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NEW DIAGRAM PROOFS OF THE HAUSDORFF-YOUNG
THEOREM AND YOUNG'S INEQUALITY

ROOSEVELT GENTRY

In this paper, the diagram proof of Riesz's Theorem
proved by the author is used to give new diagram proofs for
the classical Hausdorff-Young Theorem, and Young's Inequali-
ty, where Fourier transforms and convolutions are used re-
spectively.

I* Introduction*1 Very often, the same operator is investigated
on several different function spaces. Thus, it is valuable to have
theorems which give relationships between properties of the same
operator considered in different function spaces. The well-known
Marcel Riesz interpolation theorem [11] which was published in 1926
is a nontrivial example of such a theorem.

Since 1926, much work has been done in interpolation theory by
A. P. Calderon in 1964, Lions-Peetre [9] in 1964, and M. Schechter
in 1967.

More recently, V. Williams [16], in 1971, defined a generalized
interpolation space, X{T,o, which generalizes each of the above-men-
tioned interpolation spaces. Also, a generalized interpolation theorem
is proved in [16] which generalizes the Calderon, Lions-Peetre, and
Schechter interpolation theorems.

The classical theorems of Riesz and Marcinkiewicz follow from
interpolation theory, and there are many applications in differential
equations, Banach algebras, and nonlinear, complex, and compact
interpolation theories (see [13, 14, 3, 7, 8, and 5]).

We now give a definition:

DEFINITION. A compatible triplet {Xo, Xu J^\ consists of two
Banach spaces Xo and Xx which are continuously embedded in a
Hausdorff topological vector space gf.

sx = s(P0, Eθ9 Xo, Pl9 Elf -ZΊ) denotes the Lions-Peetre [9] interpo-
lation space which is also a generalized interpolation space [16].

In this paper, the diagram proof of Riesz's theorem proved by
the author [6] is used to give new diagram proofs for the classical
Hausdorff-Young theorem, and Young's inequality, where Fourier
transforms and convolutions are used respectively.

II* Diagram proof of the Hausdorίϊ-Young Theorem* As a
corollary of the author's diagram proof [6] of Riesz's theorem, we

1 Terms used in the introduction will be defined in the paper.
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get the classical Hausdor if-Young theorem. The corollary is signi-

ficant because we give a new diagram proof of this classical theorem.

First, we give our classical notation and state a classical lemma.

Z/ΌR1), 1 ^ P^ °°, denotes functions defined on Rι which have

values in the complex numbers, C, with the usual norm, and m de-

notes the Lebesgue measure on R1 divided by l/2π.

We have

f{x)dm{x) = , I f(x)dx , where dx refers to

\/2π J-°°

the ordinary Lebesgue measure.

Define / by

(4) /(ί) = Γ f(x)e-ίxtdm(x) , t e R1 .
J_oo

If feL^R1), the integral in Line (4) is well defined for every
real t. The function /, the Fourier transform of f, is denoted by
F{f), that is, F sends / to / .

Since the Lebesgue measure of R1 is infinite, L2(Rλ) is not a subset
of L^R1), and the definition of the Fourier transform is not directly
applicable for every feU{Rι). However, the definition does apply
if fzL\Rι) ΐ\L\Rι), for in this case feL\Rι). In fact, \\f\\m&) =
ll/llz^i,. This isometry of L\Rι) Π UtjR1) into L\Rι) extends to an
isometry of UiR1) onto L\Rι), and this extension defines the Fourier
transform (sometimes called the Plancherel transform) of every
feL\Rι). The L'CK^-theory has more symmetry than I/CR1). In
LXR1), f and / play exactly the same role.

We now state some classical results:

LEMMA. The Fourier transform map, F: L^R1) -» L™{Rι) where
F(f) — f, for fe&iR1) is bounded, linear, and for every feL\Rι)

Therefore,

Plancherel Theorem. One can associate to each / e If(Rι) a func-
tion / e L\Rι) such that:

(a) If feUiR^nLXR1), then / is the previously defined Fourier
transform of /.

(b) For every fsL\R% | |/ |U*i) = H/U^i,.
(c) The map F: L\Rι) -> LXR1), where F(f) = f, for each fe L\Rλ)

is an isomorphism of L\Rι) onto L\Rι). In particular, F is bounded,
linear, and by Part (b),
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Note: Since L 1^ 1) Π L\RX) is dense in L^R1), Parts (a) and (b)
determine the map F uniquely.

Hausdorff- Young Theorem. With the above notation, let 1 <;
P ^ 2, let 1 ^ g ^ oo be such that 1/P + 1/q = 1; if fe Lp(Rι) then

We now state our main theorem:

THEOREM. // 1 < P < 2, the Hausdorff- Young Theorem follows
from the diagram proof Riesz's Theorem.

Proof. First, we consider a commutative diagram (see below).
By the author's work [4], for any fixed 0 < s < 1, there exist

Eo and Ex in R1 such that E0Έ1<Q and s = E0/(E0 - Ex).
Let Po = 1, P1 = 2, q0 = oo, Ql = 2, so P< ̂  g,, i = 0, 1. Let P

and g satisfy

ft \

From previous work [4], {LW), L 2^ 1), LlocίΛ1)} and {L^R1), L\R)f

Ll^R1)} are compatible triplets; therefore the sums in the diagram
make sense.

From above work, all spaces in the diagram are Banach. Let
L = F be the Fourier transform map as defined above.

