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SECOND NOTE ON ARTIN'S SOLUTION OF HILBERT'S
17TH PROBLEM. ORDER SPACES

D. W. DUBOIS

We consider real varieties in Kn/k, where K/k is maximal-
ly ordered and k is dense in K. Our principal results are:

THEOREM 1. Assume V is irreducible. A. The closure
of the set of all simple points equals the set of all central
points — zeV is central if some order of k(V)/k contains
every function which is positive at z. B. If / + r is totally
positive in k{V)lk for every positive r in k, then / itself
is totally positive.

THEQREM 2. For a semi-algebraic set £ in Kn defined by
polynomial relations bj(x) = 0, gt(x) > 0 (1 ̂  ί, j ^ m), define
B = fo, , bj, G = {&, , gj. Then every irreducible
component of Vk(B) contains central points on S if and only
if (*) for 0<p<efc,jr</eG,α<efc[X], Σ ^ Π ^ αJeVS"
implies every

For an ordered ground field k and a formally real extension field
F/k9 the set Ω(F/k) of all orders of Fjk admits two natural topologies.
The standard topology, which originates in Harrison's 1966 Memoir
[15], has basic open set Ω(E), while the weak topology uses basic
open sets ΩN(E), where E ranges in each case over the finite sub-
sets of F = F\{0}, and

Ω(E) = {PeΩ(F/k); Pz)E} ,

UP = PΓ\ BP\JP .

An order P is the positive cone of an ordering while BP and JP,
respectively, denote the valuation ring of all elements finite over fc,
and the maximal ideal of all infinitesimal elements. UP represents the
group of all positive units in BP. The real place associated with P is
denoted hP. The order space Ω(F/k) is applied here in a setting which
dates back to Abraham Robinson's 1955-1956 papers on ordered fields
and definite functions [23], [24]. An existence theorem from Lang's
1953 paper [18] is one of our most important tools. We consider
the real variety V — T*K(A) of all zeros in Kn, K being a real closed
ordered extension of k, of the real prime ideal A in the polynomial
ring k[X] = k[Xlf , Xn] in n variables. Thus the ring k[x] = k[X]/A
is a formally real domain over k and its field of quotients k(x) is a
formally real field over k. By means of the reelprimnullstellensatz,
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i.e., any polynomial which vanishes all over V must belong to A, of
which we give a new and easy proof1, we know that k(x) is equal
to Jc(V), the function field of V. The paper is devoted mostly to
this field F/k — k(V)/k = k(x)/k. K is always assumed to be real
closed. For any ordered field k9 its real closure is written ϊc.

For any subset if of V we define Ω(H) as the subset of Ω(F/k)
which consists of all those orders which have a center on H, and
we say that z is a center of the order P provided for all f(x) in F,
if f(z) is positive, then f(x) belongs to P. The concept of center is
basic. The most important cases of H are V itself, the set Vc of
all centers on V of orders (central points), the set V° of all zero-
dimensional points of Vf the strong closure Vλ of the set of all
simple points on F, and semi-algebraic sets of the form:

β^(E) = {zeV; e,(z) > 0 for all ieT} ,

where E = {ex\ i e T) is an indexed of F, T being finite. Assuming
that k is real closed, Robinson (loc. cit.) proved that the set 3f(£έf(E))
of all members of F which are positive definite over βέf(E) is in-
cluded in σ(E):

σ{E) = {Σ e,(aθ/,(s)2; e< eE,f<eF},
ieΐieΐ

); UczT,0<pek} .

This generalizes Artin's solution to Hubert's 17th problem. For a
subset L of V, Lc is the set of all central points on L, £&(L) is the
set of all members of F which are positive definite over L, &(L)
is the intersection of all orders which have center on L. Also,
3?(F\k) is the intersection of all orders in Ω(F/k). We prove, for
finite E in F, that

which generalizes and strengthens Robinson's generalization. We do
not assume k to be real closed. It is shown that Ω(<%*(E)) is an
(AC/k) family of orders and that F/k is an Archimedes-Clifford, or
(A — C) field — for any formally real extension M/k a family A in
Ω(M/k) is (AC/k) provided for all / i n M, if / + p belongs to the
intersection ΠJ of all orders in j for every strictly positive p in k,
then / itself belongs to Π Δ\ the field M/k is (A — C) provided Ω(M/k)
is an (AC/k) family.

