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ROUND TRINOMIALS
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Let F(x) be a polynomial of degree D. We say that F(x)
is round if all its irreducible factors have relatively small
degree (e.g., bounded by a small multiple of logD). In the
present paper we introduce new methods for the study of
round polynomials. Using these methods we prove the ex-
istence of many classes of round trinomials over GF(2), in-
cluding all the previously known ones as well as many new
ones.

Let F(x) be a polynomial over GF(2)9 and let α be a root of
F(x). Let Q be a power of 2, say Q = 2% and let σ be the auto-
morphism of the splitting field of F(x) defined by σζ = ξρ. We seek
a linear relation over GF(2) among α, σa, σ2a, , σma with m rea-
sonably small. In § 2 we will show how to use such a linear relation
to show that F{x) is round.

The archetypical example of a round polynomial over GF(2) is
F(x) = xQ + x. The irreducible factors of F{x) are precisely all the
irreducible polynomials whose degrees are divisors of q. Here we
have σa + a = 0, which is a linear relation of the desired type.
The methods of § 2 show that this linear relation implies that the
degree of the irreducible factor of F(x) satisfied by a must divide q.

Our example is extended below to other cases in which the
exponents of F(x) are expressed in terms of Q. Even more generally
we will consider polynomials F(x) over GF(2) whose exponents depend
on two powers of 2, Q and R, and where the linear relation among
the σιa has coefficients in GF(R).

Our methods can clearly be generalized to work on polynomials
over arbitrary finite fields—generalizations to polynomials over other
finite fields of characteristic 2 are particularly easy, but we are
primarily interested in trinomials over GF(2)f so we will stick to
this case. Some of the old results we present have already been
generalized to arbitrary finite fields and we will content ourselves
with giving appropriate references.

Most of the results of this paper were first suggested by actual
factorizations of trinomials, and then later proofs were found. In-
deed a table of all trinomial factorizations over GF(2) through degree
599 was compiled by the authors using a CDC-6600 computer program
written by Neal Zierler. All of the really striking examples of round
trinomials that were found this way can be accounted for by the
theorems of this paper.
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Solomon W. Golomb [3] has made two conjectures concerning
possible families of round trinomials. The first was proved by Mills
and Zierler [5] and is a special case of Theorem 7 of the present
paper. The second concerns the family

x2q+1 + x2q~2 + 1 .

Here we note that the cases q = 2, 4, 5, 6 of this conjecture are
special cases of theorems of the present paper, and thus these tri-
nomials are round for other reasons. We have factored these poly-
nomials for all q ^ 12, and the results do not suggest any general
result.

For many of the trinomials we study, a more careful analysis
yields a good deal of additional information about the periods of the
roots and about the number of roots in various extension fields of
GF(Q). Some of the trinomials we study are closely related to each
other. Moreover there are a number of trinomials whose irreducible
factors all have the same degree. In the interest of brevity we
omit all this.

We will work throughout this paper in a finite field of charac-
teristic 2 that is sufficiently large to contain all the roots of F(x) as
well as finite fields of Q elements and R elements. Thus we can
regard GF(Q) and GF(R) as subfields of this large field.

Throughout this paper we will adopt the convention that

β i = σ*β = 0Q*

for any element β in one of our finite fields. This convention will
not apply to matrices.

2* Consequences of the linear relation* Let Q = 2q and R = 2r

be two fixed powers of 2. Let F(x) be a polynomial over GF(2), and
let a be any root of F(x). We have to rely on ad hoc methods to
find a linear relation between the a^ Once we have such a relation
we can proceed systematically. In this section we show how to do
this.

