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ALGEBRAIC KAHN-PRIDDY THEOREM

WEN-HSIUNG LIN

There is an epimorphism from the stable homotopy of
the infinite real projective space RP” to the (2-component)
stable homotopy of spheres. This is the well known Kahn-
Priddy theorem and was originally a conjecture of M. E.
Mahowald and G. W. Whitehead. Mahowald also conjectured
that the epimorphism should occur in the E, terms of the
Adams spectral sequences. We prove this conjecture is true.

1. Introduction. In his memoir [3] M. E. Mahowald made
two conjectures on a specific map )\ from the suspension spectrum
P> of the infinite real projective space RP>~ to the sphere spectrum
S°. He conjectured that A induces epimorphisms in homotopy and
in E, terms of the mod 2 Adams spectral sequences which are Ext
groups over the mod 2 Steenrod algebra A. The first conjecture,
which was also conjectured by G. W. Whitehead [5], has been
proved by D. S. Kahn and S. B. Priddy [2] and is now known as
the Kahn-Priddy theorem. The second conjecture, however, remains
unproved. In this paper we record a proof of the truth of
Mahowald’s conjecture on this “algebraic Kahn-Priddy theorem”.
The result is stated as Theorem 1.1 below.

The map A cited above has the property that a,: 7,(P~) = Z,—
7,(S%) = Z, is an isomorphism. Kahn and Priddy proved their theorem
not just for n but also for any mapg: P*— S° which induces iso-
morphism in =z, ( ). We shall state our “algebraic Kahn-Priddy
theorem” also for any such map g.

THEOREM 1.1. For any map g: P* — S° that induces an isomor-
phism in the first stem homotopy groups the induced homomorphism

9. Bxty (H*(P~), Z,) — Exti™' " (H*(S"), Z,)
18 an epimorphism for all s and t with t — s = 1.

Here H*( ) is the reduced mod 2 cohomology functor. The
result in Theorem 1.1 is what Mahowald had conjectured in [3] for
g = 1. We shall see that only the isomorphism g¢,.: 7,(P>) — 7,(S°) is
relevent. The map ) does not play a special role.

I would like to thank Professor Mahowald for encouragement
to prove his conjecture.

2. Proof. The main result used to prove Theorem 1.1 is

435
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Proposition 2.1 which will be stated at the end of this section and
proved in §3.

We first briefly describe the induced homomorphism g, in Theo-
rem 1.1. Recall that H*(P~) = Z,[x] with dim (x) = 1. The mod 2
Steenrod algebra acts on H*(P=) by Sq¢'x* = (ff)x"“ Consider the

following diagram consisting of the first stage of the mod 2 Adams
resolution of S° and the map g:

Y

b

P45, Kz)— SY.

It is easy to see that H*(Y) = Y'A where A is the augmentation
ideal of A and we have the short exact sequence of A-modules

0— H*SY)=A— H*(K(Z)) = A
(1) e
L H*SY) = Z,—0.
Since H(P~) = 0, jg: P~ — K(Z,) is null homotopic; so g can be lifted
to a map §: P*—Y as indicated in the diagram above. Composing
the induced homomorphism

@)*: Exty"(H*(P*), Z,) — Exty'(H*(Y), Z,)
= Exty""(H*(S8Y), Z,)

with the coboundary homomorphism
o*: Exty" "/ (H*(SY), Z,) — ExtiH T (H*(SY), Z,)

which is obtained by applying Ext%*(, Z,) to the short exact
sequence (1) we get the homomorphism ¢, in Theorem 1.1.

The A-map §*: H*(Y) = YA — H*(P>) is easy to describe.
Recall that 7,(S° = Z, is generated by 7 and 7 is detected by
Sq®. It is easy to infer from the isomorphism g¢.: 7, (P*) = Z,—
7, (S° = Z, that §*(S¢*) = « and then from the A-module structure
of H*(P=) that §*(Sq")=2a""" for all ¢ = 2. It is clear that §*(S¢")=
0. Thus §* is independent of the lifting § and also independent of
g: P> — S° for which ¢. is an isomorphism in w,( ).

We next recall ([1]) that for any locally finite left A-module M
a suitable small complex for computing Ext¥*(M, Z,) is M*® 4
where M* is the dual Z,-module of M and 4 is the lamda algebra.
A is a bigraded differential algebra over Z, generated by (7 = 0)
with \, € 4%+ subject to the following relations
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n—7—1

(2) NiNost14n = Z (
J

FE

>7\li+n—j7\'2i+1+j ’

the differential 6 is given by

EF—j—1
o) = %( i1 )x,,_,-_lx,. .
M*@ 4 is a differential right 4-module with differential é given
by

o(m*) = 2, m*S¢" Q@ M
=0

where the right A-module structure of M* is obtained by transpos-
ing the left A-module structure of M.

In particular H*, *(4) = Ext% *(Z,, Z,) = Ext}*(H*(S"), Z,) and
H**(H (P~) ® 4) = Ext}*(H*(P~), Z,) where H,(P~)= (H*(P~))*
is the mod 2 homology of P=. Let {#.}:x; be the Z,-base of H, (P~)
dual to {x*},.,. The differential § of H, (P~)® 4 is given by

k—j7—1
oY) = %( i1 >yk_g-_1®7w.

