ with h(r) = r'. Hence rx must be in I, so $r \in I'$ and consequently r' is the zero element of R/I'. This shows that J' is the zero ideal of R/I'.

By using the second isomorphism theorem, we therefore can confine our attention to strictly maximal ideals I with $I' = \{0\}$. But then the worst cases are behind of us:

LEMMA 5. Let I be a strictly maximal ideal in $R_0[x]$ with $I' = \{0\}$. Then R is an integral domain.

Proof. Let $a, b \in R$, $a \neq 0$, $b \neq 0$ and ab = 0. Then $ax \circ bx = abx = 0 \in I$. If both $ax \notin I$, $bx \notin I$ then $(ax + I) \circ (bx + I) = abx + I = I$; a contradiction to the fact that a near-field has no divisors of zero. So we get $ax \in I$ or $bx \in I$, whence $a \in I'$ or $b \in I'$, a contradiction. R is therefore an integral domain.

By ([3], 8.9), the characteristic of a near-field is either 0, a prime $\neq 2$ or = 2. We treat these 3 cases separately, and start with:

LEMMA 6. Let I be a strictly maximal ideal of $R_0[x]$ with $I' = \{0\}$ and Char $R_0[x]/I = 0$. Then there exists a maximal ideal M of R with $R_0[x]/I = R/M$.

Proof. By Lemma 5, R is an integral domain. It is easy to see that in our case Char $R = \text{Char } R_0[x] = \text{Char } R_0[x]/I = 0$, hence R is infinite.

Case 1. $((x^2)) \subseteq I$. Since I_1 cannot be = R (otherwise $I = R_0[x]$), I_1 is contained in a maximal ideal M of R. $I = ((x^2)) + I_1 x \subseteq ((x^2)) + Mx$ which is a proper ideal of $R_0[x]$. But I is a strictly maximal ideal, hence $I = ((x^2)) + Mx$ and $R_0[x]/I \cong (\{ax/a \in R/M\}, +, 0) \cong (R/M, +, \cdot)$.

Case 2. $((x^2)) \not\subseteq I$. Since I is a strictly maximal ideal we get $I + ((x^2)) = R_0[x]$. Then $I_1 = R$ and we can select a polynomial $i = b_n x^n + \cdots + b_1 x \in I$ with $b_1 \neq 0$ and n minimal for being a polynomial in I with nonzero coefficient of x. If $r \in R$ then $i \circ (rx) - rx \circ i \in I - I = I$. But $i \circ (rx) - rx \circ i = b_{n-1}(r^n - r^{n-1})x^{n-1} + \cdots + b_2(r^n - r^2)x^2 + I$

YONG-SIAN SO

 $b_1(r^n - r)x$. Since R is an integral domain, hence embeddable into a field, the set of all $s \in R$ with $s^n = s$ has cardinality $\leq n$. Since R is infinite, we can take $r \in R$ so that $r^n \neq r$. Then $i \circ (rx) - rx \circ i$ is a polynomial in I with nonzero coefficient of x and a degree $\leq n - 1$ which is a contradiction. So Case 2 cannot occur.

Hence we have proved our Theorem 1 in the case when $\operatorname{Char} R_0[x]/I = 0$. Now we consider the case of characteristic $p \neq 2$.

LEMMA 7. Let I be a strictly maximal ideal of $R_0[x]$ with Char $R_0[x]/I \neq 2$. Then there exists a maximal ideal M of R with $I = Mx + ((x^2))$, hence $R_0[x]/I \cong R/M$.

Proof. First we show: $x^2 \in I$. Since $x \notin I$, $-x \notin I$. If $x^2 \notin I$ we have: $(x^2 + I) \circ (-x + I) = -((x^2 + I) \circ (x + I)) = -(x^2 + I) = -x^2 + I$ by ([3], 8.10(b)). But $(x^2 + I) \circ (-x + I) = x^2 \circ (-x) + I = x^2 + I$. So we have $2x^2 \in I$. Since (p, 2) = 1 there are $a, b \in \mathbb{Z}$ with $1 = a \cdot p + b \cdot 2$. $x^2 = (a \cdot p + b \cdot 2)x^2 = apx^2 + 2bx^2 \in I$ because $px^2 \in I$ as a result of Char $R_0[x]/I = p$. This is contradiction, hence $x^2 \in I$. Then we have $x^{2n} = x^2 \circ x^n \in I$ for all $n \in N$.