Suppose we have a linear relation

(1) ccm = aam_x + bam_2 + + da, + ea0 ,

where α, 6, , d, e are elements of GF(R) and e Φ 0. Raising both
sides of (1) to the Qyth power we get

um+3 = αί α»+i-i + Mm+ -2 + + d3-aj+1 + eάaό

for any nonnegative integer j. We let Wά be the m by m non-
singular matrix
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and we set Pό =

dj bj • dj βj

1 0 ••• 0 0

0 1 ••• 0 0

^0 0 ••• 1 0

WtW0. Then we have

In particular if Pυ — I for some integer v, then av = a0, and a
lies in the field GF(QV). We let s denote the greatest common divisor
(q, r) of q and r, S = 2% and t = r/s. Then GF(R) £ GF(Qι), and
therefore TΓi+έ = Wy for all j . We now set P = Pt. We have
Pfcί = Pk for all nonnegative integers k. Let <τ be the automorphism
of GF(R) such that σξ = ξQ = ζ, for all £ in GF{R). Then we have

= TFi+1 for all i so that

Let H(x) be the characteristic polynomial of P. Since σP =
it follows that the coefficients of H(x) are left fixed by σ so that
they lie in GF(Q) as well as in GF(R). Since GF(S) = GF(Q) Π GF(R)
these coefficients lie in GF(S).

It is sufficient to find an integer k such that H(x)\(xk + 1), for
then we have Pkt = Pk = J, αfcί = a0, a e GF(Qkt), and the degree of the
irreducible polynomial which has a as a root must be a factor of qkt.

It frequently happens that GF(R) S GίXQ). In this case t = 1,
P = TΓo, and

H(x) = xm + α ^ " 1 + 6xm"2 + + e .

3* Known results* In this section we discuss some previously
known results about round trinomials over GF(2).

It is clear that if two polynomials F(x) and G(x) satisfy a relation
of the type F(xn) = G(xm) where n and m are positive integers, then
the degrees of their irreducible factors are related. We say that
two polynomials belong to the same equivalence class if they are
related in this way, and we will study only one polynomial in any
given equivalence class.

Naturally we will consider only trinomials of the form

F(x) = xn + xa + 1 .
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The reverse polynomial xn + xn~a + 1 factors in the same way and
we need only consider one of these two polynomials.

Perhaps the best known round trinomials are the ones of the
form

F(x) = xQ + x + 1 , Q = 2q .

Here we have

a, + aQ + 1 = F(a) = 0

for any root a of F(x). Raising both sides of this equation to the
Qth power we get α2 + α1 + l = 0, so that we must have a2 = α0. Thus
aeGF(Q2). If aeGF(Q), then a, = a0 so that F(a) = 1, a contra-
diction. Therefore a$GF(Q). Thus we see that all roots of xq +
x + 1 lie in GF(Q2), but not in GF(Q), and we have the following
result.

THEOREM 1. (Riordan) Suppose F{x) = xQ + x + 1, where Q = 2%
and let fix) be an irreducible factor of Fix) over GF{2). Then the
degree of f(x) divides 2q, but not q.

Another formulation of Theorem 1 states that all the irreducible
factors of Fix) over GF(Q) have degree 2.

Next we come to trinomials of the type

F(x) = xqn-' + xqa~x + 1 , Q = 2«,

where n and a are positive integers, n > α. For any root a of F{x)
we have

0 = aF{a) = an + aa + a0 .

Thus we already have a linear relation of the type we need. We
apply the results of § 2 with R = 2, r = a = ί = 1, and £Γ(a?) = xn +
#α + 1. We see that if A; is a positive integer such that H(x) \ (xk + 1),
then a e GF(Qk), and the degree of the irreducible polynomial with
root a must divide qk. Thus we have the following result.

THEOREM 2. Suppose that F{x) = xQn~ι + xqa-λ + 1, where Q = 2q,
and n and a are positive integers, n > α. Suppose that k is a posi-
tive integer such that

(xn + xa + 1) I (xh + 1) .

Lei fix) be an irreducible factor of Fix) over GF(2). Then the degree
of f(x) divides kq.

Theorem 2 is usually stated in terms of the polynomial
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whose roots are the (Q — l)st powers of the roots of F(x). If we set
n = 2 and a — 1 we get the celebrated round trinomial

xQ+1 + x + 1 ,

which was first studied by Riordan.
Theorem 2 can be easily generalized [4] to the case of polynomials

with an arbitrary number of terms over an arbitrary finite field.

