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SOME TOPOLOGICAL PROPERTIES OF
SPACES OF MEASURES

G. KOUMOULLIS

Let X be a completely regular space and MT(X), Mt(X)
and MC(X) the spaces of the τ-additive measures, tight meas-
ures and measures with compact support on X, endowed with
the weak topology. The aim of this paper is to study topo-
logical properties that devolve from X to MT(X), Mt(X) and
MC(X) or their positive cones Mi(X), Mΐ(X) and Mi(X). It
is proved that if X is paracompact (resp. Lindelof) and Cech
complete, then Mϊ{X) and Mf(X) have the same properties,
but Mt(X) does not (unless X is compact). If X is real-
compact then Me(X) has the same property, but MV{X) and
Mt(X) need not. However, if X is realcompact paracompact,
then MT(X) is realcompact.

Let X be a completely regular space and C{X) the space of
bounded real-valued continuous functions on X with the supremum
norm. The spaces Mσ(X), MT(X), Mt(X) and Me(X) of measures on
X are defined as subsets of the dual of C(X) ([22]) and can be de-
scribed using the Stone-Cech compactification of X ([13]). Identify-
ing each point x oί X with the point mass εx, X can be considered
as a closed subset of M8(X) and M?(X) (for s — τ, t or c) endowed
with the weak topology which is defined by C(X). Our purpose is
to find topological properties that devolve from X to M8(X) or
MS

+(X).

Notations and preliminary results are given in § 1. In § 2 it is
proved that certain topological properties which can be described by
perfect functions with values in metric spaces, devolve from X to
MS

+(X) but not to Ma(X). For this purpose it is shown that a per-
fect function between two spaces X and Y induces a perfect function
between MS

+(X) and MS

+(Y). Section 3 is concerned with the property
of realcompactness. Using a result of Corson, it is proved that
MS(X) is realcompact if and only if every σ-additive measure on X
which on every countably generated σ-algebra of Baire sets coincides
with some element of MS{X) is, in fact, an element of M£X). Real-
compactness devolves from X to Me(X), but not to Mτ{X) and
Mt(X).

Finally, I wish to thank Professor S. Negrepontis for his assist-
ance and encouragement and Dr. A. Tsarpalias for bringing [2] to
my attention.

1* Preliminaries and notations* A basic reference for the
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theory of measures on topological spaces is Varadarajan [22]. All
topological spaces considered in this paper are assumed to be com-
pletely regular (and, of course, Hausdorff). Let X be a basic fixed
completely regular space. We denote by C(X) the space of bounded
continuous real-valued functions on X, endowed with the supremum
norm. A linear functional φ on C(X) is

(a) σ-additive, if φ(fn) —» 0 for every sequence {fn} in C(X) which
is decreasing and pointwise convergent to zero;

(b) τ-additive, if φ(fa) —> 0 for every net {/«} in C(X) which is
decreasing and pointwise convergent to zero;

(c) tight, if φ(fa) -» 0 for every uniformly bounded net {fa} in
C(X) which converges to zero uniformly on compact subsets.

According to the Aleksandrov representation theorem [22, Part
I, Theorem 6], the dual of C(X) is identified by an order preserving
isometry with the space M(X) of (finitely additive Baire) measures
on X. A measure μ on X is said to be σ-additive, τ-additive or tight
if the functional

φ(f) = \ fdμ , / 6 C(X)
JX

has these properties. The spaces of the σ-additive, τ-additive and
tight measures on X are denoted by Mσ(X), Mτ{X) and Mt{X) respec-
tively. The elements of Mσ(X) are exactly the countably additive
measures defined on the σ-algebra &(X) of all Baire sets of X (see
[22, Part I, Theorem 18]). We recall that the collection of Baire
sets of X is the σ-algebra generated by the zero sets of real-valued
continuous functions on X.

The space of measures with compact support is denoted by MC(X).
The elements of MC(X) correspond to the functionals on C(X) with
the property: φ{fa) —> 0 for every net {fa} in C(X) which converges
to zero uniformly on compact subsets. Usually we do not distinguish
between the functional and the associated measure.