Now we show: $x^n \in I$ for all $n \in N$ and $n \ge 2$. Let $n \ge 2$. Then $x^2 \circ (x^n + x^{n-1}) = x^{2n} + 2x^{2n-1} + x^{2n-2} \in I$, and we get $2x^{2n-1} \in I$ because $x^{2n} \in I$ for $n \ge 1$. As above, we have $x^{2n-1} \in I$. Hence we have: $x^n \in I$ for $n \ge 2$. And as a result of this we have $((x^2)) \subseteq I$ and, similarly to the proof of Lemma 6, we have $I = Mx + ((x^2))$ where M is a maximal ideal of R. Therefore $R_0[x]/I \cong R/M$.

So it remains the case that $\operatorname{Char} R_0[x]/I = 2$, which—as usual—causes the most trouble.

LEMMA 8. Let I be a strictly maximal ideal in $R_0[x]$ with Char $R_0[x]/I = 2$. Then $(2R)_0[x] \subseteq I$.

Proof. Since $x + I \in R_0[x]/I$ we have 2x + I = I. Hence $2x \in I$. But for all $f \in R_0[x]$ $2x \circ f = 2f \in I$, hence $(2R)_0[x] \subseteq I$.

LEMMA 9. Let I be a strictly maximal ideal in $R_0[x]$ with Char $R_0[x]/I = 2$. Also, let $h: R \to R/2R$ be the canonical epimorphism and $h': R_0[x] \to (R/2R)_0[x]: a_n x^n + \cdots + a_1 x \to h(a_n) x^n + \cdots + h(a_1) x$. Then $R_0[x]/I \cong (R/2R)_0[x]/h'(I)$.

The proof is similar to the one of Lemma 4 and therefore omitted. In view of this result, we only have to look at the case: Char R =Char $R_0[x]/I = 2$, R an integral domain and $I' = \{0\}$. We now treat the infinite case:

LEMMA 10. Let I be a strictly maximal ideal in $R_0[x]$ with Char $R = \text{Char } R_0[x]/I = 2$, R an infinite integral domain and $I' = \{0\}$. Then there exists a maximal ideal M of R with $I = ((x^2)) + Mx$, hence $R_0[x]/I = R/M$.

Proof. Suppose there is no maximal ideal M of R with $I = ((x^2)) + Mx$. Then we get $I_1 = R$, otherwise I_1 would be in a maximal ideal M_1 of R and $I \subseteq ((x^2)) + M_1x$.

Let $U := \{a_n x^n + \dots + a_1 x \in I/n \in N, a_1 \neq 0\}$. Clearly $U \neq \{0\}$, since $I_1 = R$. Let *m* be the minimum of the degrees of nonzero polynomials in *U*. Since $I' = \{0\}$, *m* is ≥ 2 . Let $e \in R \setminus \{0, 1\} \neq \emptyset$. Let $b_m x^m + \dots + b_1 x \in U \subseteq I$. $(b_m x^m + \dots + b_1 x) \circ (ex) + e^m x \circ (b_m x^m + \dots + b_1 x) = b_{m-1}(e^m + e^{m-1})x^{m-1} + \dots + b_1(e^m + e)x \in I$. Since *m* is minimal, $b_1(e^m + e) = 0$. We get $e^m + e = 0$, $e^{m-1} + 1 = 0$, because *R* is an integral domain. But $1^{m-1} + 1 = 0$, so we get for all $e \in R \setminus \{0\}$ $e^{m-1} + 1 = 0$.

So $m-2 \ge 1$; consequently $e^{m-1} = e \cdot e^{m-2} = 1$ and hence e^{m-2} is the inverse of e in R. R is then a field with $e^{m-1} = 1$ for all $e \in R \setminus \{0\}$, hence with infinitely many roots of unity, a contradiction.