4* Some new results* Next we come to some examples in which
there are relations between the at that contain quadratic, cubic, and
quartic terms, and it is necessary to do some algebraic manipulation
to obtain the kind of linear identity we need. The first of these is
the polynomial

F(x) = xQ2+1 + xQ + 1 , Q = 2q .

Letting a be a root of F(x) as usual, we obtain

a0a2 + αx + 1 = F(a) = 0 .

Raising both sides of this to the Qth power we get

aλaz + a2 + 1 = 0 .

Adding the last two equations we get

a2(a0 + 1) + aλ{az + 1) = 0 .

Raising this to the Qth power we get

az(aλ + 1) + α2(α4 + 1) - 0 .

Since ax + 1 = a0a2f it follows that α4 + 1 = α3α5. Substituting these
two in the previous equation we get

Clearly a Φ 0, so that a2 Φ 0 and a3 Φ 0. Therefore we must have
a5 = aQ, so that aeGF(Q5).

If a is a root of F(x) that lies in GF(Q), then we must have
α2 + a + 1 = 0 and q must be even. Therefore an irreducible factor
f(x) of F(x) has degree dividing q if and only if q is even and
f(x) — x2 + x + 1. Thus we have the following result.

THEOREM 3. Suppose Fix) = xQ2+1 + xQ + 1, Q = 2% and let fix)
be an irreducible factor of F(x) over GF(2). Then the degree of f{x)
divides 5q. If the degree of f(x) divides q, then q is even and
f{x) = x2 + x + 1.
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Another formulation of Theorem 3 states that the irreducible
factors of F(x) over GF(Q) all have degree 5 except for two linear
factors that occur when q is even.

A typical example of Theorem 3 is x257 + x1Q + 1, which has 1
irreducible factor of degree 2, 1 of degree 5, 1 of degree 10, and
12 of degree 20. Moreover the polynomial x1025 + x32 + 1 has 41 irre-
ducible factors, all of degree 25.

Our next example is the polynomial

F(x) = xQ+1 + xA + 1 , A2 = 2Q = 2q+1 .

Here, of course, q is odd. We have

aoa, + aA + 1 = F(a) = 0 ,

so that we get

α0

A = αoαx + 1 .

Raising both sides of this to the Ath power we obtain

a\ = af = αtfαί + 1 = (αo«i + lX^A + 1) + 1

= a0a\a2 + αoαi + axa2 .

Since α ^ 0, we have ax Φ 0, and we get

(2) aQaxa2 = a0 + a± + a2 .

We note that if a e GF(Q), then a0 = ax = α2 = α and (2) yields
α3 = α, which implies that a = 0 or 1, which is impossible. There-
fore F(x) has no roots in GF(Q).

Raising both side of (2) to the Qth power we get

ata2a9 = aγ + a2 + a3 .

Adding this to (2) we obtain (α0 + α3)α1α2 = a0 + α3, or

0 = (α0 + α3)(α1α2 + 1) = a?(a0 + α3) .

It follows that a3 — aQ. Thus we have the following result.

THEOREM 4. Suppose F(x) = xQ+1 + xA + 1, where Q = 2q and
A2 = 2Q, and let f(x) be an irreducible factor of F(x) over GF(2).
Then the degree of f(x) divides Zq but not q.

Another formulation of Theorem 4 states that the irreducible
factors of F{x) over GF{Q) all have degree 3.

Next we come to the polynomial

F(x) = xQ+A + xQ~' + 1 , A2 = 2Q - 2q+1 .
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Here again q must be odd. We have

at+1a, + aλ + a0 = aF{a) = 0 .

Now a Φ 0, so that at+1a± Φ 0 and we have aλ + aoφ 0. This implies
that a<£GF(Q).