The A-map §*: H*(Y) — H*(P~) gives rise to a chain map ¢:
H,(P~)® A— A which induces the homomorphism g, in Theorem 1.1.
The chain map ¢ is a differential 4-map and on the generators y, it
is given by

S(Yr) = Mg -

Our method to prove Theorem 1.1 is to construct a chain map
i A— H (P*) ® 4 (which is not a differential 4-map) so that the
composite @ = gyp: 4 — A has the property that for any pair of
integers (s,t) with ¢ — s =1 there is an integer m = m(s, t) =1
such that the iterated product @™ is equal to the identity map on
A1,

To construct « we define some terminology and fix some nota-
tions. From the relations (2) we see a Z,-base for A°(4° = >, 4% is
given by NNy et N, 120 = 95, -0+, 24, = 4}, Any such monomial
NiMi, - *Ng, i8 called an admissible monomial and the corresponding
sequence (%, 4, -+, %, is called an admissible sequence. If J =
(J1 Jo» =+ -+, ) is @ sequence of nonnegative integers then we write
s to denote Njhj,coon;,. If I= (i, %, ---,4) is an admissible
sequence and J = (j, 5 -+, 4.) iS an sequence of nonnegative
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integers (whether it is admissible or not) then we write x, e\, to
mean that A, appears in the admissible expansion of ;.

We construct +: A4°— H, (P~) Q 4° as follows. +"(1)=0, '(\)=
0 and '(\;) = ¥, ®1 for ¢ = 1. For s =2 it is a little complicated
to describe 4°. Let ;=\ )\, -\, be a given admissible monomial
in A°(s = 2) and let I' = (¢,, +--, 1,). If 4, =0 (which implies 7. =0
for all 7« = 2) then define +*(\;) = 0. If 4, >0 then (A, will be
of the form

(3) Yy, @ Ny + Zy. Yiror @ Nyriy

where the second sum is described as follows. First of all we
require that each A\, , be an admissible monomial in 4°*—' and that
J) = (5.(v), 4.(v), -+, 5.(»)), where J'(v) = (4.(»), -+, 5.(»)), be inad-
missible. Secondly, choose any positive integer m so that m > i, +
% + +-+ + 4, + s (which means m is very large compared with the
integers 7; and s) and consider the sequence J(v, m) = (2™ + j,(v),
Jo(v), -+, 4s(v)). It is clear that J(v, m) is admissible. Then ¥, ®
Ay oceurs in the second sum of (8) if and only if \;( . € MNrg.m fOT
some ¢ with 2 < ¢g <s where I(qg, m) = (%, -+, 4 + 2™, Tgus, ***, I
We shall see later that the second sum of (3) is independent of the
large positive integer m.

Consider the composite @° = ¢°y°: £*—4°. It is clear that @°(1)=
0, &*(\) = 0 and @*(\,) = A, for ¢ = 1. For s=2 let I=(4,, %, -, )
be a given admissible sequence. If 4, = 0 then @*(\;) =0. If 7,>0
and if we still use the notation in the preceding paragraph then

@30\11) =N + ; Ny -

Note that each \;,, is an inadmissible monomial. Suppose >, A, 7
0 and let > \;y be the admissible expansion of 3, \y,; SO

(4) O°*(Np) = N Z Nr -

ProposITION 2.1. (i) ™ 4" - H*(P~)Q A* is a chain map
(so @*: A* — A* s also a chain map).

(ii) For s=2 let N\, be any admissible monomial in A° such
that the first entry of I is positive. Suppose O°(\;) is as described
i (4). Then the first entry of I is strictly less than that of each

I(z).

It follows from Proposition 2.1 that @ has the property described
above, that is, for any pair of integers (s,t) with ¢ — s = 1 there
is some integer m = m(s, t) = 1 such that @™ is equal to the identity
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map on A**. Since *: H (P*) Q 4* — A* induces the homomorphism
0« in Theorem 1.1 the result in the theorem follows.

3. Proof of Proposition 2.1. We begin with the proof of
Proposition 2.1 (ii) which is easier than that of Proposition 2.1 (i).
To prove Proposition 2.1 (ii) we begin with some lemmas which will
also be needed in the proof of Proposition 2.1 (i).

LeEMMA 3.1. Let I=(,, -+, 1,) be an admissible sequence (n=2).
Suppose J = (3., -+, J.) 18 a sequence such that ;e x;. Then
(1) % = m(J) where m(J) = max, {5} and (ii) j, < 1,.

The proof is given by induction on the lexicographical order
from the right of the sequence J = (4, ---, J.), the first inductive
step being the case (4, -, 4.) = (%, -+, 4,). We leave the details
of the proof to the reader.

LemmA 3.2. Let (4, -+, j,) be an admissible sequence (s = 2)
and m be a positive integer such that m > j, + --- + j, + s.
Suppose (p,, ---, p,) 18 a sequence of nonnegative integers such that
(Dzy +++, Ds) 18 admissible and

Namgp Ny * * * Npy € N+ = Mgy Mamet gy Mgy * * * Ny

for some k with 2= k=<s+ 1. Then (i) p, =25, +1 and (ii)
(01, D5y -, D) ts tnadmissible, i.e., 2p, < .

For the proof of Proposition 2.1 (ii) we shall only need the
result in Lemma 3.2 (i).