So there is a maximal ideal M of R with $I = ((x^2)) + Mx$.

In particular, if R is a field, we get $I = ((x^2))$.

We still have to look at the case: Char R = 2, R a finite integral domain, $I' = \{0\}$. But a finite integral domain is a field. So for our R we have either $R = \mathbb{Z}_2$ or $R = GF(2^n)$ with $n \ge 2$.

First some preparations:

LEMMA 11. Let F be a field with Char F = 2, |F| > 2. Let I be a strictly maximal ideal in $F_0[x]$. If $x^m \in I$ then $x^{m+i} \in I$ for $m + i \ge 4$ where $i \in N$.

Proof. $x^{2^{m+1}} + x^{m+2} = (x^m + x)^3 + x^3 + x^{3m} \in I$. Since |F| > 2, it is possible to choose a with $a \neq 0$, $a \neq 1$. From $(x^m + ax)^3 + (ax)^3 \in I$ we get $ax^{2^{m+1}} + a^2x^{m+2} \in I$. But $ax \circ (x^{2^{m+1}} + x^{m+2}) = ax^{2^{m+1}} + ax^{m+2} \in I$. By adding of these two polynomials we get $(a^2 + a)x^{m+2} \in I$. Since $a^2 + a \neq 0$, we have $x^{m+2} \in I$. So we have: $x^m, x^{m+2}, x^{m+4}, x^{m+6}, \dots \in I$.

But $x^{2m} = x^m \circ x^2 \in I$, we also have $x^{2m+2} \in I$. $x^{2m+2} = (x^{m+1}) \circ x^2 \in I$, so we have either $x^2 \in I$ or $x^{m+1} \in I$ since $F_0[x]/I$ is a near-field and has no zero-divisor.

If $x^{m+1} \in I$ we get: $x^{m+i} \in I$ for all $i \in N$.

If $x^2 \in I$ then $x^4 + x^5 = (x^2 + x)^3 + x^3 + x^6 \in I$. Hence then $x^5 \in I$.

YONG-SIAN SO

So we have: x^2 , x^4 , x^6 , $\dots \in I$, x^5 , x^7 , x^9 , $\dots \in I$. Hence $x^{m+i} \in I$ for $m + i \ge 4$, where $i \in N$.

LEMMA 12. Let $I \neq F_0[x]$ be an ideal of $F_0[x]$, when F is a field of characteristic 2. If there is an $n \geq 2$, so that $x^m \in I$ for all $m \geq n$, then $I \subseteq ((x^2))$.

Proof. Suppose $I \not\subseteq ((x^2))$. Then there is some $f \in I \setminus ((x^2))$. Without loss of generality, we can assume $f = x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$.

$$f\circ x^{n-1}=x^{n-1}+a^2(x^{n-1})^2+\cdots+a_{n-1}(x^{n-1})^{n-1}\in I$$

 $x^{n-1}=f\circ x^{n-1}+a_2(x^{n-1})^2+\cdots+a_{n-1}(x^{n-1})^{n-1}\in I$

since the degrees of second, third, \cdots terms are $\geq n$. Therefore we can reduce n and we get: $x^{n-2}, x^{n-3}, \cdots, x^2 \in I$. But then $x = f + a_2x^2 + \cdots + a_{n-1}x^{n-1} \in I$, a contradiction. Hence $I \subseteq ((x^2))$.

LEMMA 13. Let I be a maximal ideal in $F_0[x]$, when F is a field of characteristic 2 and |F| > 2. If there is some $n \in N$ with $n \geq 2$, so that $x^m \in I$ for all $m \geq n$, then $I = ((x^2))$.

Proof. Use Lemma 12.

LEMMA 14. Let I be a strictly maximal ideal in $F_0[x]$, when F is a field of characteristic 2 and |F| > 2. If there is an $n \in N$ with $n \geq 2$, $x^n \in I$, then $I = ((x^2))$.

Proof. According to Lemma 11 we have: $x^m \in I$ for all $m \ge \max(n, 4)$. Lemma 13 will do the rest of the job.