We must now get rid of the A in our equality. To do this we
raise both sides to the Ath power to obtain

0 = af+Aaf + at + at = a\atat + αtf + α^

Multiplying both sides by a0aλa2 and using at+1aλ = αx + α0 and
αί+ 1α2 = α2 + αx we get

0 = aΛ+1at+sa2 + aQaf+1a2 + at+1axa2

Since α2 ^ 0 this yields

We have already seen that aλ + α0 Φ 0, so that α2 + a1 Φ 0, and
our last equality gives us a2 Φ α0. Thus none of the roots of F(x)
lies in GF(Q2).

From our last equality we get

and hence

(α2 + αo)(α2 + a^)(az + α2) = (αx + αo)(α2 + α O ^ + α j .

This can be written in the form

(α2 + atf(0Ls + a2 + ax + α0) = 0 .

We have already observed that a2Λ- aγφ 0, so that we obtain

α3 + α2 + ax + α0 = 0 ,

which implies that α4 = α0 and aeGF(Q*).
We have proved the following result.

THEOREM 5. Suppose F(x) = x ^ + cĉ -1 + 1, where Q = 2q and
A2 = 2Q, α^cί ϊeί /(x) be an irreducible factor of F{x) over GF(2).
Then the degree of f(x) divides Aq but not 2q.

Another formulation of Theorem 5 states that the irreducible
factors of F(x) over GF(Q) all have degree 4.
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Next we study the trinomial

Fix) = x3Q+2 + x2Q+s + 1 , Q = 2q .

We begin by noting that if the root a of F(x) is an element of
GF(Q), then F(ά) = 1, a contradiction. Thus none of the roots of
F{x) lies in GF(Q).

Since a is a root of F(x) we have

0 = F(μ) = alal + a\a\ + 1 .

Raising both sides to the Qth power we get

0 = a\a\ + a\a\ + 1 .

Adding these two equations we get

0 - a\{a\ + al) + a\(a\ + al)

= al(a2 + aQ)(ai + a0a2 + al

Since agGF(Q), we have a Φ 0, so that αx =£ 0. Hence we have
either a2 = α0 or

(3) a\ + a,a2 + al + α ^ + αxα2 = 0 .

If α2 = aQ, then aeGF(Q2), and the degree of the irreducible
polynomial with root a divides 2q.

Now suppose that (3) holds. Raising both sides of (3) to the
Qth power and adding the result to (3) we get

0 = al + axa3 + al + α2α3 + a\ + αoα2 + α? + αoαx

= (α3 + ωa2 + cwαi + ao)(a3 + α)2α2 + ω2αi + a0) ,

where ω is a root of x2 + x + 1, i.e., a primitive cube root of unity.
Since ω and α>2 are the roots of x2 + x + 1, we have

(4) α3 + α>α2 + ωa1 + α0 = 0 ,

for some ω satisfying ω2 + ω + 1 = 0. Thus we have a linear rela-
tion of the type given by (1), so we can apply the results of § 2
with R = 4, r = 2. There are two cases.

Case 1. q even. In this case GF(R) £ GF(Q). By the results
of § 2 the characteristic polynomial H(x) of P is

if(x) = xz + <M;2 + ωx + 1 = (x + l)(x2 + ft)2x + 1) .

We see at once that H(x) is a factor of x5 + 1, and we have α5 = aQ,
aeGF(Qδ), and the degree of the irreducible polynomial satisfied by
a divides 5#.
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Case 2. q odd. In this case ωQ = ω2. Here, in the notation of
I 2, we have s = 1, £ = 2,

P =

and H(x) = xz + 1. Thus we have α6 = a0, a e GF(Q6), and the degree
of the irreducible polynomial with a as a root must divide 6q.

In this case if aeGF(QΆ), then az = α0 and (4) yields α2 = α l f

which in turn implies that at = α0 and aeGF(Q), a contradiction.
We sum up these results in the following theorem.

THEOREM 6. Let F{x) = xZQ+2 + x2Q+3 + 1 where Q = 2q. If q is
even then the degrees of the irreducible factors of Fix) over GF(2)
all divide either 2q or 5q, but not q. If q is odd, then the degrees
of the irreducible factors of F(x) divide 6q, but not 3g.