Proof of Lemma 3.2. In our proof there will arise variables
Yi_1, Yoy * -, V1 With integral values and integers
2"+ e —Jkr— Tkt~ 2Jhm e~ Vi1 Vi—e— Ve — E— 1,
2"+ G k1= = Jhmttr— Jbmt— Vi1 V2 — "+ — Y — 1
and
204t + Ve + 1
where 1<¢t<k—1. We denote these integers by g,_,, 7' and 7.

in that order.

Since m is large and k =2, (j,_, 2™ + j,) is inadmissible. So
we can expand \;,_ A;myj;, into sum of admissible monomials by using
the relations (2). We have
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Ny

1

N g Nig M i N T T N

ik+1 .)\'js ‘

7
= 3 [T D N N
20 \ Yy, -2

From the assumption in the lemma we see that there is at least
one y,_; for which

(ﬁ ’“) =1 (mod 2)

Vi1
and

Xgmﬂ,l),m' * ')\:ps EN LD )\:117\:])\:

71 Tk—2 1ViE+ )"is .

By Lemma 3.1 (i) either
=2 gy = — Y — 1= 2"+ p,
or
=20 v+ 122"+ p

(since m is large). If 25,, +v,, +1=2"+ p, then v,_, > y,_, =
2™ + 4, —24,., — v,_, — 2 and we would have (ﬂ" ‘) =0 (mod 2).
Therefore j7; = 2™ + p,. Thus (5,_., 71) is admissible (if £ > 2). By

expanding \;,_; we find
Mgyt NNy g Ny Ni Nyt N,
s
= 2 ( )7\:11‘ T NNy N N
“i—220 \ Vj_,

Hence there is at least one y,_, for which

<#k'2> =1 (mod 2)

Vi_o

and

Nomp g+ Mgy € M+ * Ngp g NN+ + N,

g1 Ik—3 s

Again from Lemma 3.1 (i) and the fact (5’5 2) = 1 (mod 2) we must

have j) = 2™ + p,. Thus (j,_,, 75’) is inadmissible and we can con-
tinue to expand \; Ny (if k¥ > 3). Continue this argument a finite

Jk~3
number of times we end up with

Namip gy N, € N N

1 ™d 1’

DRI

for some values of v, ---, v,_, which are nonegative and we have
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Jiei =Z 2™ + p,. Since m is large, 2™ + p, is actually equal to j,_,
ie.,

2"+, =2"+ Jp—Jps— =G Ve —Vpa— =V, —k+1
or
Di=Jp—Jper— " —J1i— VY1 —Vpa— -+ — Y —k+1
and
D VAR W W) W

By Lemma 3.1 (ii) p, = ;.. =27, + v, +1 =24, + 1. This proves

part (i) of the lemma. Since (4, ---, j,) is admissible, we have
25, Z Joy 25:25s + -+, 252125, Which imply j,=7./2"7, j. Z5,/2°7, -+,
Je1 Z Juf2. Then
D2 — 20, 225, +1 =25, + 2(Jps + -0+ J) + 200 + 00+ v)
+2k—2=2@5, +Jo+ -+ Ju)) — 25, + 26— 1
= 2(1/2F2 4 1/2F2 + /22 + - + 1/2)5, — 25, + 2k — 1
=2, —2/,+2%—1=2k—1>0,

that is, p, > 2p,. This proves Lemma 3.1 (ii).

Proof of Proposition 2.1 (ii). We recall that
@s()\q) =N+ ; Nrt)

and Y.\ is the admissible expansion of 3, A;, where each
J) = (G,(v), .(v), -+, 4,(»)) is inadmissible, (j,(v), ---, j,(»)) is admis-
sible and

Mot 6 NGp0y *° s Mgt € Nyt Mg Namapg* * * Ny,

for some k with 2 < k < s (m is large). Let I()=(¢,(p), - - -, 1.(10)).
We want to show that %,(¢) > 4, for all ¢ where I = (¢, ---, 1,).
By Lemma 3.2 (i) we have
(@) 7.(v) =24, + 1 for all v.
We shall prove
(b) For each p there is some v such that

20,(1) + 1> 4,0 -

It is clear that the desired result follows from (a) and (b).
We suppose ¢ is a given index element. Since 3. \j is the
admissible expansion of 3, A\, there is some v such that

Moy " Nigin € Mg oaNgpe0® * " Nj) -
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By assumption (j.(v), 7,(»)) is inadmissible; so we can expand
Nj,wNiyer into sum of admissible monomials. We have

LUNBY I NELRRD YR
(jz(V) —25,(v) —"”—2>
r

= IRO I NG ER) PYNSESELE LD VNS
r20

Hence there is some » for which

(V) — 27,(v) — »r — 2
(5) <.72() .71’(") >_=.1(mod2)
and
(6) Nipin ** Ny € o) — iy —r—1 Mgy )41 * N ) -

From (5) we see that
(3o(v) — 25,(») —7r —2) —r =0
or
7.2 = g,(v) +r+ 1.
From (6) and Lemma 3.1 (ii) we have

W) Z 5,(v) — (W) +r + 1)
Z 5:(v) — 5.2 = 5:(v)/2

i.e.,
24,(¢t) = j,(v) which implies
20() + 1> 5,(v) .

This proves (b) and therefore Proposition 2.1 (ii).

Our proof of Proposition 2.1 (i) is rather lengthy. The con-
struction of the map +*: 4* — H, (P~) Q 4* in §2 comes from con-
sidering the dual complex K,(A) of A*, called Koszul complex for
the Steenrod algebra A, in the bar construction B,(4) as described
by S.B. Priddy in [4]. We shall prove Proposition 2.1 (i) by show-
ing that the dual Z,-map +,: K,.(4) ® H*(P~) — K,(A) of 4* is a
chain map (Proposition 3.6).

