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POLYNOMIALS IN DENUMERABLE INDETERMINATES

RICHARD M. GRASSL

D. Knuth used the Robinson-Schensted "insertion into a
tableau" algorithm to give a direct 1-to-l correspondence
between "generalized permutations" and ordered pairs of
generalized Young tableaux having the same shape. Since
a generalized permutation characterizes a power product
of differential indeterminates, the work of D. Mead on the
principal differential ideal generated by a Wronskian
provided an independent proof of the existence of the
Knuth bijection. This work led Mead to suggest that
other interesting combinatorial results may be found by
equating the cardinalities of different vector space bases
for the same finite-dimensional subspace of a differential
ring. In a previous paper the author showed how such
combinatorial identities follow from the study of "strong
bases" for certain ideals in a ring of polynomials in a
denumerable set of indeterminates. The present paper
completes that work by presenting an infinite number of
such strong bases and thus greatly expands the ring theory
and differential algebra having applications in the enumera-
tion of tableaux.

1* The ideals I* Let R = F[yid] denote the polynomial ring in

the algebraically independent indeterminates yi3> (i = 1, 2, •••,%;

j — 0, 1, 2, ) over a field F. In applications to differential algebra,

one lets ylf y2,
 m ',Vn be n independent indeterminates and ytj be

the j t h derivative of y^ Then a principal differential ideal [x] is

the ideal (xθ9 xl9 x2, •) in which xά is the jth derivative of x.

D. Mead's study in [9] of [Wn], where Wn is the Wronskian of

Vι, Vz> --,yn> gives a vector space basis for R consisting of

determinantal products having a natural 1-to-l correspondence with

ordered pairs of Young tableaux of the same shape, having n or

fewer rows. Let xnq be the qth. derivative (y1y2 yn)
{q); it is shown

below that ideals (xq9 xq+1, •••), related to [xnq\, share combinatorial

properties with [Wn] when q == n(n — l)/2.

A combinatorial method for proving the existence of syzygies

(i.e., the nonexistence of a strong basis) is also described. The

structure of (x0, xlf ) is studied in a manner that gives the struc-

tures of all ideals generated by subsets of the x3-.

Let {xj} = xθ9 xlf - be a finite or denumerable sequence in R, I

be the ideal (x09 xl9 •), and X be the set of all power products

ζ - (&o)βo(*i)βl (xh)
ah h9 a, 6 {0, 1, } .

415
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Let A be a linearly independent (over F) subset of R such that
L — {aξ I a 6 A, ξ e X} generates the vector space R over F; then it
is easily seen that the subspace I is generated by the subset C of
all aξ in L with ξ Φ 1. The set A is called an a-set for {xό} if L
is a basis for the vector space R; if A is an α-set, C is a basis for
/. If L is not a basis for ϋJ, the linear dependence relations of the
elements of L are called syzygies. If {xd} has an α-set, the sequence
is said to be strong. Below we describe a family of sequences {%},
develop a number of α-sets for each sequence, and for each α-set
give an algorithm for determining membership in the ideal
{x0, x 1 } - •).

A power product (pp) π in the ytj of degree d = deg π and
weight w — wgt π is a product of d factors, each of which is one
of the yijf with w the sum of the second subscripts j of these d
factors. Below, Q ~ {qu q2, , qn, qn+1) is an ordered (n + l)-tuple
of fixed nonnegative integers, q = qx + q2 + + qn+1, T = {̂ , £>, •}
is a subset (not necessarily proper) of {#,# + 1, •••}, and /* is a
nonnegative real number. Whenever π is written as π = /»7, ô is
the product of all the factors # i y of π with j < ĝ  and η is the
product of the factors yid of π with j ^ qt.

The set of all pp in the yi5 is designated as P. The word space
is used to denote a vector space over F; thus P is a space basis for
the ring R.

