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CLOSED ORBITS OF CONVEX SETS OF OPERATORS
ON THE DISK ALGEBRA

J. N. MCDONALD

Let & denote the set of linear transformations of the
disk algebra which have norm one and fix the constants. In
this paper the orbits of functions in the disk algebra under
the action of & are described.

Let Jzf denote the disk algebra, i.e., the algebra of functions
which are analytic on the open unit disk D and continuous on D.
Let j ^ be equipped with the sup-norm || || and let ^ denote
the closed unit ball in j y . Consider the set 3? of linear operators
which map J ^ into itself, have norm 1 and fix the constants. &
acts as a semi-group of transformations of the set ^Λ In this
paper we study the closed orbits of functions in <%f under the
action of ^ , i.e., the sets

= closure {Tf\ T e

for fe%S. We will show that &>f is the closed convex hull of the
functions [F, G]f, where F and G range over the inner functions
in j ^ . Here

[F, G]g(z) = {2πni)A g{ξ)F\ξ)(G{z)
JdD

where n is the number of zeros of F and zeD. (Recall that the
inner functions in όzf are exactly the finite Blaschke products, that
is functions of the form

F(z) = eis Π Z ~ aj

i-i 1 — aάz

where \aό\ < 1 for j = 1, 2, , n.) We will also show that our
result can be viewed as a generalization of a theorem due to Fisher
[3]. The final section of the paper contains a discussion of the
possibility of extending our results to the algebra H°° of bounded
analytic functions on D.

1* Background* Perhaps a few sentences should be devoted
to the context of this work in the literature. In [9] Phelps asked
for a description of the extreme points of the convex set &*. In
the same paper he was able to characterize those extreme elements
of & which happen to be multiplicative. They are exactly the
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operators of the form

CΦf = foφ ,

where φ is an extreme element of ^ \ (It is easy to show that an
operator on Jϊf is multiplicative iff it is a composition operator.) In
an unpublished set of notes [6] Lindenstrauss, Phelps, and Ryff
constructed a nonmultiplicative extreme element of &. Rocherg
later put the example in [6] into a much broader setting by con-
sidering subsets of & of the form

K(F,G) = {Te^\TF=G} .

Rochberg proved in [10] that, if F and G are inner functions hav-
ing n ^ 1 and m zeros respectively (counting multiplicity), then the
convex set K(F9 G) has real dimension <; (n — l)(m + 1). In [7] we
observed that [F, G] always belongs to K(F, G) and, hence, that
K(F, G) Φ φ. It is easy to show that K(F, G) is an extreme subset
of ^ , that is to say, 1/2(2; + T2)eK(F,G) and Tu T 2 e ^ imply
Tlf T2e K(F, G), it follows that every extreme point of K(F, G) is
also an extreme point of &. Unless G is of the form F<>H, no
element of K(F, G) can be multiplicative. The study of the orbits
&f was begun in [8]. Intuitively, the sets &f are "cross sections"
of the convex set &. We have shown that &f — ̂  iff / is a
nonconstant inner function [8]. The main result of this paper can
be interpreted as follows: Let ^ 0 denote the weak operator closed
convex hull of the operators [F, G] where F and G are inner func-
tions. Then ^o and & have the same "cross sections". Whether
^ 0 — gP or ^ 0 Φ & is an open question.

2* The main result* We begin by stating Fisher's theorem
from [3].

THEOREM 2.1. ^ is the closed convex hull of the inner functions
in

THEOREM 2.2. For each fe%f, we have

(1) &*f = cov {[F, G]f IF, G inner, F nonconstant} .

Proof Let ^ 0 = {/ e ^ | (1) holds}. It is easy to show that
^o is closed and convex. By Theorem 2.1 it follows that, if ^
contains every inner function, then ^ = ^ Clearly ^ 0 contains
the constant inner functions. Suppose that / is inner and noncon-
stant and that T is an operator in & such that
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Tf i cov {[F, G]f IF, G inner, F nonconstant} .

By the Hahn-Banach theorem there exists a bounded linear func-
tional / on j y such that

(2) sup {Re s([F, G]f) \ F, G inner, F nonconstant} < Re / (Tf) .

Since Tfe^9 it follows from, Theorem 2.1 that, given ε > 0 there
exists an inner function g such that

Re / (Tf) - ε ^ Re / (g) = Re / ([/, g]f) .

But if e is sufficiently small then (2) is contradicted.
Of course Theorem 2.1 is crucial in the proof of Theorem 2.2.

We will now show that Theorem 2.1 can be derived from Theorem
2.2.

PROPOSITION 2.3. Let Z denote the identity on D. Let F and
G be inner functions in S^ with F nonconstant. Then the func-
tian [F, G]Z is a convex combination of at most four inner func-
tions.

Proof. Let n denote the number of zeros of F (counting
multiplicity) and let a — F(0). Consider the linear fractional trans-
formation ha(w) — {w — ά)l(l — aw). Note that haoF is of the form
ZFU where Fx e jy\ Since ha maps dD homeomorphically onto itself,
it follows that every continuous function g on 3D can be uniformly
approximated by polynomials in ha and ha. Thus, if it is known
that both g and hag belong to j^\dD, then it follows that there
are constants a and b such that g — a + bha. Let g — [F, Z]Z\dD.
Then, if Γ is an appropriately chosen circle we have,

g(w) - (2πin)A ξF'(ξ)(F(ξ) - w)~ιdζ = n'1 Σ u .
JΓ F[U)=W

Thus,

ha(w)g(w) = n~ι Σ ha(w)ΰ

= n~ι Σ uFx(u)u
F{u) — ω

= ([F, Z]Fd(w) .