We will first describe the structure of K,(4) and then sum-
marize the main properties of K,(A4) in Theorem 3.8 below. K,(A)=
B(A) = Z, and K,(A) is the Z,submodule of B,(4) = A which has
{Sq¢*|i = 1} as a Z,-base. To describe K,(4) for s =2 consider any
admissible sequence I = (3, ---,4,). Let I'; = [S¢*+*!|---|Sq"*'] + Q,
where Q; is the sum of all [Sg?s*'|---|S¢/1*'] such that J=(5, ---, 7.)
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is inadmissible and A, € »,. Then K (A) is the Z,-submodule of B,(A4)

which has {I";|I = (¢,, ---, 1,) is admissible} as a Z,-base. For s =2

we can explicitly write out, from the relations (2) in §2, the terms

in the sum I, = I'; ;,,; we have

(7) F T S ig+1 S T1+1 + [i2+1/2]< il B J
apip = [SE*H S + 3, P12

Jj=1

>[Sqi1+i2+2—j l Sqﬂ]

where [x] denotes the greatest integer less than or equal to .
From the Adem relations in the Steenrod algebra A we have

AT i)
— SgHSgt 4 [izizl ( W= >Sqi1+i2+2—jsqj
(8) =1 \1, + 1 — 27
1 L
— S iy+ia+2
(iz + 1) !

where d is the boundary homomorphism of B,(4).

THEOREM 3.3 ([4]). Let M be a locally finite A-module, {m;} a
Zy-base of M and {m}} the dual Z,-base of M*.

(i) K.(A) Q® M is a subcomplex of the bar construction B, (A)R
M and the inclusion map i @ M: K, (A)QM—B,(AQRQM is a
chain equivalence.

(ii) The complex K,.(A)® M is dual to the complex M* R A
in the semse that {['; Q m;|I is admissible} (I'; = Sqg'r** if I = (1))
28 dual to the Z-base {m} @ N;|I is admissible} of M*Q A and
that the boundary homomorphism of K.(A) Q@ M is dual to the
differential of M* Q A.

(iii) For a homogeneous element R = 3;[Sq’1|---|Sq’] e B,(A)
(s = 2) to be an element of K,(A) it is necessary and sufficient that,
for each (1 <1< s—1) and each pair of sequences (k, ---, k;_,)
and (ks « -+, k), the following condition holds

> 8q%Sq%+1 = Sqg° or 0
J

where the summation is taken over all j such that (3, -+, Ji_) =
(Foyy =+ vy i) and (ji+2, cooge) = (Biagy vy k).

We should remark that in [4] the complex K,(A) is approached
from the Koszul resolution viewpoint and the property in Theorem
3.3 (iii) is taken as the definition of K,(4). The Z,-base of K,(A)
described above is not explicitly exhibited there.

The property in Theorem 3.3 (iii) will be important to the proof



44 WEN-HSIUNG LIN

of Proposition 2.1 (i). From (7), (8) and the Adem relations one can
easily prove Theorem 3.3 (iii) for s = 2 and we would like to make
the following remark.

REMARK 3.4. The condition “>}; Sg?sSg’i+* = Sq° or 0” in Theorem
3.3 (iii), for s>2, can be replaced by the condition “3>}; [Sq’:|Sq’i+] €
K,(A)".

We proceed to describe the mapr,: K, (A) ® H*(P~) — K,(A)
dual to *: 4* —> H,(P~)Q 4*. It is clear that (1 & %) = S¢**.
To describe +, for s =1 consider any basis element I';, Q z‘ of
K(A) ® H*(P~) where I'=(4,, -+, 14,). Let I=(,1, +--,1,). Choose
any positive integer m such that m > ¢+ 4, + --- + 7, + s and let
Im) = 2™ + 4,4, ---, 4,). Since m is large, I(m) is an admissible
sequence. Consider the corresponding basis element

I = [S@* ]+ - | S¢S ] + Qrimy -

Let us write [Sg’:|---|S¢**1]€ Q;y to mean that [Sg’:[---[Sg’s+1]
appears in the sum Q;.,,. By Lemma 3.1 (i) for each [Sg’t|- - -|Sg*s+1] e
Q. there is at least one % such that j5,=2"+ 7+ 1> 2™ and
since m is large there is only one such k. So each [Sgit|---|Sq’s+] e
I',., has exactly one j, > 2. We construct an element 2, ¢ B,,,(4)
as follows. For each [Sqt|---|Sq’s+] € ;.. let j, be the only integer
such that j, > 2™ and consider [Sq’i|---|Sq’:+1] where j; = 7, if =k
and j, = j, — 2™ Let 2, be the sum of all such [Sg’i|---|Sg?+].
The first proposition below together with Theorem 3.3 (ii) show
that . K,(4) ® H*(P~) — K,1,(A) defined by +,(I";, ® &%) = 2, gives
rise to the dual map *+': A4 — H, (P=) Q 4° in §2.

PRrROPOSITION 8.5. (i) £2; is independent of the large positive
integer m and is an element of K,.,(A).
(i) 2,=T;1f (4,1, -+, 1) 18 an admissible sequence.

PROPOSITION 3.6. q,: K,(A) ® H*(P~) — K,(A) is a chain map.