We have M(X) Z) Ma{X) Z) MT(X) Z) Mt(X) => MC(X). The subsets
of positive measures in these spaces are denoted by M+(X), Mσ

+(X),
M+(X), Mt

+(X) and M+(X).
If μeM(X), μ denotes the corresponding regular Borel measure

on the Stone-Cech compactification βX of X (via the isometry of C(X)
and C(βX)).

THEOREM 1.1 (Knowles [13]). // μeM+(X), then
( i ) μe Mσ

+(X) if and only if μ vanishes on all zero sets of βX
contained in βX — X;

(ii) μeM^(X) if and only if μ vanishes on all compact sets
contained in βX — X;
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(iii) μ e Mt

+(X) if and only if for every ε > 0 there is a compact
set K c X such that μ(βX — K) < ε.

A (nonzero) measure is 2-valued if its range is {0, 1}. The τ-
additive 2-valued measures on X are exactly the point masses εx,
xeX.

On the space M(X) we consider the weak topology σ(M(X), C(X)).
This space is completely regular and can be identified with the space
M(βX) by the homeomorphism μ—>μ. Also, the function x —> εx is
a homeomorphism of X and {εx:xeX} which is closed in M+(X).

The following theorem is one of the deepest results obtained by
Varadarajan in [22]. A simpler proof can be found in [5].

THEOREM 1.2 ([22, Part II, Theorem 13]). The space M-+(X) is
metrizable if and only if X is metrizable.

Using 1.2 Varadarajan also proves the following.

THEOREM 1.3 ([22, Part II, Theorems 14, 18]). The space Mτ

+(X)
is separable (resp. complete) metrizable if and only if X is separable
(resp. complete) metrizable.

Let X, Y be completely regular spaces and / : X—> Ya continuous
function. We define /*: M(X) -> M(Y) by f*(μ)(g) = μ(g ° /) for every
geC(Y). It is immediate that /* is continuous (with respect to the
weak topologies σ(M(X), C(X)) and σ(M(Y), C(Y))) and f*(M8(X)) c
MS(Y) for s = σ, τ, t or c. If μeMa(X), then f*(μ) coincides with
the classical image measure, i.e.,

f*(μ)(B) = μ{f~\B)) for all Be^(Y)

(cf. [7, p. 163] and [19, Theorem 3.1 (c)]).

2* Perfect functions* A continuous function / : X—> Y is called
perfect if / is onto, closed and f"1 ({y}) is compact for every yeY.
The following theorem will be used to show that some topological
properties related to Cech completeness and ikί-property (defined be-
low) devolve from X to MS

+(X) for s = τ, t or c.

THEOREM 2.1. Let f:X-+Y be continuous onto. Then, /*:
M8

+(X) ->MS

+(F) (for s = τ,t or c) is perfect if and only if f is
perfect.

We shall use the following two lemmas.
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LEMMA 2.2. // / : X —> Y is continuous, onto, then /*: M(X) —>
M(Y) is onto and f*(M+(X)) = M+(Y).

This is a well-known application of Hahn-Banach theorem.

LEMMA 2.3. Let f: X -> Y be a perfect function and μ e M+(X).
Iff*(β)eM.+(Y) then μeMs

+(X), for s = τ,t or c.

Proof. Let f:βX-*βY be the continuous extension of /. We
observe that /*(/*) = f*(β) and, by the uniqueness of the regular
Borel extension of Baire measures on compact spaces, f*(β)(B) =
μ{f-\B)) for all Borel sets B in βY. We also note that f(βX - X) c
βY — Y since / is perfect (cf. [1, Lemma 9.2]).

Now assume that f*(μ)eMT(Y). For every compact set Ka
βX - X we have f(K) c βY - Y and, by Theorem 1.1 (ii),

0 = f*(μ)(f(K)) = μ(f-*(f(K)))

^ μ(K) ^ 0 .

Therefore μeM+(X).
The proof for s = £ or c is similar.

Proo/ o/ Theorem 2.1. We have f*(M+(X)) c MS

+(Γ), so /*:
MS

+(X)->MS

+(Γ) is well-defined.
Suppose that /* is perfect. Identifying X with the closed subset

{εx:xeX} of Λfs

+(X), / is the restriction of /* to this set, hence it
is perfect.