5* The M function* As before we let R be a fixed power of 2.
Given n variables U,V,--,Y,Z9 let M(U, V, , Y, Z) denote

the determinant
U V ••• Y Z
jjR VR ••• YR ZR

M(U, V, . . . , Y9Z) =

u
Rn-1 TRn~ι rRΆ-1

ZR«-1

When we wish to emphasize the number n of variables we will write
Mn(U, V, --, Y,Z) for M(U, V, •••, Y, Z). This function has a

number of properties that we will need later.

Property I. M(U9 V, , Y9'Z) is a symmetric function of
U,V, ,Y,Z.

Since we are working over GF(2) any interchange of columns
leaves our determinant unchanged so that Property I holds.

Property II. If any two of U, V, , Y, Z are equal then
M(U9V, -;Y,Z) = 0.

This is an immediate consequence of the fact that a determinant
with two identical columns must vanish.

Property III. The M function is a linear function in each vari-
able over GF(R) in the sense that

M(U9

= M(U, , V9 A, X, . . , Z) + M{U, •• 9V9B,X9 , Z) ,
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and

M(U, .. -, V, aW, X, ,Z) = aM(U, , V, W, X, -, Z)

for any a in GF(R).
Since R is a power of 2, we have (A + B)Ri = ARi + BR\ Since

α is in GF(R) we have (αΐF)Λ< = aWR\ Property III follows im-
mediately.

Property IV. Mn(U, V, •••, Y, Z) has the factorization

Mn(U, V,..., Y,Z)

= M^V, '. ,Y,Z) Il(U+ηV+ ••- + μY+vZ)

where the product is over all η, ••-,[*,» in GF(R). Thus there are
Rn~λ factors in this product.

If we regard Mn{ U, V, , F, Z) as a polynomial in U we see
that it has degree Rn~x and its leading coefficient is ikfw_i(F, , Y, Z).
Moreover by Properties II and III we see that every linear combi-
nation of V, •••, Y, Z over GF{R) is a root. Since the number of
such linear combinations equals the degree of our polynomial, Prop-
erty IV follows immediately.

It follows from Property IV that M(U, V, , Y, Z) = 0 if and
only if some linear combination of its arguments is zero.

Property V. The following identity holds:

M^M^U, V, , Y), MnΛV, -, Y, Z))

= (Mn_2(V, , Y))* MΛ(U, V,- , Y, Z) .

This can be verified by factoring both sides using Properties
IV, I, and III. It is more elegant to note that

(Mn_2(V, -, Y))* = Mn_lV\ ., Y*)

is the value of the n — 2 by n — 2 determinant obtained from the
determinant for Mn( U, V, , Y, Z) by removing its first and last
rows and its first and last columns. Hence by Jacobi's theorem on
the minors of the adjoint (for example see [1, pages 97-99]), the
right hand side of our identity must equal the determinant

A A

A A

where Ai3 denotes the cofactor of the element in the ίth row and
the jth column of our n by n matrix. We have

An = (Mn_1(Vf . . . , Y,Z))R ,
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A^^iM^U, V, . . . , Y))\

Ann = Mn_λ{U, V, . . . , Γ ) .

Since M2(X, Y) = XYR + XRY, Property V follows immediately.

6* The trinomial xQR+1 + xQ+B + 1* In this section we study
the trinomial

F(a?) = xQB+1 + α;ρ+β + 1 , Q = 2q , i2 = 2r .

We let a be a root of F(x). We use the notation and results
of § 2 as well as the M function of the last section.

We begin by noting that if a is an element of GF(Q), then
F(a) — 1, a contradiction. Thus none of the roots of F(x) lies in
GF(Q). By symmetry none of the roots of F(x) lies in GF(R).

Since a is a root of F(x) we have

1 = F(a) + 1 = aoa
R + a

Raising this to the Qth power we get

1 = M(al9 a2) = M(a2, a,) .

Adding these two and using the properties of the M function we get

0 = M(a2, α j + M(a0, αx)

•— M(a2 + a0, αx) = M(aλ) Π (oc2 + a0 + ra x) ,
Γ

where the product is over all τ in GF(R). Since Af^) = aγ Φ 0 we
we have a2 + ταx + a0 = 0 for some τ in GF(R).