By the lemma and PlanchereΓs theorem,

(9) LzB(L\Rι), L^R1)) and LeB(L\Rι), L\R1)), with respective
norms NQ and Nlf where NQ^1, Nt — 1.

1) + L\Rι)

[9]

), 2 , s- l f LW)

II [9]
, s, i^ί-B 1), 2, β — 1, ̂ (

[9]

} S, L^R1), 2, s - 1,

| | [9]

-^ 2^(1, s, Z/^i?1), 2, s - 1, L2^1)
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From previous work [4], L is a bounded linear map from
L\Rι) + L\R) to L^R1) + L2^1).

I/, Tί9 and Γ2 are defined as follows:

L\f) = W , 2\(/) - § Λ , T2(g) =

where/6 5^(1, s, L 1^ 1), 2, β-1, LW)) and g 6 3^(1, s, Zr~(Λι), 2, s - 1 ,
LW)), that is,

/: z - {0, ± 1 , ±2, • •} > L\R) + L\R") ,

flr: ^ > L-iR1) + L\R) .

L', Tlt and T2 are bounded linear maps. By the definition of L',
we have LT, = Γ2L'.

By Riesz's theorem

L 6 B{Lp{Rη, L^R1)) , and by Line (9) ,

|| L || ^ max {ΛΓ0, JVJ ^ max {1, 1} = 1. Therefore,

By the definition of P and q,

=
g q0 qλ 2 2

Therefore, 1/P + 1 / ^ = 1.
Prom above, s = E0/(E0 - Ex) e (0, 1).
Note: If s = 0, then P = 1; if s = 1 then P = 2. «e(0, 1) im-

plies 0 < s/2 < 1/2, which implies 1 > 1 — s/2 > 1/2, which implies
1 > 1/P > 1/2, which implies 1 < P < 2.

So, P, as defined in Line (12), will always be such that 1 < P < 2.
From above,

therefore, for every feLp{R1)t

ιi£(/)iu*i) - iinn
By definition,

Fif) - / ,
therefore, for every feLp(R1)f we have

so the Hausdorff-Young theorem holds if 1 < P < 2.
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III* A diagram proof of Young's Inequality* Next, we show
that as a consequence of the diagram proof of Riesz's theorem, we
get an inequality of W. H. Young.

Some classical results are:

DEFINITION. Let / and g be two m-measurable functions on R1

such that f(x — y). g{y) is m-integrable on R1, x, yeR1; the convolu-
tion, f*g, of / and g at point x is defined by

S oo

^f(x - y)g{y)dm{y) , xeR1 .

Young's Inequality. Suppose that

-1 = Σ + JL
r P q

Let / e LP{R'), g e Lq(Rι). Then

Our main theorem for this section is:

THEOREM. Young's Inequality above follows from the diagram
proof of Riesz's Theorem ifl < P,q < °o, and 1/r = 1/P + 1/q — 1 > 0.

Proof. Let 1 < P, g < °o, be such that 1/P + 1/q - 1 > 0, let
1/r = 1/P + 1/q - 1, let P' be such that 1/P + 1/P' = 1.

For q0 = 1, gx = P', r0 = P, rx = °°, we show that there is an s
such that 0 < s < 1, and these equations hold:

i

a ~ a a ~ 1 P' '
and

1 1 Q Q 1 Q 1

r r0 rλ P

Now,

q 1 P' P'
1 _ 1 - s j _ = P'(l - s) + s

Thus,

Q

Pf - P'8 + 8 = — ,
Q

and

β(l - Pr) = — - P' .
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Thus, s = (P'/q - P')/(l - P'), P' Φ 1 since 1 < P < oo. Thus, s =
(1/? - 1)I(VP' - 1) > 0, since q > 1, 1 < P < oo, and P' > 1.

Now, l/<7 - 1 > - 1 / P , l / ( - l / P ) < 0; thus, (1/? - l)/(-l/P) <
(-l/P)/(-l/P) = 1, -1/P = 1/P' - 1, thus, 0 < s = (1/0 - l)/(-l/P) < 1.

We show this same 0 < s < 1 works for r, where

n —
r r0 rt

Also, 1/P + 1/tf - 1 = (1 - s)/P

As shown on the preceding page, for 0 < s < 1 fixed, there exist
reals Eo and E, such that E0 E1<0 and s = £Ό/(£Ό - #1).

Let / e Lp(i2x) be fixed, once chosen. Let g e L\Rι), and g e L^fjt1),
define L by L(g) = f*g.

From classical work,

L e B(L\Rι), LP(R1)) , L e B(Lp'(Rι),

where

and
\B{LP'{R1),LCO(R1)) =

Under the above conditions, we now consider a commutative
diagram:

[9]

S(l, s, L W ) J P ' , s - l ^ X R 1 )

, s, Lι(Rι),P', s - U L H

lP', 8-1,

[9]

1 [9]

, oo, s - 1,

| [9]
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As above,

{LW), LP\I?\ LUR1

and

are compatible triplets. Therefore, the sums in the diagram make
sense.

Also, all spaces are Banach in diagram, and L defines a linear
map from UiR1) + Lp\Rι) to Lp(Rι) + L^R1).

The bounded linear maps I/, T19 and T2 are defined as above,
and LTX = TJJ.

From Riesz's theorem,

with

Therefore, for any g e Lq{Rι), we have

II L(g) ||Λr(Bi, ^ || / |UP(ΛI, |10 ||i7(Jji, , where / is fixed.

By definition of L, L(g) — f*g, therefore, for any geLq(Rι),
we have

and therefore Young^s inequality holds.
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