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A CHARACTERIZATION OF THE ADJOINT L-KERNEL
OF SZEGO TYPE

SABUROU SAITOH

Let G be a bounded regular region in the complex plane
and £(z, u) the adjoint L-kernel of Szegδ kernel function
ίt(z, ΰ) on G. Then, for any analytic function h(z) on G
with a finite Dirichlet integral, it is shown that the equa-
tion

(z)\2dxdy

\(h(z1)-h(z2))£(zί,z2)\ΐ \dz1\ \dz2
JdGJdG

holds. Furthermore, for any fixed nonconstant h(z), we show
that the function £{zuz2) on GxG is characterized by that
equation in some class.

1* Introduction and statement of result* Let S denote an
arbitrary compact bordered Riemann surface. Let W(z, t) be a
meromorphic function whose real part is the Green's function g{z, t)
with pole at t e S. The differential id W(z, t) is positive along dS.
For simplicity, we do not distinguish between points z e S U dS and
local parameters z. For an arbitrary integer q and for any positive
continuous function p(z) on dS, let Hq

)P(S)[p Ξ> 1] be the Banach
space of analytic differentials f(z)(dz)q on S of order q with finite
norms

{ If \l/p

— \ \f(z)(dz)q\*p(z)[iά W(z, t)]1-'
where f(z) means the Fatou boundary value of / at zedS. Let
Kq,t,p(z> ύ)(dz)q be the reproducing kernel for HlP(S) which is
characterized by the reproducing property

2π hs

for all f(z)(dz)qeHlP(S) .

See [9]. Let Lq>t>p{z, u)(dzY~q denote the adjoint L-kernel of
KqtttP(z, ύ)(dz)q. The function Lq>t}P(z, u){dz)ι~q is a meromorphic dif-
ferential on S of order 1 — q with a simple pole at u having residue
1. Moreover,

KqtttP(*, u)(dz)<p(z)[iά W(z, t)Y~*q

( 1 Λ ) - ±Lq,ttP(z, u)(dzy-q along dS .
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We note that \KqtttP(z,u)\ and \LqtttP(z,u)\ can be extended continu-
ously on dS. In addition, Kq>t}P(z, n) = Kq>t)P(u, z) and Lq,ttP(z, u) =

-L^qfttP-i(u, z) on S.

If S is a bounded regular region in the plane, then we can
define the kernels for arbitrary real values of q. In this case, for
q = 1/2 and p(z) Ξ I , we have the classical Szego kernels K{z, u) —
Ki/2,t,i(z, ύ)/2π and L(z, u) = L1/2tttί(z, u)/2π. Cf. [8] and [9].

A classical characterization of LqtttP(z, u)(dzy~9 can be now stated
as follows:

PROPOSITION (P. R. Garabedian [3,4], Z. Nehari [6, 7] and
S. Saitoh [8, 9]). The adjoint L-kernel LqjtiP(z, u)(dzY~g is character-
ized by the following extremal property

q,Uu, v) - -^\ds I J W * , uXdzγ-<\*(p(z))-*[iά W(z,

= min [j-\d \F(z,

The minimum is taken here over all meromorphic differentials
F(z, u)(dz)ι~q on S of order 1 — q with a simple pole at u having
residue 1 and with finite integral

\ \F(z, u)(dz)ι~q\i[iά W(z, t)]2*-1 < oo .
Ids

In this paper, we establish the following theorem:

THEOREM 1.1. For any analytic function h{z) on S with a
finite Dirichlet integral, we have the equation

x (|θ(v))"1[id W{v, ί)]2ff~7>0Ό[id W(u, t)γ-2q, z

Furthermore, for any fixed nonconstant h{z), the adjoint L-
kernel LqΛiP(v, u) (dvy~q(du)q is characterized by the following ex-
tremal property:

(1.3) J J J (h(v) - h{u))LqΛ)P{v, u)(dvy-q(du)q I2

x (iθ(/y))~1[id W(v, fyY*1'1 p(u)\iά. W(u, t)Y~2q
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= min {( ί \{h{v) - h(u))F(v, u)(dvy-q(du)q\2

x (jθ(t;))~1[id W(v, t)]29~ιp(u)[id W(u, t)f~

The minimum is taken here over all meromorphic differentials
F(vf u)(dvγ-q(du)q on S x S such that

(1.4) F(v, u) =
h(v) — h(u)

for an analytic differential f(u9 v)(du)q(dvY~q on S x S satisfying

(1.5) f(z, z) = h'(z) on S

and

(1.6) [ [ \f(u, v)(duq)(dvy-q \2[id W{u, t)Y~2q[ia W(v, t)]2^1 < oo .