For all £ in T, let vt be a linear combination with coefficients
in F of the pp π — pη with

deg π + wgt π <> n + t and deg ^ + μ wgt η < n + μt

and let #* be the sum of vt and a linear combination with nonzero
coefficients in F of all the products

yi3\V2i2 * * y»sn with j t ^ & f or 1 ^ i ^ τi and j \ + + j n = t .

Let / = (α;̂ , xH, ) be the ideal in i? generated by the xt with ί
in T.

2* Ordering of power products* Associated with the ^ of a
fixed pp π = pη is a function jί(ί, fc) such that Ύ] = ^ ^ ^Λ with
either ^ = 1 or

«* ^ i(ί, AO ̂  i(i, fc + 1) for 1 ^ & < d, = deg η, .

(If Ύ]h = 1, i(i, &) is not defined for i = h.) This is next used to
define nonnegative integers gif a function M[i, k], and a sequence
0 (π) = s0, slf . Then α(ττ) will be used in a partial ordering of
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the pp which is the key tool for the study of the structure of the
ideal /.

Let gx = dx and Λf[l, k] = n(k - 1) + 1 for 1 £ k ^ &. Now
assume that i > 1, that g ^ is defined, and that M[i — 1, k] is
defined for 1 <; & ̂  #*_!. Let & be the largest positive integer m
with m + j(ί, m) — g, ^ #*_! if such an m exists and let #, = 0
otherwise. Also let

(1) M[i, k] = Λf[i - 1, fc + j(i, fc) - ffj + 1 for 1 ^ A; ̂  ^ .

For those i with ^ > 0, this defines M[ί, k] for 1 ^ k ^ g{. If
m = M[i, k] for such an i and &, let sm = ^(i, ί;); if m is a positive
integer not in the image set of M, let sm = °o. Also let s0 = deg 37 +
μ wgt 37. Since M is easily shown to be injective, the sequence
o(π) = s0, 8U is now well defined, [ α ^ ) depends only on rj.]

Let σ(7r) = s0, sx, and σ(π') = sj, si, . If there is an integer
m such that sTO < s^ and sk = s& for k < m, then π is said to be
stronger than π' (π>7r') αέ m. The stronger than relation is transi-
tive but is not a complete linear ordering.

3* The set A. An i-tuple

(2) scn+1,scn+2, - ,scn+i

in σ(π) for which each of these i terms is finite is an i-run for π
and the sum of the i terms is the weight of the ί-run. It can be
shown that the weight of the i-run (2) is a nondecreasing function
of c in (2). If the weight of an w-run for π is in the given set T,
the associated product

( 8 ) b = yuen+1y2scn+2-'Vnscn+n

is called a β-factor of π. The set A is now defined to consist of
all π having no β-ΐactors and the set C to consist of all

7 = αf , aeA , f = xhxH xte , e ^ 1 , ί f t e Γ .

In §5, C and L = A U C will be shown to be space bases for /
and R, respectively. When q = 0, Γ = {0, 1, •}, and each vt = 0,
A and C can be shown to be the same as the sets of α-terms and
/3-terms respectively, defined in [5], using the machinery in [7] and
induction on n.

4* The bisection θ. Next we define a mapping θ from P to
L and, as in Levi's work in [7], show that θ is a bisection and
then show that L and C are space bases for R and J, respectively.
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Let π have the δ of (3) as a β-ίactor and let σ(π) = s0, sl9

It is easily seen that

( 4 ) <τ(π/δ) = sOf , sβΛ, s(β+1)n+1,

i.e., that σ(π/b) is cr(π) with the w-run corresponding to 6 deleted.
This implies that π can be written as αδxδ2 δ r, with the δ/(. all
the /5-factors of π and α e A; then 0 is defined by

(5 ) θ(π) — θ{abj}% δr) — axtlxt% xί?. , where ίfc = wgt δfc .