We proceed to prove these propositions. To prove Proposition
3.5 we first begin with the case s = 1. This case will be basis of
the proof of the whole proposition and the proof of Proposition
3.6. For s =1 the sequence I in Proposition 3.5 is (2, 4,); so I(m)=
@™ + 1, 1),

LEMMA 3.7. (i) 2,= 2, is independent of the large positive
wnteger m.
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(ii) 8; is equal to I'; if I is admissible and is a cycle of K,(A)
if I is inadmissible.

In the proof of Lemma 3.7 below and other proofs later we
need to determine mod 2 values of certain binomial coefficients. The
following well known result on the binomal coefficients will make
our computations easier.

LEMMA 3.8. Let a and b be two nonnegative integers and let
a = D7toa2 b= >7,b2" be their binary expansions where a;, b,=0
or 1. Then

<b> = ﬁ <bi>(mod2) .
a =0

a;

Proof of Lemma 3.7. We have

I gmygy = [Sqivt | Sg*"++1]
lik12] fom | i _ &
+ (2 +i—]

S T semesen.

Since 71+ 14, +2—45>0 for 1< 5[4, +1/2] it follows from the
construction of @, that
[i,41/2] /2™ 4+ 4 — 9 ) . .
() 2= 1seise) + 8 Jisarelse
=1\, +1— 275

By Lemma 3.8 the mod 2 value of @m ++1%:2.?7'

range, is independent of the large positive integer m (even if 1<j).
Thus 2, is independent of the integer m. This prove part (i) of
the lemma.

>, for j in the given

We turn to part (ii) and we begin with the case in which I =
(4, 1,) is admissible; so 2¢ = 4,. We have

10) T Si+1Si+1]+m§ﬂ< P
(10) 1 = [S¢"*].Sq 2112

j=1

>[Sq“+"“"j 1Sq’] .

21 = 1, implies ¢ — j =0 for 1 £ 5 <[4, + 1/2]; so

<2. “‘{);(_ v .)(mod2>
4w+ 1—27 2+ 1—2j

again by Lemma 3.8. Comparing (9) and (10) we see 2,=1,.
This proves the first half of Lemma 3.7 (ii).
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Suppose I = (¢,,) is inadmissible. So 2¢ < 4, which implies
20 + 1) £ 4, + 1. To simplify notations let ¢ =4, +1 andb =17+ 1
and we rewrite (9) as

faiz] (2™ + 6 — 5 — 1
2, = [Sq" |Sq¢'] + Z( .
a — 23

)[Sqa+b—f|Sqf] :

=1

We have to show that

i=1

_ far2] (2™ £ b — 7 — 1)\
R(a, b) = d(2,) = Sq*Sq® + Z]< +a 2;. )Sqa+b‘j3qj

is zero.

The sum R(a, b) can be reduced to a sum of fewer terms. For
4 in the range 1< 7<b—1 we have b — 57— 1=0 and (a — 27) —
b—3—1=(/2—0b)+ (a/2 —j)+1>0 (since a = 2b); so

o 4 h—j—1
< +tb—J >50(mod2).
a — 29
If j = b then
o 4 h—j—1 [2m—1
(+ J >=( ,>E1(mod2).
a — 29 a— 29
Thus
laie] (2% 4+ — 7 — 1 L
an R(a, b) = 2( / )Sqm-ﬂSqa
J=b+1 CL-—ZJ

We have the Adem relation

<2m +b— I)Sq2m+“+”

ez (2" +b— 7 —1
= S°Sq*"+ + (

a2y /2™ +b— 35— 1
5 .
a — 23

> Sg*"+e+t-iSgi

= Sanq2m~i-b + Sq2m+asqb + >Sq2~*ﬂ+a+b—jsqi A

F=b+1

b—1=0and a >b— 1 imply
2™ +b—1
< +a >EO(mod2).

Hence
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J=b+1

[a'21<'2’”+b—j—1

) spseme+sgmese =5 (00 >Sq2m+a+b—jsqj'

We shall prove R(a, b) = 0 by relating (11) to (12).

For this purpose we will utilize Milnor multiplication to express
Sq°Sq? in terms of Milnor basis elements of the Steenrod algebra A.
Let Sq(r, s) denote the element of A dual to £]& in the monomial
basis of the dual Hopf algebra A* = Z,[¢, &, ---]. The rule of
Milnor multiplication is given by

d — 3k
Se°Sqt = 3 <" H >Sq<c +d— 3%, B)
=0\ ¢ — 2k
(13) +d 3k
C —
=ké0< d—k )Sq(c—l—d—?,lc,k).

Applying (13) to the terms on the left side of the equation
(12) we obtain

Sq*Sg*"*" = 3,

k20

<2"‘+a+b—3k

Sq(@" b—3
om b — I >q( +a+ k, k)

and

S¢"+Sq = 3,

kz0

<2"‘+a+b—3k
b—Fk

>Sq(2"”+a +b— 8k k).