Conversely, assume that / i s perfect. Clearly/*: M+(X) -» M?(Y)
is continuous and Lemmas 2.2 and 2.3 combine to show that /* is
onto.

To show that /* is closed let F be a closed subset of MS

+(X),
{μa} a net in F and veM+(Y) such that ΛG"α)->v. We have
| |μα | | = μα(l) = f*(μa)(l) ->v(l). Now by Alaoglu-Bourbaki theorem
{μα} has a cluster point μeM+(X). The continuity of /^ implies
/*(μ) = v and, by Lemma 2.3, μ e MS

+(X). Since F is closed in M8

+(X)
we have μejP and vef*(F). Therefore f*(F) is closed in MS

+(Y).
It remains to show that /^({v}) is compact for every veM?(Y).

Clearly fϊ\{v}) is closed in M+(X) and by Lemma 2.3 it is closed in
Λf+(X). For every μef;\{v}), we have ||μ\\ = μ(l) = Λ(j")(l) - ^(1),
s o /ίXM) is norm bounded. It follows that fϊ\{v}) is compact.

REMARK. Theorem 2.1 is not correct for the function /*: MS(X) —>
MS(Y), as simple examples show that fi1^}) need not be norm
bounded. Also, Theorem 2.1 is not correct for s = σ. Indeed, by
[23, p. 189] there is a perfect function / from a realcompact space
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X onto a space Y which is not realcompact. Then the set F —
{εx:xeX} is closed in ikfσ

+(X), but f*(F) = {ey:yeY} is not closed
in M+(Y).

A space X is Cech complete if X is a Gδ set in βX. According
to a theorem of Frolik (cf. [1, Theorem 9.4]), a space X is paracom-
pact and Cech complete if and only if there is a perfect function
from X onto a complete metric space. It follows that X is Lindelof
and Cech complete if and only if there is a perfect function from X
onto a separable complete metric space. Using these results,
Varadarajan's metrization theorem and Theorem 2.1 we have the
following.

COROLLARY 2.4. The space MS

+(X) (for s = τ or t) is
( i ) paracompact and Cech complete, or
(ii) Lindelof and Cech complete,

if and only if X has property (i) or (ii) respectively.

Proof. First we observe that for a Cech complete space X we
have Mτ{X) = Mt(X) since X is a Borel set in βX (cf. [13, Theorem
3.4]). If X has property (i) (resp. (ii)), then, by the above, there is
a perfect function / from X onto a complete (resp. separable com-
plete) metric space Y. By Theorem 2.1, the function /*: M?(X) —>
M?(Y) is perfect, where M?(Y) is complete (resp. separable complete)
metrizable space (Theorem 1.3). It follows that Mτ

+(X) = Mt

+(X) is
paracompact (resp. Lindelof) and Cech complete.

The converse follows from the fact that X is homeomorphic to
a closed subset of MS

+(X).

A space X is called an M-space if there is a quasi-perfect func-
tion from X onto a metric space. (A continuous function / : X—> Y
is quasi-perfect if / is onto, closed and f~ι({y}) is countably compact
for every yeY). According to a theorem of Morita a space X is a
paracompact M-space if and only if there is a perfect function from
X onto a metric space (see Morita [18] and the reference given there
for the theory of M-spaces). It follows that X is a Lindelof ikf-space
if and only if there is a perfect function from X onto a separable
metric space. Analogously we have the following.

COROLLARY 2.5. The space MS

+(X) (for s = τ, t or c) is
(i) paracompact M-space, or
(ii) Lindelof Mspace,

if and only if X has property (i) or (ii) respectively.
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The following proposition which appears in Grbming [6] gives
information about the topological properties which devolve from X
to M+(X), for s = τ or t. For the sake of completeness we include
a proof which is shorter than that of Gromig.

PROPOSITION 2.6. The space XN is homeomorphic to a closed sub-
set of M+(X) which is contained in Mt

+(X).