If π has no /3-f actors, π is an α in A and 0(π) = 0(α) = a.
Examination of the sequence σ(π) = s0, s^ shows that θ is

injective. Since the terms axhxH xtr in (5) are easily seen to be
in one-to-one correspondence with the 3w-section partitions dealt
with in [3], Theorem 1 of that paper shows that θ is a bisection.

5* The space bases C and L.

LEMMA. // π has a β-factor b — yι5ι ynjn of weight t, then

π = foπoxt + fjzx + /2τr2 + + fsπs

where fh eF, πh > π, and deg πh + wgt πh <Ξ deg π + wgt π for 0 ^
h ^ s. Also, deg τr0 = deg π — n and wgt π0 = wgt π — t.

Proof. By definition of â ,

(6 ) xt — vt = eob + ej), + + erbr ,

where each eh is a nonzero element of F and for 1 <̂  fe ̂  r,

( 7) δA = τ/lfcl i/wfcw, with fcx + + K = t = j \ + + j n and
fci ̂  i, for some i.

Solving (6) for δ and letting π0 = π/b and πh = πobh for 1 ^ h ^ r
yields

7Γ = πob = —foπovt + /0^0^ί + fί^i + + frπr .

By definition of vt, one can write

-foKO%t = fr + lKr + l + ' ' ' + fs^s

where, for r < h <> s, one has fh e F, and πh > TΓ at 0.
For 1 <̂  Λ ^ r, πA = (πbh)/b, with δΛ as in (7) and so degπh = deg TΓ,

w g t π Λ — wgtTΓ. From (7), it follows that ft< < j \ for some i. Let
the β-ί actor δ of π be as in (3). If kt < j * , it can be seen that
πh > π at some m with m 5£ cw + 1, and if kt < j i 9 ί > 1, then
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πh > π at some m with m <; <m. Since π0 = τr/6, we have deg ττ0 =
deg π — n, wgt π0 = wgt π — t, and π0 > π at 0.

THEOREM 1. L and C are space bases for R and I, respec-
tively.

Proof. Let B be the complement of A in P. For every non-
negative integer s, let P(s) consist of all TΓ in P with deg 7Γ +
wgtπ <£ s. Let j?(s) be the subspace of R generated by P(s). Let
A(β), B(s), C(β)9 1(8), and L(s) be the intersections with R(s) of A,
JB, C, I, and L, respectively. Note that R(s) has finite dimension.

The space R(s) is generated by its elements of the form πξ,
with π in P(s) and <J a pp in the xt with £ in T, since the elements
of this form with ξ = 1 generate Jfϊ(s). Since JB(S) is finite and the
"stronger than" relation is transitive, the lemma implies that R(s)
is generated by its elements aξ with a in A(s) and ζ a pp in the
#* with ί in Γ, i.e., L(β) generates 2?(s).

Since θ with its domain restricted to B(s) is a bisection onto
C(s), L(β) = A(s) U C(β) has the same finite number of elements as
P(s) = A(s) U B(s). Since P(s) is a basis for the space R(s), this
means that the set L(s) of generators for R(s) is also a basis for
jβ(s). Then it follows that L is a space basis for 2?.

The space I is generated by the πζ with π in P and ^ a pp of
positive degree in the α̂  with t in Γ; then C generates / since the
π in B can be replaced by linear combinations of elements of L.
Since C is a subset of the basis L for iϋ, the elements of C are
linearly independent and so C is a basis for /.

6* The algorithm φ. The algorithm φ for determining whether
a polynomial r of it! is in / consists of using the lemma in §5 to
replace in r the pp belonging to B and continuing until r is ex-
pressible as

r = /iαi& + + /Άf w , fheF , aheA,

with each ςh a pp in the xt with ί e T . Then r is in I if and only
if each ξh has positive degree in the xt.

The description of φ implies that a nonzero polynomial r of R
is not in / if the pp of each term of r is in A. This motivates
the presentation of some simple sufficient conditions for a pp π to
be in A. First, for a given Q, if π = /Oft̂  - Vm tlaen π is in A if
deg 3̂  = 0 for some i.