LEMMA 15. Let F be a field of characteristic 2 and I a strictly maximal ideal of $F_0[x]$. Then there is an odd number t with $x^t + \cdots + a_1 x \in I$.

Proof. Since $I \neq \{0\}$, there is a $k \in N$ with $x^{2k} + \cdots + b_1 x \in I$, otherwise our assertion is already proved.

 $(x^{2k} + \cdots + b_1x + x)^3 + x^3 = (x^{2k} + \cdots + b_1x)^3 + (x^{2k} + \cdots + b_1x)^2x + (x^{2k} + \cdots + b_1x)x^2 \in I$. We get $x^{4k+1} + \cdots + x^{2k+2} + \cdots \in I$. For $n \ge 1$, 4k + 1 is greater than 2k + 2 and so there is a polynomial of degree 4k + 1 (an odd number) in I.

LEMMA 16. Let F be a finite field of characteristic 2 and I a strictly maximal ideal of $F_0[x]$. Then the near-field $F_0[x]/I$ is finite.

Proof. We know from Lemma 15 that there is an odd number

218

t with $x^t + \cdots + a_1 x \in I$.

We show: For all $n \ge 6t$ there is some $x^n + \cdots + b_1 x \in I$.

For all $l \ge 1$, $(x^t + \cdots + a_1x + x^{t+l})^3 + (x^{t+l})^3 \in I$. Hence $(x^{t+l})^2(x^t + \cdots + a_1x) + (x^{t+l})(x^t + \cdots + b_1x)^2 \in I$, whence $x^{3t+2l} + \cdots + x^{3t+l} + \cdots \in I$. Since $(x^t + \cdots + a_1x)^3 = x^{3t} + \cdots \in I$, there are polynomials of following degrees in I: 3t, 3t + 2, 3t + 4, \cdots . Since 3t is odd, we have: For all odd numbers $k \ge 3t$, there is some normed polynomial of degree k in I.

Hence $(x^{2t+l})^2(x^{2t} + \cdots) + (x^{2t+l})(x^{2t} + \cdots)^2 \in I$, whence $x^{6t+2l} + \cdots + x^{6t+l} + \cdots \in I$. Therefore there are also polynomials of following degrees in I: 6t, 6t + 2, 6t + 4, \cdots .

We get: For all $k \ge 6t$ there exists some polynomial $x^k + \cdots + b_1 x \in I$. Hence $|F_0[x]/I| \le |F|^{6t}$, which is finite.

LEMMA 17. Let F be $GF(2^n)$, $n \ge 2$ and I a strictly maximal ideal of $F_0[x]$. Then $I = ((x^2))$.

Proof. Lemma 16 tells us that $K := F_0[x]/I$ is a finite near-field. By 8.34 of [3], all finite near-fields (except 7 exceptional cases of orders 5², 11², 7², 23², 11², 29², 59²) are Dikson near-fields. Our K cannot be exceptional, so it is a Dickson near-field. In this case, we know from 3.3 of [6] that the center $C(K) := \{f \in K/f \circ g = g \circ f \text{ for all } g \in K\}$ is closed with respect to addition.

Since, by the well-known rules how to calculate in $GF(2^n)$, x + Iand $x^{2^n} + I$ belong to C(K), so does their sum $x + x^{2^n} + I$. So we get $(x^{2^n} + x + I) \circ (x^{2^{n-1}} + I) = (x^{2^{n-1}} + I) \circ (x^{2^n} + x + I)$. $(x^{2^{n-1}})^{2^n} + x^{2^{n-1}} + I = (x^{2^n} + x)^{2^{n-1}} + I = (x^{2^n})^{2^{n-1}} + (x^{2^n})^{2^{n-2}} + \cdots + x^{2^n}x^{2^{n-2}} + x^{2^{n-1}} + I = x^{(2^{n-1})2^n} + \sum_{k=1}^{2^{n-2}} x^{2^{n}k+(2^{n-1-k})} + x^{2^{n-1}} + I$. Hence $\sum_{k=1}^{2^{n-2}} x^{2^{n}k+(2^{n-1-k})} \in I$. But $2^nk + (2^n - 1 - k) = (2^n - 1)k + (2^n - 1) = (2^n - 1)(k + 1)$, so $\sum_{k=1}^{2^{n-2}} x^{(2^{n-1})(k+1)} = \sum_{k=1}^{2^n-2} (x^{2^{n-1}})^{k+1} = (\sum_{k=1}^{2^{n-2}} x^{k+1}) \circ x^{2^{n-1}} \in I$. Since K is a near-field, either $\sum_{k=1}^{2^{n-2}} x^{k+1} \in I$ or $x^{2^{n-1}} \in I$. If $x^{2^{n-1}} \in I$, we are through, for we get $I = ((x^2))$ by Lemma 14. So we may assume that $\sum_{k=1}^{2^{n-2}} x^{k+1} = x^{2^{n-1}} + \cdots + x^2 \in I$.