Following the notation of § 2, we let s denote the greatest com-
mon divisor (q, r) of q and r, S = 2% and ί = r/s. We also set w = qt,
the least common multiple of q and r.

We now use the results of § 2 with (1) specialized to

a2 = τax + α0 .

In particular we have m = 2, and

- 1

1 0_

Then as in § 2 we set P = TΓt_! Wi Wo, and we let H(x) be the
characteristic polynomial of P. Since the determinant of Wβ is 1,
the constant term of H(x) is also 1, so that H(x) is of the form
H(x) = x2 + ζx + 1, where £ e GF(S).

We now distinguish three cases.
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Case 1. H(x) is irreducible over GF(S). Here the roots of H(x)
are distinct and any root 7 of H(x) satisfies 7s+1 = 1. Therefore
H(x)\(xs+1 + 1). In this case aeGF(Q{S+1)t), and the degree of the
irreducible polynomial with a as a root divides w(S + 1).

Case 2. The roots of H(x) are distinct and lie in GF(S). Here
H(x) I (x8-1 + 1), and we have aeGF(Q{S-1]t). Therefore the degree
of the irreducible polynomial with a as a root divides w(S — 1).

Case 3. The roots of H(x) are equal. Here we must have
H(x) = x2 + 1, and so aeGF(Q2t). This implies that the degree of
the irreducible polynomial with a as a root divides 2w.

Thus we have the following result.

THEOREM 7. Let F(x) = xQB+1 + xQ+R + 1, where Q = 2q and R = 2\
Let s be the greatest common divisor of q and r, and let w be the
least common multiple of q and r. Let S — 2s, and let f(x) be an
irreducible factor of F(x) over GF(2). Then the degree off(x) divides
w(S + 1), w(S — 1), or 2w. The degree of f(x) does not divide either
q or r.

The special case r = 1 of this theorem was a conjecture of
Golomb, which was first proved by Mills and Zierler [5]. It has been
generalized to arbitrary finite fields by Carlitz [2]. In these two
papers additional information about the roots is obtained.

7* The trinomial χQR-A+1 + χQ-A+R + 1Φ In this section we study
the trinomial

F(x) = x^-^ + XQ-A+R + 1 ,

where Q = 2q, R = 2% and A2 = QR, so that A is as a power of 2,
and q and r have the same parity. We found this class of poly-
nomials by generalizing the interesting factorization of xul + xlu + 1,
which has 1 irreducible factor of degree 3, 6 irreducible factors of
degree 21, and 4 irreducible factors of degree 28. Even more spec-
tacular is the trinomial x993 + xm + 1, which has 1 irreducible factor
of degree 12, 19 irreducible factors of degree 27, and 13 irreducible
factors of degree 36.

As usual let a be a root of F(x). Then we have

aA = afaλ + aoa
R = M(aQ, at) .

Raising this to the Qth power we get

aA = M(al9 a2) .
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Therefore, using the properties of the M function, we obtain

= M(a?)M(aOf al9 a2) = α?Λf(α0, al9 a2) .

Since a Φ 0, we have aγ Φ 0, and therefore

1 = M(aQ, alf a2) .

Raising this to the Qth power we get

1 = M(alf a2, α3) = M(a3f au a2) .

Using Properties III and IV of the M function we obtain

0 = M(aQ, al9 a2) + Λf(α8, al9 a2) = M(a0 + α3, aίf a2)

= M{al9 a2) Π (cc0 + a3 + τaί + λα 2) ,

where K is the finite field GF(R). Since

M(al9 a.2) = af Φ 0

we must have
a0 + τaλ + λα2 + az — 0

for some τ, λ in K.
Following the notation of §2, we let s = (g, r), S = 2s, and t = r/s.

We also set w = gί, the least common multiple of q and r.
We now use the results of § 2 with (1) specialized to

α3 = Xa2 + τaλ + a0 .