Secondly, let a pp π have a function j(i, ft) and integers gi as
in §2. The condition
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(Q = ft + * * * + Qn + ?»+i)

is sufficient for grw to be 0 and hence for π to be in A. Interchang-
ing 1 and some h, 1 < h ^ n, as subscripts i leads to

If for some fixed h this inequality holds for the pp of all the terms
in a nonzero r of R, then r is not in /.

7* Application to differential ideals* Let yu '--,yn be inde-
pendent differential indeterminates over a differential field F of
characteristic 0. Let z = î2/2 Vn, and let j/ < y and sy be the jth
derivatives of ^ and «, respectively.

For any choice of qu q2, , gn, gn+1 as nonnegative integers with
q = qx + + gΛ+1 and T = {q, q + 1, •}, the zk meet the conditions
required of the xk in §1 and hence it follows that the set A of §5
forms an a-set for the differential ideal

and hence {zq} is a strong sequence.

8* Combinatorial applications* Let the signature of a π in
P be the %-tuple E = [e2, , βJ with βA the degree of TΓ in the
factors yiό with i — h. A polynomial is homogeneous with signature
J? if it is in the subspace V[E] generated by the π of signature E.
A polynomial is ίsobaric of weight w if it is in the subspace Vw

generated by the π of weight w. Let V(w, E) — V[E] (Ί Vw and
let p(w, E) be the dimension of the subspace V(w, E).

Let S = [βi, s2, , s j , with the ŝ  nonnegative integers that are
not all zero. A strong sequence {xj = xg9 xq+1, will be called an
Ssequence if:

( i ) each xά is homogeneous with signature S and is isobaric
with weight j9 and

(ii) {Xj} has an α-set consisting of homogeneous and isobaric
polynomials.
Let A be such an a-set for fixed S-sequence {xό} = xq, xq+1, and let

na(w, E) = ^ α (^ ; ex, •• , en)

be the number of elements in An V{w, E). We note here that
na(w; 0, 0, , 0) equals 1 if w — 0 and equals 0 if w > 0.

THEOREM 2. Tfeβ dimension of the vector space V(w, E) can be
expressed as
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(8 ) p(w, E) = na(w, E) + Σ na(i; ex - ksu --,en~ ksjptf, k)

where the sum is taken over all nonnegative integers i, j , k such
that i + j + qk = w, k > 0, and the eh — ksh ^ 0 for 1 <Z h <£ n.

Proof, Each side of equation (8) is the dimension of the finite
dimensional space V(w, E). The left side is the number of elements
in the basis consisting of the π in V(w, E) while the right side is
the number of aξy associated with the strong sequence {α̂  }, in
V(w, E).

The formula (8) in Theorem 2 enables one to calculate the
na(w, E) recursively, i.e., for a given E = [elf •• ,en] in terms of
values na{w\ Er) with signatures E' = [e[, , e'n] having e'h ̂  eh for
1 ^ h ^ n and e'h < eh for some h> We next use this to obtain the
following:

THEOREM 3. The number na(w, E) depends only on w, E, q, and
S and can be written as na(w, E, q, S).

Proof. For definiteness, let sx > 0. Then we use induction on
et. If ex = 0, na(w, E) clearly depends only on wf E, q, and S since
na(w, E) = p(w, E) in this case. By Theorem 2, na(w9 E) = p(w, E) —
Σ ^«(i; βi "~* ̂ si> 'y en — k8«)p(ΰ, fc) Since & > 0 and sx > 0, ex —
ΛSi < elβ Now our result follows using the inductive hypothesis on
the factors na(ί; ex — kslf , en — ksn).