The multiplicative group of $GF(2^n)$ is cyclic. Therefore there is some $c \in GF(2^n)$ of order $2^n - 1$. We know: $c \neq 0$, $c \neq 1$. $c^{2^{n-1}} = 1$ and for all $l < 2^n - 1$ $c^l \neq 1$ and for all $l, j \leq 2^n - 1$, $l \neq j$: $c^l + c^j \neq 0$. Since $c^{2^{n-1}}x^{2^{n-1}} + \cdots + cx^2 = (x^{2^{n-1}} + \cdots + x^2) \circ (cx) \in I$, $c^{2^{n-1}}x^{2^{n-1}} + \cdots + c^{2^{n-1}}x^2 = c^{2^{n-1}}x \circ (x^{2^{n-1}} + \cdots + x^2) \in I$, we get $(c^{2^{n-1}} + c^{2^{n-2}})x^{2^{n-2}} + \cdots$ $\begin{array}{l} + (c^{2^{n}-1} + c^{2})x^{2} \in I. \quad \text{Also} \ (c^{2^{n}-1} + c^{2^{n}-2})c^{2^{n}-2}x^{2^{n}-2} + \cdots + (c^{2^{n}-1} + c^{2})c^{2}x^{2} = \\ ((c^{2^{n}-1} + c^{2^{n}-2})x^{2^{n}-2} + \cdots + (c^{2^{n}-1} + c^{2})x^{2}) \circ (cx) \in I \ \text{and} \ (c^{2^{n}-1} + c^{2^{n}-2})c^{2^{n}-2}x^{2^{n}-2} + \\ \cdots + (c^{2^{n}-1} + c^{2})c^{2^{n}-2}x^{2} = (c^{2^{n}-2}x) \circ ((c^{2^{n}-1} + c^{2^{n}-2})x^{2^{n}-2} + \cdots + (c^{2^{n}-1} + c^{2})x^{2}) \in I. \\ \text{Hence} \ (c^{2^{n}-1} + c^{2^{n}-3})(e^{2^{n}-2} + c^{2^{n}-3})x^{2^{n}-3} + \cdots + (c^{2^{n}-1} + c^{2})(c^{2^{n}-2} + c^{2})x^{2} \in I. \\ \text{If we continue this procedure, we finally arrive at} \ (c^{2^{n}-1} + c^{2})(c^{2^{n}-2} + c^{2}) \cdots (c^{3} + c^{2})x^{2} \in I \\ \text{where the coefficient of} \ x^{2} \neq 0. \quad \text{So} \ x^{2} \in I \text{ and we get} \ I = ((x^{2})) \text{ again by Lemma 14.} \end{array}$

Our last case is $R = \mathbb{Z}_2$. This case is rather complicated and so the way is longer. Brenner has shown in [1] that there are only two maximal ideals in $\mathbb{Z}_2[x]$. One of them is T := the subgroup generated by $\{1, x + x^2, x^3, x + x^4, x + x^5, x^6, x + x^7, x + x^8, x^9, \cdots\}$. The other one is V, the subgroup generated by $\{1, x + x^2, x + x^3, x + x^4, \cdots\}$. We define T_0, V_0 as follows: $T_0 := T \cap (\mathbb{Z}_2)_0[x]$ and $V_0 :=$ $V \cap (\mathbb{Z}_2)_0[x]$. T_0 and V_0 are easily shown to be ideals in $(\mathbb{Z}_2)_0[x]$. They are even strictly maximal ideals as will be demonstrated in the following. Together with $((x^2))$, there are just three strictly maximal ideals in $(\mathbb{Z}_2)_0[x]$.

