CONTENTS

A-ALGEBRA AND NUMBER THEORY

G. M. Benkart and J. M. Osborn, An investigation of real division algebras using derivations....265

B - ANALYSIS

sets E. Hayashi, The spectral density of a strongly mixing stationary Gaussian process CW. Ho and C. Morris, A graph theoretic proof of Sharkovsky's theorem on the periodic points of continuous functions	
CW. Ho and C. Morris, A graph theoretic proof of Sharkovsky's theorem on the periodic points of continuous functions	301
of continuous functions	343
	361
A. Inoue, S. Ota and J. Tomiyama, Derivations of operator algebras into spaces of unbounded	
operators	389
W. B. Jurkat and G. Sampson, On weak restricted estimates and endpoint problems for	
convolutions with oscillating kernels (1)	405
G. Koumoullis, Some topological properties of spaces of measures	419
M. McAsey, Invariant subspaces of non-selfadjoint crossed products	457
J. Peters, Entropy of automorphisms on L.C.A. groups	475
S. Saitoh, A characterization of the adjoint L-kernel of Szegö type	489

G-TOPOLOGY

G.	Beer, A	A natural topology for upper semicontinuous functions a	ind	a	Baire	category	dual	
	for	convergence in measure						251
s.	Hurvitz,	, The automorphism groups of spaces and fibrations						371
W	-H. Lin,	, Algebraic Kahn-Priddy theorem	••••	• •				435

$\mathbf{H}-\mathbf{COMBINATORICS}$

P.	Hanlon,	The	fixed-point	partition	<i>lattices</i>	19
----	---------	-----	-------------	-----------	-----------------	----

Our subject classifications are: A – ALGEBRA AND NUMBER THEORY; B – ANALYSIS; C – APPLIED MATHEMATICS; D – GEOMETRY; E – LOGIC AND FOUNDATIONS; F – PROBABILITY AND STATISTICS; G – TOPOLOGY; H – COMBINATORICS

October, 1981