If one has two S-sequences (with the same S) the easiest way
to calculate na(w, Ef q, S) for one of the sequences may be to
calculate it using the α-set for the other sequence (and Theorem 3).
Also the identity in (8) can be used to show that a given sequence
may not be strong. We next illustrate these two types of applica-
tions of Theorems 2 and 3.

First, let Q = {ql9 q2, , qn+1} be a fixed (n + l)-tuple of non-

negative integers with q1 + q2 + + qn+1 = q = ί g J and let Γ =

{ί, g + 1, •}. For ί e Γ, let αβ be a linear combination over F, of
all products ylijL yndn with j 1 Λ \- j n = t such that those products
with ji ^ qi for 1 ^ i <; ̂  have nonzero coefficients. By the results
in §2-5, the sequence {xs} for the ideal J = (xq, xq+ίf •••) is strong,
has an α-set A, and is an S-sequence with S = [1, 1, •••, 1].

Next, let q = (g) and Wn,ί+fc be the fcth derivative of the

Wronskian T7Λ of n independent differential indeterminates ylf , yn.
Then TFΛi is homogeneous with signature S = [1, 1, , 1] and
isobaric with weight j . Also the work in Mead's paper [9] shows
that {Wnj} is an S-sequence. Hence we have the following:
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THEOREM 4. Jf)V(w,E) and [Wn]ΠV(w,E) have the same
dimension given by either side of the equation:

p(w, E) - na(w, E) = Σ na(i; ex - k, - ,en- k)p(j, k)

where the sum is over all nonnegative integers i, j , k with

= w

and

k m = min , en)

In [3], the author stated that Theorem 4 could be proved and
used this result to obtain many identities on combinatorial generat-
ing functions.

Secondly, Theorem 2 can be used to show that a given sequence
{Xj} is not strong, and hence to indicate the existence of syzygies.
For example, consider the differential ideal [x] — (x2y α?8, •••) where
x2+j is the jth. derivative of x — y\y2 + ΊyQy\. The recursive calcula-
tion, using (8), of na(w, E) based on the assumption that {xό} is
strong leads to the contradiction that the cardinality of An V(w, E)
is negative for some w and E. The following is a partial printout
from a computer program designed to compute na(w, E, q, S) and
p(w, E) — na(w, E, q, S) [denoted by na and nβ resp. in the table]
for this example where we have

( 9 ) = 2

\ . deg

wgt \ ,

0

1

2

3

4

5

6

7

8

n
a

1

1

1

1

1

1

1

1

1

1

nβ

0

0

0

0

0

0

0

0

0

n
a

1

1

2

2

3

3

4

4

5

2

nβ

0

0

0

0

0

0

0

0

0

n
a

1

1

1

2

3

4

6

7

9

3

nβ

0

0

1

1

1

1

1

1

1

n
a

1

1

1

1

2

2

4

5

8

4

nβ

0

0

1

2

3

4

5

6

7

1

1

1

1

1

1

1

1

2

5

nβ

0

0

1

2

4

6

9

12

16

1

1

1

1

1

1

1

0

-1

6

nβ

0

0

1

2

4

6

10

14

21

The negative entry —1 for na in the table for weight 8 and
degree 6 shows that no sequence {xd} satisfying properties (9) is
strong, and also indicates that any such sequence has some syzygies
involving only polynomials with the weight bounded by 8 and the
degree bounded by 6.
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9* Bibliography* The many fields of mathematics in which
tableaux and skew-tableau play an important role are described in
the papers of the report [2]. The set of all linear combinations of
partitions is shown to be isomorphic to the differential polynomial
ring in one indeterminate in [4]. The ordered pairs of generalized
tableaux used by Mead in [9] appear in a more general setting in
[1]. The different proof of Mead's Theorem 2 in that paper could
be eliminated by a reference to D. Knuth's generalization of the
Robinson-Schensted insertion into tableau algorithm in [6]. The
ordering of power products described in §2 above made possible the
generalization, given here, of the results of [5] and [7].
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