LEMMA 18. Let I be a strictly maximal ideal in $(\mathbf{Z}_2)_0[x]$ with $x^2 \in I$, then $I = ((x^2))$.

Proof. Since $x^2 \in I$, $x^{2k} = x^2 \circ x^k \in I$ for all $k \in N$. Hence $(x^4 + x)^3 + x^3 \in I$, whence $x^9 \in I$. But $x^9 = x^3 \circ x^3$ so $x^3 \in I$ since $(\mathbb{Z}_2)_0[x]/I$ has no divisors of zero. Therefore $x^{6k} + x^{4k+3} + x^{2k+6} + x^9 = (x^{2k} + x^3)^3 \in I$, from which we get that $x^{4k+3} \in I$ for all $k \in N$. Also, $(x^{2k} + x)^3 + x^3 \in I$ gives us $x^{4k+1} \in I$ for all $k \in N$. All x^4 and $x^{4k+2} = x^2 \circ x^{2k+1}$ are also in I, so, putting altogether, $x^n \in I$ for $n \ge 2$, which means $I = ((x^2))$.

LEMMA 19. Let I be a strictly maximal ideal in $(Z_2)_0[x]$ with $x^2 \notin I$, $x^3 \in I$. Then $I = T_0$

Proof. By Lemma 16 and the information in the proof of Lemma 17, we know $(\mathbb{Z}_2)_0[x]/I$ is a finite Dickson near-field of characteristic 2, so it has order 2^t (by 8.13 of [3]). Since $x^2 + I \neq 0 + I$, the order k of $x^2 + I$ divides $2^t - 1$. So we have $x^{2k} + I = (x^2 + I) \circ (x^2 + I) \circ \cdots \circ (x^2 + I) = x + I$ and $k/2^t - 1$. Hence k is odd, whence $3/2^k + 1$. Let $2^k + 1 = :3j$. For all $s \in N$, $s \geq 3$, we get $x^3 \circ (x^s + x^{s-1}) \in I$ whence $x^{3s-1} + x^{3s-2} \in I$ and $x^3 \circ (x^s + x^{s-2}) \in I$ whence $x^{3s-2} + x^{3s-4} \in I$. Hence $x^{3s-1} \equiv x^{3s-2} \equiv x^{3s-3} \equiv x^{3s-5} \equiv \cdots \equiv x^5 \equiv x^4 \pmod{I}$. In particular, $x \equiv x^{2^k} = x^{3j-1} \equiv x^4$ and we get $x^n + x \in I$ for all $n \in N$, $3 \nmid n$, $n \geq 4$. Also, from $(x^2 + I) \circ (x^2 + I) = x^4 + I = x + I$ we get $x^2 + I = x + I$ by 8.10.a of [3]. Hence all the additive generators of T_0 are in I, whence $T_0 \subseteq I$. But T_0 is a subgroup of $(\mathbb{Z}_2)_0[x]$ of order 2, hence $T_0 = I$.

LEMMA 20. Let I be a strictly maximal ideal of $(Z_2)_0[x]$ with $x^2 \notin I$, $x^3 \notin I$, $x^2 + x^3 \in I$. Then $I = V_0$.