If < (e +b)/3 and k < b then <2"‘2J;TI; b_—k Sk) _ (2’" +bair I;G—3k>

(mod 2) by Lemma 3.8. If b<k=(a+b)/3 then both (2”””—3’“)

m 2" +b—k
and (2 + gjl? - 3k> are zero mod 2. So

(14) Sq*Sg*"+* + Sg™+Sgb = 21:‘)/ cSq2™ + a + b — 3k, k)
>(a+b)/3
where ¢, = 0 or 1.
We next apply (13) to the terms in (11) and to the terms on
the right side of the equation (12). We find

la2] /2™ +b—5—1 i ([a+b—3k
o LA

R(a, b)= > >Sq(a,+b—3k, k)]

§=bt1 a—27 =0 i—k
(15) toxd3) ta2) (2" +b—75—1\/a+b—3k
a+b(3 al2 —_] — p—
= { > < j. >< ) ﬂSq(aer—Sk, k)
k=0 | i<bt1 a—2j i—k

and
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wzl<2"‘+b—j—1

>qum+a+b-jsqj
a — 25

J=b+1

a2 (2" +b—7—1\[ 4 (2"+a+b—3k
= . . Sq2™+a+b—3k, lc)]
F=b+1 a—2j k=0 i—k
(16) toteisl [ fe2l (2% 4b—75—1\/2"+a+b—3k
=S [ ( J )( , )JSq(2’"+a+b—3k, %)
k=0 | ittt a—2j Ji—k

tazl (2™ +b—7—1\ /2" +a+b—3k
LT i ]
k> (aTb)13) §2b6+1 a—2) i—k

X Sq(2™+a+b—3k, k) .

Since Sq(2™ + a + b — 3k, k) are linearly independent over Z, it
follows from (12), (14) and (16) that
[a/21<2’”+b—j—1><2"‘+a+b-—3lc

) = 0 (mod 2)

a—2j j—k

J=b+1

b)/3 Since m is large we have

for & in the range 0= (a
= J; ) (mod 2) for k in the same

range. So

k=
<a
[a’2]<2m+b—j—1><a+b—3k

ik )EO(modZ)

a— 25

Pt

for 0=k < (¢ +b)/3. Thus from (15) we see R(a,bd) =0. This
completes the proof of Lemma 3.7 (ii).

The following lemma, which will be needed in the proofs of
Proposition 3.5 and Proposition 3.6, is immediate from the structure
of K, (A).

LEMMA 3.9. Let R=3,[Sq|- - -|Sq’s] be an element of K,(A)(s=2)
and let {I, = (1,(v), - - -, 1,(V)}iz, be the set of all admissible sequences
such that [Sq*s™+|-- ISq*l‘”)“] €R. Then R=3.,T,,.

Proof of Proposition 3.5. The case s =1 is Lemma 3.7; so we
assume s > 1. We begin with part (i). In part (i) there are two
conclusions, namely

(a) £, is independent of the large positive integer m and

(b) 2, is an element of K, (A).

We shall prove (a) and (b) simultaneously. For this purpose we
restate these two results in the following manner. Recall that 2,
is constructed from I';,, where I(m)= 2™ + 1,1, ---, 1,); SO We
should write 2, as 2;., to indicate that it depends on m. We fix
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a large positive integer m. Then (a) and (b) together are equivalent
to

(€) Qi is an element of K, (A)
and

@ 2 = 2:m for any other large positive integer m'.

We shall verify (c¢) and (d) by proving (¢) and a result which
implies (d). To describe this result let m’ be as in (d). We con-
struct an element I, € B,.,(A) as follows. For each [S¢?|- - -|Sg’s+1] e
I let 7. be the only integer such that j, > 2™ and consider
[Sqit|- - -|Sq?s+1] where 7" = 7, if | #k and j) = j, — 2™ + 2™. Let
I ;n» be the sum of all such [Sqg%|---|Sq?:+1]. We claim

© I'rwy = I
It is clear that (d) follows from (e). Note that 2™ + 4,14, ---, 1,)
is the only admissible sequence such that

[Sqts+t|- - - | Sgi+*| Sg*" ++ ) € Iy

So by Lemma 3.9 (e) is equivalent to

(€)' I';imy is an element of K,.,(4).

We proceed to prove (¢) and (e¢)’ and we prove them by using
Theorem 3.3 (iii) and Remark 3.4. Suppose [ ;. =>.; [Sq’*|---|Sg%+1].
Let 2, = 23 [Sq%i|- - -|Sq?e+1] and T;y = 3; (St |- - -| Sgss1] be the
corresponding sums. For each »(1<r<s) and each pair of sequences
(ky ++, k,y) and (k,4q -+, ket consider the sums

B — JZ [Sq.11-|Sq]r+l] s
C= }J] [Sq?r| Sq?r+1]

and

D = 3.[S¢’" | Sqv']

where the summation in B is taken over all j such that (5, ---, 7,_)=
(b vy Kued)y (Grtey == *y Jot) = (Bpis, -+, ko) and the summations in
C and D are taken, respectively, over all j such that (5], ---, 7r_))=
(kiy ] k;'—-l)’ (j;-+2, ) j;+1)=(k1'-+2: ) k;+1), (.7.;,; ) .7.;’-1):(]5;’; STty k;'—1)
and (474, ¢, Jor) = (kr'yoy -+ -, k). By Theorem 3.3 (iii) and Remark
3.4 B is an element of K,(A). We have to show that C and D are
elements of K,(A4).

If k, > 2™ for some q then j, = j; = 77 and j,., = jr = Jre. for
each [S¢’~|Sgr+1] in the sum C and each [Sq?/|Sq),;] in the sum D.
So C = D = B which is an element of K,(A).