In §3 we examine centering in more detail. It is shown that
Ω(V) is (strongly) dense in Ω(F/k). The natural relation

1 This is due to T. Y. Lam, The Theory of Ordered Fields, Preprint, 1979.
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CenF = {(P, z)eΩ(V) x V; z is a center of P}

is actually a map in case k is dense in K; it is strongly continuous
while its contraction Ω(V) —> Vc is weakly open. Assuming again
that k is dense in K we show equality of the sets V19 Vc and V8.
The first two are defined above while V8 is the set of all points on
V whose every (strong) neighborhood on V is Zariski-dense in V.
Inclusion of Vt in Vc (i.e., every limit point of simple points is the
center of an order) is proved in [10], §2; this same section includes
a proof of inclusion of V8 in Vc and of Vx in Va. Inclusion of &(V)
in &*(V) results from a standard, easy modification of the proof in
the same section that 3f{y) is a subset of &*(F/k) — cf. [13].

The case of an Archimedean ground field k is taken up in §4.
Then for our H = £έf(E), the set &*(H) is an (AC) cone in the
sense of [6] and [9]—see also Becker [3]. The subset Ω(V) is open.
The structure theory of the paper just quoted is applicable, but now
we work with the space <^f{Fjk), defined by

= Ω(F/k)/~

"P ~ Q" means "hP = hq" ,

furnished with the quotient topology; ^f(FJk) is defined thus for
any formally real F/k, any ordered k. In the Archimedean case
we have

with + oo assigned as value in each of the infinity-producing cases.
Theorems of this section reveal numerous connections between the
abstract ordered ground field results of the first three sections and
the theorems of Kadison, Becker and the present author for the case
of Archimedean ground field.

Section 5 treats fields having the (A — C), or Archimedes-Clifford
property. The class of all such fields is so large as to include every
finite algebraic extension of a pure transcendental extension of k
(see Theorem 9).

Semi-αlgebrαic sets, i.e., solution sets of finite systems of rela-
tions of the form fs(X) = 0 and gt(X) > 0, which need not lie on
any irreducible variety, are the subject of §6. We prove a criterion
for existence of central points in a semi-algebraic set. The condi-
tion, which is called compatibility of the set G = {gJiX)} with the
ideal generated by the fό{X), is a generalization of the old result
known to Baer, Artin and Robinson, that σ(G) is equal to ^(^f(G)).

I wish to thank Dr. Pedro Abellanas of the Universidad Com-
plutense de Madrid for giving me the opportunity to deliver lectures
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there in early 1979, and for many other favors. Thanks also to Don
Pedro's assistant Dr. Recio for helpful suggestions which led to very
essential improvements in my original formulation of the compati-
bility criterion. Recio has developed independent criteria and found
a new reelnullstellensatz for semi-algebraic sets. I wish finally to
thank Dr. Recio, Victor Espino and Carlos Andradas, all students
of Don Pedro, for the wonderful Spanish hospitality which they
showed to my wife and me.

Historical note. An excellent account of the history of Hubert's
17th problem is given by Pfister [19]. Ribenboim [21] gives a lively
account of the reelnullstellensatz in its various forms and of the
early (1969) development of the subject of real commutative algebra.

2* Defmiteness and the reelprimnullstellensatz* The reelnull-
stellensatz for real prime ideals, and Robinson's generalizations, are
given very brief proofs. Then we prove some generalizations and
strengthened forms of Robinson's theorems. By an application of
Lang's Theorem 8 we prove our chief tool theorem, the algebraic
order theorem. As usual, k denotes the real closure of k.

THEOREM 1. The reelprimnullstellensatz ([12]; cf. [8], [21], [22]).
Assume A is a real prime ideal in k[X]. Then for f(X) in k[X], f(x)
vanishes at every point of Ti(A) if and only if f(X) belongs to A.
Hence, ^( Tι(A)) -= A and k(V) = k(x).

Proof. Assume f(X) £ A. From reality of A we have reality of
k{x), and accordingly choose an order P of k(x)/k. Since f(x) Φ 0
holds, we may as well assume f(x) is strictly positive by P. As
allowed by Lang's Theorem 8, which is stated below, we select an
algebraic real place h on k(x)/k which is finite at every xi9 and posi-
tive at f{x). Then z = h(x) = (hxl9 , hx%) lies on Tι(A) and f(z) =
f(hx) = hf(x) is positive. Hence, f(X) is not in ^ ( Ti(A)). This
establishes the nontrivial inclusion of the assertion.

Lang's Theorem 8 (slightly generalized), [18]. Along with the
hypotheses of Theorem 1, assume that E is a finite subset of F and
that P is an order of F which contains E. Then there exists an
algebraic real place on k(x)/k which is finite and positive at every
member of E and which is finite at every xt.

Note. Although Lang assumes that k is real closed, the gener-
alized form stated above is an easy extension of his Theorem 8. See
Elman, Lam and Wadsworth [14], §4 bis.

The set of all zero-dimensional points on V is denoted by F°;
it is equal to the set Ti(A). The Krull place associated with an
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order P is denoted hP. The order P is rational, or algebraic, ac-
cording as hP is rational, or algebraic, and dim P is defined as dim hP,
rank P is equal to rank hP.