Proof. We define

by ± λ

It is clear that h is 1 - 1 and h(XN) c Mt

+{X).
To see that h is continuous, let {(ct£)nejv}αe4 be a net in (βX)N

and (xn)neNe(βX)N such that a£—>a?Λ for every neN. Let μα =
Λ((»ί)neiv) a n ( i ΐ* = H(p»)»eN) We shall show that μa-->μ. Clearly
μa(βX) —> μ(βX) and by [22, Part II, Theorem 2], it is enough to
show that lim inf μa(U) ^ μ(U) for every cozero set U of /3X Let
C = {ne N: xne U). For every finite set F a C there is aFeA such
that xleU for all α > aF and w e J77 (since x% —> a J . Then

μa(U) ^ Σ — for all α > α^ .
neF 2ιn

Therefore

lim inf μa(U) ^ Σ — for all finite F c C ,

that is, lim inf μa(U) ^ Σ»eσl/2Λ

Since (βX)N is compact, ft is a topological embedding. Moreover,
h(XN) is contained in the compact set h((βX)N), therefore

ci^x, (h(xη) c M/(X) n fc((iSJsrn = Λ O T .

The last equality follows from Theorem 1.1 (ii). So h(XN) is closed
in Mϊ(X) and this finishes the proof.

REMARK. Every finite product of X is homeomorphic to a closed
subset of M?~(X) which is contained in MC

+(X). Indeed, for every
meN, we define

hm: by hm{{xτ\<M J - Σ ^
i —1 ^ ,

Then hm(Xm) c MC

+(X) and we can proceed as in the proof of Proposi-
tion 2.6.
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As Grbmig remarked in [6, p. 401], Proposition 2.6 and the above
remark yield that if P is a topological property which is hereditary
on closed subsets and devolves from X to M?(X) or M?(X) (resp.
M+(X))f then P devolves from X to the countable (resp. finite) pro-
ducts of X. Moreover, we know that if X is Lindelδf, then X x X
may fail to be even normal. Thus Corollaries 2.4 and 2.5 are not
correct for Lindelof or paracompact spaces and it is not incidental
that the topological properties considered in these corollaries devolve
from X to XN. However, the topological properties of Corollary 2.4
as well as Cech completeness do not devolve from X to MC

+(X) as
the next proposition shows. Notice that Cech completeness is heredi-
tary on closed subsets and devolves from X to XN (see [3, pp. 144,
145]) and, more generally, from X to M+(X) and M?(X) (cf. [22,
Part II, Theorem 17]).

PROPOSITION 2.7. Mr

+(X) is paracompact (or Lindelof) and Cech
complete if and only if X is compact.

Proof If X is compact, then MC

+(X) = Mt

+(X), so MC

+(X) has
the desired properties.

For the converse, we show that if MC

+(X) is Cech complete, then
X is pseudocompact; this is sufficient because every pseudocompact
paracompact space is compact.

Let / : X -^ R be a continuous function. We define

Un = {xeX:\f(x)\>n}

and

for n = 1, 2, -... Each Fn is closed in M+(X) and MC

+(X) = U ϊ U ^
because every compact subset of X is contained in the complement
of some Un. Since every Cech complete space satisfies the Baire
category theorem (see [3, p. 145]), some FnQ has nonempty interior.
Then Uno — 0 and / is bounded. This finishes the proof.

REMARK. Cech completeness of MC

+(X) does not imply compact-
ness of X. Indeed, if W is the space of countable ordinals, then W
is locally compact and every <7-compact subset of W is relatively
compact. It follows that M?(W) = M?(W) is Cech complete, although
W is not compact.

We finish this section by showing that the analogues of Corol-
laries 2.4 and 2.5 for MS(X) fail badly. The following lemma which
is essentially due to Corson (cf. Lemma 4 and the proof of Lemma 9
in [2]) will be needed.
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LEMMA 2.8. Let M be a vector subspace of M(X). Then
( i ) M satisfies the countable chain condition; and
(ii) for every continuous function f from M into a separable

metric space, there is a countable K c C(X) such that

μ,veM, μ\κ = ι>\κ=>f(μ)=Λv).