In particular, we note that when q = 1/2 and p(z) = 1, we can
define the adjoint L-kernels of the Szego kernels of S with char-
acteristics. Cf. D. A. Hejhal [5] and J. D. Pay [2]. Then, the
adjoint L-kernels are, in general, multiplicative functions, but our
proof of Theorem 1.1 will show that Theorem 1.1 is still valid for
these adjoint L-kernels in a modified form.

2. Preliminaries* Let {Φ^{dzY}?^ and {Ψi(z){dz)l-q}?=l be
complete orthonormal systems for HlP(S) and Hl~q~i(S)9 respectively.
Let H = HlP(S)<g>H}ΓpLi(S) denote the direct product of Hi,q(S)
and H}~p

9-i(S). The space H is composed of all differentials
f{zu z^{dzdqidz^-q on S x S such that

(2.1) f(zl9 z2) = ±± A^Φ^W^Zz) , Σ Σ \Aj,k\
2 < - .

j=l k=l j=l fe=l

The scalar product ( , )H is given as follows:

(2.2) (f(zl9 z2\ h(zl9 z2))H = Σ Σ Aj>kB~k
i = l fc = l

where h(zlf z2) = ΣΓ=i Σ?=i B^OfaWiteά and Σ ϊ U Σ ϊ U l ^ l 2 < °°
Cf. [1,§8].

We let HD{0) denote the subspace in H composed of all differen-
tials which vanish along the diagonal setD — {(z, z)\zeS} and
(HDM)1 the orthocomplement of HD{0) in H.

3* Proof of theorem* For h(z) 6 Hϊtl(S), we set
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(3.1) fh{u, v) = \ h(z)K,,t,P(z, iQK^M-tz,
JdS

From (1.1) and the residue theorem, we have

(3.2) fh(u, v) = -2πiLq,t>p(v, u)(h(v) - h(u))

and so

(3.3) fh(z, z) - -2πih\z) on S .

When h(z) has a finite Dirichlet integral, from [12, Theorem 4.1]
and [11, Corollary 3.2], we see that fh(u, v)(du)g(dvy-q belongs to
(JHZXO))1. From [12, Corollary 2.1] and [10, Equation (3.2)], we thus
obtain (1.2).

Next, suppose that F*(v, u) attains the minimum in (1.3). Then,
in the case such that h(z) is not constant, we set

(3.4) f*(u, v) = F*(v, u)(h(v) - h(u))

and so

(3.5) fh*(z, z) - h\z) on S .

We note that any f(uf v){du)q(dvy-q e H satisfying f(z, z) = h'(z) on
S is expressible in the form

f(u, v) = F(v, u)(Mv) - h(u))

for an F(v9 u) stated in the theorem. From the extremal property
of f*(u, v)(du)q(dvy-q in the subspace in H satisfying f(z, z) = h'(z)
on S, we see that f£(u, v)(du)q(dvf-q e(HDW)L. Cf. [10, Equation
(3.2)]. Therefore, by [12, Theorem 4.2], fί(u, v) is expressible in
the form

f*lίr „ Λ _ 1 f
Jh Kzί> zi) ή—I

2π hs id T7(ζ, t)

for a uniquely determined h*(z)dz in H}tί(S). Furthermore, from
[12, Equations (4.11) and (4.12)], h*{z) can be determined as follows:

(3.7) h*(z) = - W\zf t)(h{z) -

From (3.6) and (1.1), we have

(3.8) ft{u, v) - Lq,U% u)(h(v) - h(u)) .

We thus have the desired result F*(v, u) — Lq>t>p(v9 u).

4. Corollary• In particular, from the proof of Theorem 1.1,
we obtain
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COROLLARY 4.1. For any fixed nonconstant analytic function
h(z) on S with a finite Dirichlet integral, the unique extremal func-
tion which minimizes

ll/(Zi,Z2)|

in the subspace in Hl~p

q-i(S) (x) HlP(S) satisfying f(z, z) = h'(z) on S
is given by {h{z^) — h(z2))Lqtt>p(zu z2)
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