If £, < 2™ for all q then k, = k =k, all ¢ and
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o)
Il

rer + ay, b,)

1

M= fiMe

[quy-;-l , qum"‘“#*‘] +

1 i=1

[b,F102] (2"‘ +ap — 3

S 2™, +b,+2—4 Soil .
bﬂ+1_2j>[q w7 Sqd]

w
Il

From the constructions of 2;., and I, we have

C= %Q(‘z”,b”)
and
D = 3[Sg"+ | Sg™+]
#=1
(17) [b,+1'2]1 /2™ ]
1 "]‘ a,u - J ' . ..
4+ Sq2™ +ep+tu+2=i| Sgil |
= <b#+1—2j>[ ¢Sl

By Lemma 3.7 each 2, is an element of Ky(A); so Ce K, (A).
Since m and m’ are large it follows from Lemma 3.8 that

(2m +ap —j>

(2”"‘}‘“/1“".7.
b, +1—25

a2
b,,+1—2j> (mod 2)

for 1 <5 <[b.+ 1/2). Replacing m _in A7) by m' we see that
D=>n", I omrta i, which belongs to K,(A). This proves (c) and (e)’
and therefore part (i) of Proposition 3.5.

We turn to part (ii); so we assume I=(3, %,, * - -, 1,) is admissible.
Suppose m > ¢+ 4 + -+ + i, + 8. It is easy to see that except for
(%, 4y +++, 1,) there is no other admissible sequence (5, ---, 4,+;) sSuch
that

Nomay®* Mg, € Ngma g Ny * o N

Js41 *
By Lemma 3.2 (ii)

pETES PR IE D VAR R VRN PRSI PHIERRD Y I

for any admissible sequence (I, ---, l,+,) and any integer k in the
range 2 < k < s+ 1. It follows, then, that (4, 4, ---, ¢,) is the only
admissible sequence such that [Sg®*'|.--|Sg"*|S¢t']e ;. Since
2,¢K,,,(4), by Lemma 8.9, we see that 2, = I,. This proves
Proposition 3.5 (ii).

Proof of Proposition 3.6. We have to show that for each s=0
the square
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E(4) ® H*(P=) 2= K, ,(4)
(18) ld’ ld‘

B, (4) @ H*(P=) 22 B (4)
is commutative. The result is obviously true for s =0. For s=1
consider any basis element S¢"+' & x* of K,(4) ® H*(P~). We have
(S @ a') = 2,4y. If (4,4,) is admissible then, by Lemma 3.7,
24, = I'ip; so from formula (8) we have

(19) @S @ 7) = d(@y) = ( e

Sgi+tit? |
%+ 1) e

’Ehis equation is still true if (4, %)) is inadmissible because, then,
(2, = 0 by Lemma 3.7 (ii) and 2¢ < 4, implies ¢, + 1 > 4% which
in turn implies (il :— 1) =0 (mod2). On the other way of square
(18) we find

(«lroti)(sq““ ® xi) — ¢0<<% :_ 1) 1 ® xi+i1+1>
/I: i411+2
= <,lj1 i 1>Sq + .

Thus the result is true for s = 1.

Suppose s > 1. Consider any basis element I';, ® #* of K,(4) ®
H*(P~) where I' = (i, -+, %,). We have ., Q) =2, where
I=(i,4, - 14). We shall prove (dy,)(['} ® ) = (v, d)I"r ® )
by showing that the maps

rp.@o—rI,Qz",
Iy @« —— '

and
I pimy — 2,

commute with boundary homomorphisms where m>»¢+1%,+---+1,+s
and I(m) = (2™ + 1, 4, --+, 1,). We denote these maps by f, f, and
f, in that order.

That f, commutes with boundary homomorphisms is easy to
verify; we just notice that S¢*x* = (;c)xm, Sqhu™ e (2 ]:— ,&>x2m+i+k
and (2 ];i— 1,) = (%) (mod 2) for £k < + -+ + 1,
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To prove that f, commutes with boundary homomorphisms is to
show

FAd(Tp @ &7"4)) = A pim) -

By Theorem 3.3 (iii) for each integer v =1 the sum 7" (v) of all
[Sqit|- - -|SqPs—1] with [Sq?|- - -|Sq’s~1|Sg*] € I, is an element of K, ,(A).
We write [T”(»)|Sq*] to denote the sum of all [Sg’|---|Sqg?~1|Sq¢"]
such that [Sgit|---|S¢%-11eT"(). So I'y, =>,:[T"(®)[Sq] which
is a finite sum sinece 7" (v) = 0 for almost all integers v. Then

- . | 2" 4
Ay @@ = A @2 + 3, | %> T"(v) ® 22"+ .
vzl | )

Let d(I'y) =3yl and let T"(v) = 3, 1o, Consider the
admissible sequences I'(l, m) = 2™ + 1, I"(1)) (i.e., I'(l, m) = (2™ + 1,
0@, -+, 1,.@) if I"(D)=0Q0), ---, 1,..(1) and I'(v, k,, m)=(2" +1+v,
I"(v, k,)). Let T'(v, m) = 3%, I'vk,m)- Then

= /2™ + 4
fld(lp @ &™) = ; I'ygm + 25 ( v IL>T’(”, m) .

vzl |\

It remains to show that d(I';,,) is equal to the right side of the
above equation.