In particular we have m = 3, and

1 0 0

Lo l oj

Then as in §2 we set P= Wt_x ••• WXW^ and we let H(x) be the
characteristic polynomial of P. Since the determinant of Wό is 1, the
constant term of H(x) is also 1, so that H(x) is of the form H(x) =
ίc3 + ίcc2 + φx + 1, where ς,φe GF(S).

We now distinguish four cases.

Case 1. J5Γ(aO is irreducible over GF(S). Here the roots of H{x)
are distinct. Any root 7 of H{x) satisfies

Therefore
jBΓ(a?) I (xs2+s+1 + 1) .
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In this case a e GF(Q{s2+s+1)t), and the degree of the irreducible
polynomial with a as a root divides w(S2 + S + 1).

Case 2. H{x) is reducible over GF(S) and its three roots are
distinct. Here these three roots must lie in GF(S2). This gives us

HWKx82-1 + 1) ,

a e GFiQ

and the degree of the irreducible polynomial with a as a root divides
w(S2 - 1).

Case 3. H(x) has exactly two equal roots. Here the roots of
H(x) all lie in GF(S), and therefore

H(x) I (x8-1 + I)2 = x2S~2 + 1 ,
a e

and the degree of the irreducible polynomial with a as a root divides
2w(S - 1).

Case 4. The three roots of H(x) are equal. Since the product
of these three roots is 1, we must have H(x) = (x + α>)3, where ω is
a cube root of unity, ωeGF(S).

If ωΦl, then ω is a generator of GF(A) so that GF(4) £
which implies that s is even,

α 6 GF(Q12t), and the degree of the irreducible polynomial with a as
a root divides 12w.

On the other hand if ω = 1, then JEΓ(α) | (a? + I)4, aeGF{Qil)f and
the degree of the irreducible polynomial with a as a root divides 4w.

Finally we observe that α2 + a0 is one of the factors of M(a0, aί9 α2),
which is not zero. Thus none of the roots of F{x) lies in GF(Q2).
By symmetry none of the roots of F(x) lies in GF(R2).

Thus we have the following result.

THEOREM 8. Let F(x) = xQR~A+1 + χQ~A+R + 1, where Q = 2q, R = 2r,
and A2 — QR. Let s be the greatest common divisor of q and r,
and let w be the least common multiple of q and r. Let S = 2%
and let f(x) be an irreducible factor of F{x) over GF(2). Then the
degree of f(x) divides w(S2 + S + 1), w(S2 - 1), 2w(S - 1), or 12w.
If s is odd, then 12w can be replaced by Aw. The degree of fix) does
not divide either 2q or 2r.
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The factorizations of the first 15 members of this family, i.e.,
those with q + r S 10, suggest that Theorem 8 is too weak. In all
these examples the degrees of the irreducible factors of F(x) divide
w(S2 — 1), 2w(S — 1), or 12w. Perhaps this always holds.

8* The trinomial xQR~B+1 + xQ~B+R + 1. In this section we study
the trinomial

F(x) = sβ*-*+1 + xQ-B+B + 1 ,

where Q = 2% R = 2% and B2 = 2QR, so that B is a power of 2
and q and r have the opposite parity. We let a be a root of F(x).

We begin by noting that if a is an element of GF(Q), then
F(a) = 1, a contradiction. Thus none of the roots of ίXa?) lies in
GF(Q). By symmetry none of the roots of F(x) lies in GF(R).

Since a is a root of F(x) we have

Raising this to the Qth power we get

aB = M(al9 a2) .

Therefore, using the properties of the M function, we obtain

a\R = a2QR = aβ2 - M(aξ, aB) = M(M(aQ, α x), M(au a2))

= M{af)M(aQ, au a2) = aRM{aQ, alf a2) .

Since a Φ 0, we have aλ Φ 0, and therefore

aR = Λf(α0, ocly a2) .

Raising this to the Qth power we obtain

aR = Λf(α!, α2, α3) .

Iterating the M function again we get

(M(al9 a2))R = M(αf, α?) = Λf(Λf(α0, «i, «8), Λf(«i, «2, «8))

0, α l f α2, α3) .