Thus, it follows that hag e,s^\dD. Hence, we may write

[F, G)Z = ([F, Z\Z)oG

= a + bha°G .

Since \\[F, G]Z\\ £ 1, it follows t h a t \a\ + | 6 | ^ 1. Let eιs = a/\a\
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ande" = δ/|δ|. Then

[F, G]Z = eis\a\ eu\b\ha°G + — ( 1 \b\)Z

To derive Theorem 2.1 from Theorem 2.2 we argue as follows:
for each he^ we have h = ChZe^Z. By Theorem 2.2, for each
ε > 0 there exist inner functions Flf F2, , Fm, Gu G2, , Gm and
constants clf c2, , cm, where the F/s are nonconstant, where the
c/s are nonnegative, and where Σ c* — 1> s u c ^ that

< ε

It follows from Proposition 2.3 that
bination of inner functions.

X is a convex com-

3* Possible extension to H°°. It is tempting to try to prove
an analogue of Theorem 2.2 for the algebra H°°. Certainly infinite
Blaschke products can replace the finite ones and a replacement for
Theorem 2.1 exists, namely, the result of Bernard, Garnett, and
Marshall [2, Th 2.2] which implies that the unit ball in H°° is the
closed convex hull of the Blaschke products. The difficulty lies in
finding appropriate analogues for the operators [F, G]. It is not
even clear that, given infinite Blaschke products Bλ and B2, there
exists a linear operator T.H00^!!00 such that | |Γ | | = Γl = 1 and
TBX — B2. All that we have been able to accomplish is to find a
sufficient condition on Bx in order that T exist.

Let

= {T:H H~\T linear, | |Γ | | = Γl = 1}.

carries a locally convex topology τ which is defined in terms
of nets by: Td -̂> T if Tdf converges uniformly on compact subsets
of D to Tf for each feH°°. By a result due to Kadison [5], it
follows that ^(H00) is τ-compact.

Let g be a nonconstant member of H°° with

- π i-̂ -L ak~J
*=i ak 1 — akz

PROPOSITION 3.1.

l ^ l . Let

be a convergent Blaschke product. Let
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*=i ak 1 — akz

and let Bn = B/Bn. If the following condition is satisfied then there
exists a Te^(H°°) such that TB = g:

(C) Some subsequence of \n~l^jBn{ak)\M_Λ converges to 1.
( k=i )n — L

Proof. First we show that it is enough to consider the case
where g — Z. Since g is nonconstant, the composition operator Cg

is well defined on H°°. If S maps B to Z, then Cg°S will map B
to g. For each n, the operator Tn — [!?„, ^] extends to an operator
on H°° via the formula

TJ{z) =

for ί ei), (Here we are using the fact that functions in H°° have
radial limits almost everywhere on 3D. f(ξ) denotes Iimr^1f(rξ).)
Let {%} be a sequence of integers such that

( 3) lim n~kl Σ BnAaj) = 1 .

Consider

— w

^ - 1) .

The function gk = ΓMA;BWfc — 1 is zero free for each k. Let ^ t be a
subsequence of ^fc which converges uniformly on compact subsets
of D to g. By a theorem due to Hurwitz [1, p. 178] g is either
identically zero in D or has no zeros in D. By (3) it follows that
g(z) Ξ= 0. We have constructed a sequence of integers mό such that
TOTiI? converges uniformly on compact subsets of D to Z. It follows
easily from the τ-compactness of ^(H°°) that there is a T e έ^(H°°)
with TB = Z.

COROLLARY 3.2. Let g be an extreme element of the closed unit
ball of H°°. Let B be an infinite Blaschke product satisfying (C).
Then there exists an extreme element To of &*(H°°) such that T0B=g.

Proof. The set / = {T e &*(H°°)\ TB = g) is convex, r-closed
and nonempty. It follows from the Krein-Milman theorem that /
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has an extreme point To. Since &~ is an extreme subset of
it follows that Γo is also an extreme point of

REMARKS. Note that

Bι+1(ab) -

It follows that

n oo

^ 2n~ι Σ Σ
fc=lI = Λ

l y y
fc=l i = %

— \aι

- atak

Hence, condition (C) is implied by the following:

lim inf n-1 ± ±
ki ίk=i ί=» 11 — axθίk

- 0 .

Now suppose that the zeros of B approach 3D exponentially fast.
To be precise suppose that there is a b e (0,1) such that (1 — \an\)j
(1 - \an^\) ^ b for n = 2, 3, . Then for I > k we have

1 - |α f c |

Condition (C) follows immediately. On the other hand, if the zeros
of B approach 3D too slowly, condition (C) may fail to hold. Con-
sider the case where ak = 1 — k~p, where p > 1. For k ^ n we
have

1 -
k~p -

(n 1)-*
^ 1 - Bn(ak) .

It follows that

Λ ^ 1 - W(n
(kl(n

<l-n-ι

Thus,

0 < 1 — Γ -dx ^ lim inf (1 - n~ι Σ Bn(ak) ) .
Jo 1 + χp \ k=i /

We note that in this example (ak) is not an interpolating sequence.
See [4]. We have been unable to determine whether or not condi-
tion (C) holds whenever (ak) is an interpolating sequence.
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