(i) follows from the fact that M is homeomorphic to a dense
subset of R1 for some I (take / to be an algebraic basis of C(X))
and that Rτ satisfies the countable chain condition. The arguments
used in [20] to show that every continuous function from R1 into
a separable metric space is determined by countably many coordinates
apply for dense subsets of R1 and this proves (ii).

THEOREM 2.9. The following are equivalent for s = τ, t or c.
( i ) MS(X) is an M-space;
(ii) M8{X) is Cech complete;
(iii) X is finite.

Proof, (iii) => (i) and (iii) => (ii) are trivial.
(i) => (iii). There is a quasi-perfect function F: MS(X) —> Y, where

Y is metrizable. Since M8(X) satisfies the countable chain condition
(Lemma 2.8 (i)), Y satisfies the same condition, so it is separable.
By Lemma 2.8 (ii), F is determined by a countable set KdC(X).
The set

L - {μ e M8(X): μ(f) = 0 for all / e K}

is contained in the countably compact set F-^FiίO)}); also X-μeL for
every λ e R and μ e L. It follows that L = {0}. Therefore the function

G:MS(X) >RK with G(μ) = (μ(f))feκ

is 1-1 and continuous. We define

H:MS(X) >YxRκ by H(μ) = (F(μ), G(β)) .

Then H: MS(X) -> H(MS(X)) is quasi-perfect (cf. [16, Theorem 1.1])
and 1-1. Thus M8(X)9 being homeomorphic to a subspace of Y x Rκ,
is metrizable.

We consider MS(X) as a dense subset of Rτ, where / is an
algebraic basis of C(X), and let μ0 be an element of M8(X) and {Vn}
a countable neighborhood base for μ0 in MS(X). Then {clRi(Vn)} is
a countable neighborhood base for μ0 in Rr. It follows that / is at
most countable. Since no Banach space is of algebraic dimension ^ 0

(cf. [10, 14.32]), / is finite. Therefore X is finite.
(ii) => (iii). Let Fn = {μ e MS(X): || μ \\ ^ n} for n = 1, 2, . Each
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Fn is closed in MS(X) and MS{X) - \Jn=i Fn. Assume that X is
infinite. Then each Fn has empty interior (cf. the proof of Theorem
16, Part II in [22]), so MS(X) is of the first category in itself and,
in particular, it is not Cech complete.

3* Realcompactness* This section is concerned with the prop-
erty of realcompactness in the spaces of measures. We recall that
a completely regular space X is realcompact if for every y e βX — X
there is a continuous function / : βX —> [0, 1] such that f(y) = 0 and
f(x) > 0 for all xeX. The realcompactification of a space X is denoted
by υX; of course X is realcompact if X — υX (see [1]).

The following lemma is proved by Corson in [2] for the weak
topology of a Banach space but essentially the same proof works in
our case.

LEMMA 3.1 (cf. [2, Lemma 9]). A vector subspace M of M(X) is
realcompact if and only if every μ e M(X) with the property

{for every countable K c C(X)
( * ) j

[there is veM such that μ\κ — v\κ

is, in fact, in M. More precisely,

ΌM = {μ 6 M(X): μ satisfies (*)}

with the weak topology.

This lemma implies immediately that υMσ(X) — Ma{X), that is,
Mσ(X) is realcompact for any space X. Moreover, if Mu M2 are
vector subspaces of M(X) and Mx c M2, then oMt c υM2 c M{X).
Thus the relations between the spaces of measures imply the follow-
ing diagram.

Mo Z) υMτ =) uMt 3 ΌMC

U U U

Mτ D Mt 3 Mc .

Since a closed subset of a realcompact space is realcompact, in
order that M8(X) (for s = τ, t or c) be realcompact a necessary con-
dition is that X be realcompact. Our purpose is to find when this
condition is sufficient. First, we shall give another description of
υMs(X) considering its elements as measures on X rather than linear
functionals on C(X).

LEMMA 3.2. For every countable family H of bounded Baire
measurable functions on X there is a countable set K c C(X) such
that, if μ and v are σ-additίve measures on X and μ\κ — v\κ, then



428 G. KOUMOULLIS

= I h d v for a l l heH.ί hdμ = \ >
JX JX

Proof, Clearly it suffices to prove the lemma when H consists
of a single bounded Baire measurable function h. This is trivial
when h is continuous. In addition, if {hn} is a uniformly bounded
sequence of Baire measurable functions which converges pointwise
to some h and the conclusion is true for every hn, then, by the
Lebesgue's dominated convergence theorem, the conclusion is true
for h. This completes the proof.