Proof. Since $x^2 + x^3 \in I$, also $(x^2 + x^3) \circ (x^s + x) \in I$, whence $x^{2s+1} + x^{s+2} \in I$ and $(x^2 + x^3) \circ (x^s + x^2) \in I$, implying that $x^{2s+2} + x^{s+4} \in I$. From the first result we get $x^5 \equiv x^4$, $x^7 \equiv x^5$, $x^9 \equiv x^6 \pmod{I}$ and from the second we derive $x^8 \equiv x^7$, $x^{10} \equiv x^8$, $x^{12} \equiv x^9$, $\cdots \pmod{I}$, so (since also $(x^2 + x^3) \circ x^2 = x^4 + x^6 \in I$) we get $x^4 \equiv x^5 \equiv x^6 \equiv \cdots \pmod{I}$. Since $x^2 \notin I$, there is some $k \in N$ with $x^{2^k} + x \in I$ (same reason as in the proof of Lemma 19). Hence $x \equiv x^{2^k} \equiv x^4 \pmod{I}$. Also $(x^{2^k} + x) \circ x^2 \in I$, whence $x^2 \equiv x^{2^{k+1}} \equiv x^4 \pmod{I}$. Since $x^2 + x^3 \in I$, we get $x^2 \equiv x^3 \pmod{I}$, and therefore $x \equiv x^2 \equiv x^3 \equiv x^4 \equiv \cdots \equiv x^n \equiv \cdots \pmod{I}$. Thus for all $n \in N x^n + x \in I$, hence $V_0 \subseteq I$. But V_0 is a subgroup of index 2 in $(Z_2)_0[x]$, so $V_0 = I$.

LEMMA 21. Let I be a strictly maximal ideal of $(\mathbf{Z}_2)_0[x]$. Then I is either = $((x^2))$ or = T_0 or = V_0 .

Proof. Suppose $I \neq ((x^2)), I \neq T_0, I \neq V_0$. Applying Lemmas 18, 19 and 20 we have: $x^2 \notin I, x^3 \notin I, x^2 + x^3 \notin I$. As in the proof of Lemma 17, let C(K) be the center of $K := (\mathbb{Z}_2)_0[x]/I$. Obviously $x + I \in C(K), x^2 + I \in C(K)$, hence $x + I + x^2 + I = x + x^2 + I \in C(K)$. So $(x^2 + x + I) \circ (x^3 + I) = (x^3 + I) \circ (x^2 + x + I)$, hence $x^6 + x^3 + I =$ $x^6 + x^5 + x^4 + x^3 \in I$ and $x^5 + x^4 \in I$. Also, $(x^5 + x^4) \circ (x^2 + x) = x^{10} +$ $x^9 + x^6 + x^5 + x^8 + x^4 \in I$. Since $(x^5 + x^4) \circ x^2 = x^{10} + x^8 \in I$ and $x^5 + x^4 \in I$, we have $x^9 + x^6 \in I$. But $I = x^9 + x^6 + I = (x^3 + x^2 + I) \circ (x^3 + I)$, implying that either $x^3 + x^2 \in I$ or $x^3 \in I$, both being contradictions.

LEMMA 22. Let I be a strictly maximal ideal of $(Z_2)_0[x]$. Then $(Z_2)_0[x]/I \cong Z_2$.

Proof. Applying Lemma 21, we know I is either $=((x^2))$ or $=T_0$ or $=V_0$. But $[(\mathbf{Z}_2)_0[x]:((x^2))] = [(\mathbf{Z}_2)_0[x]:T_0] = [(\mathbf{Z}_2)_0[x]:V_0] = 2$. So we have in all of these three cases: $(\mathbf{Z}_2)_0[x]/I \cong \mathbf{Z}_2$.

This completes the proof of Theorem 1.

As a byproduct, we have a complete knowledge of all strictly maximal ideals in polynomial near-rings:

COROLLARY. Let I be a strictly maximal ideal of $R_0[x]$. Then there exists a maximal ideal M of R with $I = ((x^2)) + Mx$, unless $R = \mathbb{Z}_2$. In this case, I might as well be $= T_0$ or $= V_0$. In particular, for a field $R \neq \mathbb{Z}_2$, there is just one strictly maximal ideal, namely $((x^2))$.

G. Pilz suggested to investigate near-fields which are contained in R[x]. Since all near-fields with the exception of a trivial one ([3], 8.1—we exclude this one from our considerations) are zero-symmetric, we only need to search them in $R_0[x]$.

LEMMA 23. Let R be an integral domain and F a near-field in $R_0[x]$. Then there is a subfield K of R such that $F = \{ax/a \in K\}$.

Proof. Straightforward.