It is easy to see that ,---\, €N, --N;, if and only if
Nomiihg, = ** Ny, € Ngmaghg, - == Ny, and that Newihg - N, & Ngghe, + -+ g, for
any sequence (k,, k., ---, k,) such that k, > 2", k,# 2™ + ¢ and k, +
k,+ -+ bk =2"4+4+1 + --- +1,. Hence [I";/]S¢*"***'] is a sub-
sum of I';,, and for each [Sq’t|---|S¢?+| €Dy =1 1(my— 11| S¢*"+*+]
the integer » with j, > 2™ is less than s + 1. We have

Iy = L0 1S + Dy
= SL[T"()| S| Sg™ 4] + D

By Theorem 3.3 (iii) and Remark 3.4 we see that there is a subsum
L of D,,, such that

S IT"6)|S¢° IS¢ + L = S 1T"() [ Fansinms]

where for 0,e K, ,(A) and 0,¢ K,(A) [0,|0,] denotes the sum of all
[Sq?*|- - -|SqP—1|Sq*| Sq*:] such that [Sq?[- - -|Sg?~1] € 6, and [Sg"[Sg*] e
f,. It is easy to see that L 1is precisely the sum of all
[Sqit|- - -1Sq?s|Sq?**1] € D,y such that j,>2"; so for each [Sq’t- - - Sg’:+]
M = D;,, — L the integer » with j, > 2™ is less than s. Then
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(L 1) = (1| 8¢™ "] + Dym)
= d(S [T"()[S¢*|S¢™++] + L + M)
= [A) 8¢+ 4] + S [T"@) AT amss)] + N
= g (Lo Sg"+]
(2’” +1
v

+ 3

v=21

JUS FavmlSe™ere) 4 N
where each sequence (j, :--, 7,) with [Sq?s*'|---:|S¢"*']e N is inad-
missible. The set of admissible sequences (7, - - -, 7,) with

[Sq?+**- - -[Sg ] € X [Lpi [ Sg*™ 4]

+Z<2’”+’i

vzl

)[z T | Sg™+4541]
) k

is equal to the set of admissible sequences (ji, - -+, j.) with
., - 2™ + 1\, ,
[Sq?s-f-ll. . -[Sq-71+ ] (=] zl“ FI’(l,m) + g;l < v )T (D, m) .
So by Lemma 3.9 we have
- 2" + 14\, - s
A 1) = ; I'ygm + 2211 ’ T'(v, m) = fi(d(I'p @ «*"*)) .
This proves that f, commutes with d.

Finally we prove that f, commutes with d. Let
Iy = ,Z [Sq?t|- - -[Sq?s+1]

and let fi(I';m) = 2; = 2u; [S¢?i]- - -|Sg?s+] be the corresponding sum.
For each »(1 < » < s) and each pair of sequences K, = (k, - -, k,_,)
and K, = (k,+s, -, ky+,) the sums

U = S.[Sg"| Sgir+1]

and
V = EJ] [Sq+| Sqir+1]

are elements of K,(4) by Theorem 3.8 (iii) and Remark 3.4 where
the summation in U is taken over all j such that (5, :---, 7,.) =
(Fyy » s kor))y (Gptay =+ 0y Jotr) = (Bpsay =+, ko) and the summation in
V is taken over all j such that (j;, ---, ji) = (&, ---, k,_,) and
(Jrsey == vy Jos) = (Bopaey =+, kiys).  Let
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UK, K;) = [Sq"|---|S¢*r-1|d(U)|Sg*r+2|- - - | Sg¥s+]
and
V(K,, K.) = [Sq¢"i]- - -|Sq*r-1]| (V)| Sg*r+2| - - -] Sghe+1] .

The sum of all elements U(K,, K,) is equal to d(I";..,) and the sum
of all elements V(K, K,) is equal to d(Q,); furthermore, U(K,, K,)—
V(K,, K,) is a one-to-one correspondence between these two sets of
elements. We shall prove fi(d( ;) = A(R2,) = d(fill 1tm)) by show-
ing that, under f;, each U(K,, K,) goes to the corresponding V(K,, K,).

Suppose K, K,, U and V are as given above. We need to
discuss d(U) and d(V) and we do this in two cases. The first case
is that %k, > 2™ for some ¢q. In this case k, =k, — 2™, k =k, if
l+4q, 5: =34, and j,., = j,+, for all [S¢’r|Sg%++]eV. So U=1V.
Since d(U) = d(V) = S¢° or 0 and ¢ < 2" it follows from the defini-
tion of f, that U(K,, K,) goes to V(K,, K,) under f..

The other case is that k, < 2™ for all I; so k; =k, all . Then
U '—:/;1 F(2m+¢p,b#) and SO V = #z__“lg(”’#’bp) .

By formulae (8) and (19) we have

3 ] n (2" + ay 2mta 2
UO) = 30 vsagn) = 55 (5 T 7)o
and
7 5 u aF a 2
V) = 3,800y = 3 (bﬂ s,
So
n om
U(Kl, Kz) Z < + aﬂ) [Sq"l ] | Sq"r—l l Sq2m+“#+bp+2 [ Sq"r+2 l e ]qus+1]
=1
and
VK, K) =3, (b )[Sqm | Sq¥r-1] g+ttt Sgirea] - - | o]
'z

Since m is large, <b;._—!§_—ciy> = (bﬁf—l 1) (mod 2) for all g. Thus

U(K,, K,) goes to V(K,, K,) under f;. This completes the proof of
Proposition 3.6 and therefore the proof of Proposition 2.1 (i).
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