THEOREM 3.3. Let μ e Mσ(X). The following are equivalent (for
s = τ, t or c):

( i ) μeυMs(X);
(ii) for every countable family H of bounded Baire measurable

functions, there is v e M8(X) such that \ hdμ = \ hdv for all h e H;
JX JX

(iii) for every countably generated sub-o'-algebra έ%? of έ@(X),
there is v e MS{X) such that μ(B) = v(B) for all B e έ%f\

(iv) for every continuous function f from X into a separable
metric space, there is veMs(X) such that f*{μ) =/*(v).

Proof, (i) => (ii) is immediate from Lemmas 3.1 and 3.2.
(ii) ==> (iii). Let έ% be a countably generated sub-σ -algebra of

&(X). By [11, I, §2, Theorem 5] there is f:X—>R Baire measur-
able such that & = f-\^(R)). Let {Vn} be a countable base for
the topology of R. We may suppose that {Vn} is closed under finite
unions. From (ii) it follows that there is ve MS(X) such that
μ(f~\Vn)) - v(f~\Vn)) for all n, so Uμ) = Λ(v). Therefore μ{B) -
v{B) for all ΰ e ^ ,

(iii) => (iv). This is trivial since f~\^(Y)) is countably generated.
(iv)=>(i). Let K = {fn: n e N) be a countable subset of C(X).

We define
f:X >RN by f(x) = (

By (iv), there is veMs(X) such that ftXμ) = f*(p). It follows that
μ and v coincide on f-\&(R))> so μ(fn) = v(fn) for all n. From
Lemma 3.1 it follows that μeυMs(X).

REMARK. It is clear that Theorem 3.3 is valid for any vector
subspace M of Mσ(X) in the place of MS(X). So direction (i) ==> (iii)
implies that the space MP(X) of perfect measures on a completely
regular space X (see [14]) is always realcompact. Since Mp ID Mt we
have Ma~D MP~D υMt.

Some well-known properties of the spaces of measures remain
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valid for their realcompactifications.

COROLLARY 3.4. If μeυM8(X) and Ae&(X)9 then the measure
μA defined by

is in υM8(X) (hence μ+, μ~ and \μ\ are also in υM8(X)) for s = τ,t

or c.

COROLLARY 3.5. If f: X->Y is continuous, then f*(υMs(X)) c

ΌMS(Y) for s = τ9t or c.

PROPOSITION 3.6. / / X is realcompact, then MC(X) is realcompact.

Proof Let μ be in uMc(X) and Sμ be the support of the cor-
responding measure μ on βX. It suffices to show that Sμ c X. Let
y e βX — X. Since X is realcompact, there is / : X —> [0, 1] continuous
such that f(y) = 0 and f(x) > 0 for all x e X, where /: βX -> [0, 1] is
the continuous extension of /. By Theorem 3.3 (iv), there is v e MC(X)
such that f*(μ) =/*(v). It follows that 0 is not in the support of
f+{μ), hence y$Sμ.

The analogue of Proposition 3.6 is not correct for the spaces Mτ

and Mt. First, we prove the following.

PROPOSITION 3.7. For any cardinal α, υMt(Ra) = υMτ(Ra) =
Ma{R«).

Proof. Let μ e Mσ(Ra) and / : Ra -*Y a continuous function,
where Y is a separable metric space. By Theorem 3.3 (iv), it suffices
to show that there is veMt(R") such that /*(/*) =/*(v).