LEMMA 24. Let F be a near-field in $R_0[x]$, $0 \neq f = a_n x^n + \cdots + a_1 x \in F$. Then a_2 , a_3 , \cdots , $a_n \in \mathfrak{P}(R)$ (prim-radical of R) and a_1 is a unit in R.

Proof. We use the following epimorphisms: $h: R \to R/M$ where M is a prime ideal of R, $h': R_0[x] \to (R/M)_0[x]$:

$$a_n x^n + \cdots + a_1 x \longmapsto h(a_n) x^n + \cdots + h(a_1) x$$
.

In $(R/M)_0[x]$ we can apply Lemmas 2, 3 and get: $h(a_2) = h(a_3) = \cdots = h(a_n) = 0$. So we have $a_2, \dots, a_n \in \mathfrak{P}(R)$.

Since $f \neq 0$, a_1 cannot be = 0, otherwise f has no inverse in F. Suppose a_1 were not a unit, so a_1 is in a maximal ideal M_1 of R. Let $h: R \to R/M_1$ and $h': R_0[x] \to (R/M_1)_0[x]$ be as above and we get $h'(a_nx^n + \cdots + a_1x) = h(a_1)x = 0$, a contradiction to the fact that $h'(F) = \{ax/a \in K\}$ for some subfield K of h(R).

THEOREM 2. Let F be a near-field contained in $R_0[x]$, $F_1 := \{a_1 | some \ a_n x^n + \cdots + a_1 x \in F\}$. Then $F \cong F_1 x$.

Proof. Define $h: F \to F_1 x$.

$$a_n x^n + \cdots + a_1 x \longmapsto a_1 x$$

h is surjective. We show it is injective, too. Let $f_1, f_2 \in F$ with $f_1 = a_n x^n + \cdots + a_1 x$ and $f_2 = b_m x^m + \cdots + a_1 x$. Then $f_1 - f_2 = \cdots + (a_2 - b_2)x^2 + 0x \in F$. But then $f_1 - f_2 = 0$ by Lemma 24. Hence $f_1 = f_2$ and *h* is 1 - 1.

It is easy to show that h is a near-ring homomorphism, so h is a near-ring isomorphism.

EXAMPLES. Take $R := Z_2[t]/(t^4 + t^2 + 1)$. Then $K_1 := \{0, x\}, K_2 := \{0, x, t^2x, (t^2 + 1)x\}$ and $K_3 := \{0, x, (t^2 + t + 1)x^2 + t^2x, (t^2 + t + 1)x^2 + t^2x\}$

 $(t^2 + 1)x$ are examples of subnear-fields of $R_0[x]$. Note that K_3 contains non-liear polynomials.

Application. Let P be a planar near-ring with identity which is either contained in some $R_0[x]$ or a factor of $R_0[x]$. Then P is a field and isomorphic to a subfield or a factorfield of R. This holds because a planar near-ring with identity is accurately a near-field, as can be easily seen.

References

1. J. L. Brenner, Maximal ideals in the near-ring of polynomials mod 2, Pacific J. Math., 52 (1974), 595-600.

2. J.R. Clay and D.K. Doi, Maximal ideals in the near-ring of polynomials over a field. In Colloqu. Math. Soc. Janus Bolyai 6, Rings, Modules and Radicals (ed. by A. Kertesz), pp. 117-133. Amsterdam, North Holland, 1973.

3. G. Pilz, Near-rings, Amsterdam, North Holland, 1977.

4. Y.S. So, Polynom Fast-ring, Dissertation, Univ. Linz, 1978.

5. E.G. Straus, Remarks on the paper "Ideals in near-rings of polynomials over a field", Pacific J. Math., 52 (1974), 601-603.

6. H. Wähling, Bericht über Fastkörper, Jahresbericht Dt. Math. Ver., 76 (1975), 41-103.

Received December 15, 1979. I would like to thank Günter Pilz for his unselfish help and encouragement and to "Österreichischen Forschungsfonds" for the financial assistance (Project number 3479).

INSTITUTE FÜR MATHEMATIK Johannes-Kepler Universität A-4045 Linz-Auhof, Austria.