Now M(au a2) — aB Φ 0 so that we have

1 = M(aOf al9 α2, α8)

Raising this to the Qth power we get

1 = M(al9 a2, α3, α4) = M(α4, αx, α2, α3) .

Using Properties III and IV of the M function we obtain
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0 = M(aOf alf a2y α8) + M(a4, alf a2, az) = M(a0 + α4, alf a2, α3)

= M(alf a2, α3) Ίl(ao + a, + τax + xa2 + μa3) ,

where the product is over all τ, λ, μ in GF(R). Since

M(alf a2, α8) = a2 Φ 0 ,

we must have

α0 + τaλ + λα2 + μa5 + α4 = 0

for some τ, λ, ^ in GF(R).
Following the notation of § 2, we let s = (#, r), S = 2s, and ί =

r/8. We also set w = qt, the least common multiple of q and r.
We now use the results of § 2 with (1) specialized to

a, = μaz + λα2 + τa, + α0 .

In particular we have m = 4, and

0 0 0

1 0 0

0 1 0..

Then as in § 2 we set P = Wt_x Wx Wo, and we let H{x) be the
characteristic polynomial of P. Since the determinant of Wό is 1,
the constant term of H(x) is also 1, so that H(x) is of the form
H(x) = x* + ζx3 + ξx2 + φx + l, w i t h ζ,ζ,φe GF(S).

We now distinguish four cases.

Case 1. H(x) is irreducible over GF(S). Here the roots of H(x)
are distinct. Any root 7 of H(x) satisfies

Therefore

H(x)\(x 1)

In this case a e GF(Q{s3+s2+s+1)t), and the degree of the irreducible
polynomial with a as a root divides w(Ss + S2 + S + 1).

Case 2. JEΓ(a?) has an irreducible factor of degree three over
GF(S). Here the roots of H(x) are distinct and all four of them lie
in GF(SZ). This gives us

-1 1),

a e
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and the degree of the irreducible polynomial with a as a root divides
w(S3 - 1).

Case 3. All the roots of' H(x) lie in GF(S2) and H(x) has no roots
of multiplicity three. Here we have

H{x) I (Xs2-1 + I ) 2 = x2s2-2 + 1 ,

a e GF(Q2{S2-I]t) ,

and the degree of the irreducible polynomial with a as a root divides
2w(S2 - 1).

Case 4. At least three of the roots of H(x) are equal. Here
the roots of H(x) all lie in GF(S) and

H(x)\(xs~1 + 1)4 = (^- 4 + l) ,

a e

and the degree of the irreducible polynomial with a as a root divides
4w(S - 1).

Thus we have the following result.

THEOREM 9. Let F(x) = xQR~B+1 + xQ~B+R + 1, where Q = 2q, R =
2 r, and B2 = 2QR. Let s be the greatest common divisor of q and r,
and let w be the least common muliple of q and r. Let S = 2s, and
let f{x) be an irreducible factor of F{x) over GF(2). Then the degree
of fix) divides w(Ss + S2 + S + 1), w(S3 - 1), 2w(S2 - 1), or AwiS - 1).
The degree of fix) does not divide either q or r.

We suspect that Theorem 9 is too weak, and that it could be
sharpened by the use of stronger techniques.

9. A final example* It can be shown that any root a of the
trinomial

Fix) = xdQ+1 + xQ+z + 1

satisfies

(α2 + aQ)ia2

2 + a2a0 + a\ + al) = 0 .

Here we have an example where the αέ satisfy a linear relation for
some a and a quadratic relation for the remaining a. This poly-
nomial is a kind of a cross between a round trinomial and a typical
polynomial. It has an unusual number of factors whose degrees
divide 2g, but the remaining factors do not seem to fit a pattern.
For example for q = 9, F(x) has 28 irreducible factors of degree 18,
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1 of degree 6, and 1 of degree 2, however the remaining factors
have degrees 5, 34, 39, 41, 49, 61, 65, 68, 71, 78, 85, 88, 94, 118, and 129.
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