It is known (cf. [20]) that / is determined by countably many
coordinates, that is, there is A c a countable such that f = g°p,
where p: Ra —> RA is the projection and g is continuous. Let q: RA —> Ra

be a continuous function such that poq is the identity function of
RA. Since RA is separable complete metrizable, the measure p*(μ) is
tight. If v = q*(p*(μ)), then v e Mt(Ra) and, for every A
we have

= p*{μ){g~\A))

The above proposition in conjunction with some known results
yields the following (a) and (b).
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(a) Mτ(Rc) and Mt(Rc) (where c is the continuum) are not real-
compact, although Rc is realcompact. Indeed, it is known that
Mσ(Rc) Φ Mτ(Rc) (see [12] or [17]) and, of course, Mσ(Rc) Φ Mt(Rc).

(b) The proposition "MΓ(JBHI) is realcompact" is undecidable in
ZFC, although i?Kl is realcompact. Indeed, Fremlin [4] showed that
if we assume Martin's Axiom and the negation of the continuum
hypothesis, then Mσ{R*1) — Mτ{RPι). On the other hand, if we assume
the continuum hypothesis, then Mσ(R*ή Φ Mτ(R*1) by the result men-
tioned in (a).

We notice that it is consistent with the negation of the con-
tinuum hypothesis for Λfr(Λ

Kl) not to be realcompact (see [9]). Also,
Mt(K*L) is not realcompact whether or not c = fc^ because Mσ(R*L) Φ
Mt(R*ή ([4, Remark (b)]).

A space X with the countable chain condition is realcompact if
and only if X is topologically complete (cf. [2, Lemma 8]). There-
fore Lemma 2.8 (i) and (b) above yield that the proposition "ikfΓ(J?Kl)
is topologically complete" is also undecidable in ZFC. This shows that
topological completeness is not a purely topological property. See
also [8, p. 12].

In the next theorem we show that realcompactness devolves from
X to Mτ{X) and Mt(X), if X is metrizable. We recall that, by (a
special form of) Katetov's theorem (cf. [1, Theorem 6.2]), a metric
space X is realcompact if and only if every closed discrete subset of
X has non-(Ulam-) measurable cardinal. Also, a ^-additive measure
on X is τ-additive if and only if it is supported by a closed sepa-
rable subset.

THEOREM 3.8. If X is a realcompact metric space, then Mτ{X)
and Mt(X) are realcompact.

Proof. Let μeυMτ(X), μ^O. By Corollary 3.4, in order to
prove that Mτ{X) is realcompact, it suffices to show that μeMτ(X).
Let <%/ be the family of all open sets of ^-measure zero. The set
X — U ̂  satisfies the countable chain condition, so it is separable
and it is enough to show that μ(\J ^) = 0. By Stone's theorem there
is a σ-discrete refinement T* — U»=i ̂ > e a c ^ 5^ discrete and U3^ =
U W. If we suppose that μ((J ^ 0 > 0, then μ(U Tn) > 0 for some
n. Fix such an n.

For each F e y we choose a point xveV and set T = {xv: Ve 71).
Let f:X->T with f\v = xv for all Ve Tn and f\x^,n constant. The
cardinal of T if nonmeasurable because T is closed and discrete in
X which is assumed to be realcompact. Thus, the image measure K =
fΛPυrJ which is defined on all subsets of T and vanishes on single-
tons is non-atomic. It follows (cf. [14, 2.1]) that there is g: Γ->
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[0, 1] such that g*(ιc) = α λ, where a = μ(\J Tn) > 0 and λ is the
Lebesgue measure on the Baire sets of [0,1]. If h — gof, then
/&*(£Wn) — α λ. Since h~~\&([0, 1])) is countably generated and
μΌ^neυMτ(X) (Corollary 3.4), there is veMτ(X) such that h*(μϋ/n) =
h*{v) (Theorem 3.3). By the r-additivity, v is supported by U ^
(X - U 3O for some countable ^ " c 3^. But fc(U^^U(X- U
is countable, so h*(v) is supported by a countable set. This is a
contradiction since h*(v) — a X.

To show that Mt(X) is realcompact let μeυMt(X). Then μ e
υMτ(X) = MT(X) by the above. So, μ is supported by a closed sepa-
rable set S. Since &(S) is countably generated, it follows from
Theorem 3.3, that μ e Mt(X).

Theorem 3.8 at least for the space of τ-additive measures re-
mains valid when X is paracompact. Indeed, the only properties of
metric spaces which are actually used are paracompactness and that
every open set is a Baire set. However, the latter is not essential
(cf. the proof of Theorem 5.10 in [14]). In any case, this result will
be deduced as corollary of the next theorem. First we give some
notations and definitions related to the notion of continuous pseudo-
metric.

We denote by 2$ the family of all continuous pseudometrics on
a completely regular space X. If d e £&, let πd be the natural pro-
jection from X onto the corresponding metric space Xd. A subset
A of X is d-discrete if there exists ε > 0 such that d(x, y) ^ ε for
all x9 y e A, x Φ y. As in [15], we say that X is a D0-space if, for
every d e £&, all d-discrete subsets of X have nonmeasurable cardi-
nal. It follows from Katetov's theorem that X is a ZVspace if and
only if Xd is realcompact for every de£?(cί. [15]).

The space MU(X) of the ^-additive measures on X can be defined
as follows: A measure μ on X is in MU(X) if (πd)*(μ)eMτ(Xd) for
all d e &. We have Mσ(X) => MU(X) 3 Mτ(X) and MU(X) = Mτ{X)
whenever X is paracompact (see [21]).

THEOREM 3.9. For any space X the following are equivalent:
( i ) MU(X) is realcompact;
(ii) X is a DQ-space.

Proof. (i)=>(ii). The topological completion ΘX of X (see [1]
for the definition of this term) is homeomorphic to the closed subset
of MJJK) of the 2-valued ^-additive measures, hence ΘX is realcom-
pact. For every cZe^, let πd:ΘX—>Xd be the continuous extension
of πd. By the Katetov's theorem Xd is realcompact as a metrizable
continuous image of a realcompact space.
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(ii)=>(i). Let μeυMu(X) and de^f. As in Corollary 3.5 we
have (πd)*(μ) e υMu(Xd). But υMu(Xd) = υMτ(Xd) = Mτ(Xd) by Theorem
3.8. Therefore μeMu(X).

Since MJJί) = Mτ(X) for paracompact spaces and realcompact
spaces are D0-spaces, we have:

COROLLARY 3.10. If X is a realcompact paracompact space, then
Mτ(X) is realcompact,

I don't know if the analogue of this corollary is true for the
space of tight measures. (However, it is true for paracompact M-
spaces).

PROPOSITION 3.11. (i) M^(X) is topologίcally complete for any
space X; (ii) MC

+(X) is topologically complete if (and only if) X is
topologically complete.

Proof. ( i ) For every de&, the function (πd)*: M+(X) -> M+(Xd)
is continuous and we have

MΪ(X) = Π (πd)?(M?(Xd)) .
d e ^>

The spaces M+(X) and M:y(Xd) are topologically complete since

M+(X) = Q{μe M+(X): μ{X) ^ n}
l

is o -compact and M+(Xd) is metrizable (Theorem 1.2). It follows
that (πd)ϊ\M?(Xd)) is topologically complete for every d e &, so
Mu

h(X) is topologically complete as an intersection of such spaces
(see [1, 1.8 and 1.10]).

(ii) If X is topologically complete, for every y e βX — X there
is d 6 2$ such that πd(y) e βXd — Xd, where πd: βX —> βXd is the con-
tinuous extension of πd ([1, Theorems 3.2 and 4.4 (d)]). As in Prop-
osition 3.6 we can show that a measure μ e M+(X) has compact
support if and only if (πd)*{μ)eM?(Xd) for every de&. Since
M+(X) c M?(Xd) is metrizable, using similar arguments as in (i),
we find that M:(X) is topologically complete.

REMARKS. Proposition 3.11 (ii) is not much different from Prop-
osition 3.6 since a topologicaily complete space of nonmeasurable
cardinal is realcompact by the Shirota theorem ([1, Theorem 6.3]).
However, the restriction to the subset of positive measures is neces-
sary. Indeed, if X is a discrete space then Mc

b(X) is topologically
complete (Prop. 3.11 (ii)), while MC(X) is topologically complete if
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and only if the cardinal of X is nonmeasurable (Lemma 2.8 (i) and
Prop. 3.6).

A similar argument shows that Proposition 3.11 (i) is not correct
for MU(X).
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