For our purposes the following corollary to Lang's Theorem 8
has a particularly useful form.

Algebraic order theorem. Keeping the hypotheses of Lang's
Theorem 8, there exists an algebraic order P of k{x)jk which is finite
on every xt and centered on

Proof. Using Lang's Theorem 8 we select a real algebraic place
h on F/k which is finite on the x€ and positive over E. By means
of KrulΓs construction we obtain an order P which is compatible
with h (i.e., fe UP if and only if hf> 0). Then the point z = h(x)
is an algebraic center of P and it lies on <β£?(J2). Moreover, since
the residual field of h is Archimedean over k, h and hP are isomor-
phic with each other. Hence P is algebraic.

THEOREM 2. Assume E is a finite subset of F{F—k(V)), and that
k c K, K being real closed. Then (S is the closure of S)

A. ΩN{E) n Ω(V) c Ω{^f{E)) c Ω\2έf{E)) - Ω{E) = ΩN{E).
M. If K/k is Archimedean then ΩN(E) Π Ω(V) = Ω{^?{E)).
B. σ{E) = ^{<^{E)) = 3f{Sίf{β) n V?) = f)Ω(E). This in-

cludes Robinson's theorem.
C. Ω%7j = Ω(k( V)) =
D.

Proof. First we observe that C is a consequence of A by taking
# = {1}. Similarly, D follows from B and C.

The last equality in A is left to the reader. For the first in-
clusion of A, assume P is in ΩN{E) with center at z on V, which
implies that EczUp. Hence ze£έf(E), and PeΩ(£έf(E)). Next we
prove the reverse inclusion, assuming K/k is Archimedean, which
will complete the proof of A'. Now if P is centered at z e SίfiJE)
then for every e in E, e(z) is positive and neither infinite nor in-
finitesimal, whence PeΩN(E) f| ΰ(7) . As to the second inclusion of
A, we note that it follows immediately from the algebraic order
theorem.

The algebraic order theorem also shows immediately that Ω{E)
is a subset of Ω\£έf{E)). For the reverse inclusion, let P be an
order outside of Ω(E), so that E is not included in P. We decom-
pose E as follows:

E = E' U E" , E' = Ef)P , E" = E f] (-P) ,

and set
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E'" = E'Ό(-E") .

By noting that E" is not empty we see that the neighborhood Ω{Etn)
of P is disjoint from Ω(<S%?(E)), and thus P is not in the closure of
Ω{^ίf{E)). This completes the proof of Part A.

For part B, observe first that the equality of σ(E) with n Ω(E)
was known to Baer [2] and Artin [1]. Applications of the algebraic
order theorem yield easily the equality of &(J%f(E)) with n ΩE and
also the middle equality of Part B. Thus the theorem is proved.

THEOREM 3. Assume Ω{E) is not empty, E being a finite subset
of F. Then Ω(£έf{E)) is an (AC/k) family. The field F/Jc is an
Archimedes-Clifford field. Compare Dubois [6].

Proof. Let f(x) be outside &{β!?(E)). There is then an order
P which excludes fix) and which has a center in 3ίf{JEΐ). By the
algebraic order theorem there exists an algebraic order Pf which
includes —f{x) and which has a center z in 3ίf{E). Hence, f(z) < 0
holds. There exists a positive element r in k such that f(z) + r < 0,
whence f(x) + r is outside of Pr. Thus f(x) + r is outside of
&(3(?(βϊ)). This proves the contrapositive form of the condition
{ACIk) for

3* Centering and simplicity* To the order space properties
already used and deduced in §2, we add some deeper results, includ-
ing a proof that, in case k is dense in K, CenF is continuous, and
that a point of V is central if and only if it is inner (i.e., a member
of the strong closure of the set of all simple points on V).

THEOREM 4. Every ΩN{E), for finite E, is open in Ω(F/k). The
set of all such ΩN(E) is a base for a topology in Ω(F/k).

Proof. Let r, s be positive elements of k, and set

E(r, s) = {e - r; e e E} U {s - e; e e E) .

Then

ΩN{E) - U ΩE{r, s) .

Hence ΩN(E) is open. Routine computations show that the ΩN(E)
form a base for a topology.

The topology just alluded to is the weak topology in Ω(F/k).
We turn next to the centering relation,

Genv = {(P, z))PeΩ(F/k), z is a center of P) .
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It is not necessarily a mapping. Except for an occasional explicit
use of Zariski's topology on Vf we use the standard strong topology
inherited from K*.

THEOREM 5. Assume k is dense in K. Then CenF is a strongly
continuous map. The contraction Ω(V) —> Vc is a weakly open map.

Proof. Let G be an open set in V. The density hypothesis
implies

G = U
Γ4f{E)dG

Hence, by means of Theorem 2, we deduce

Ω(G) = U (ΩN(E) n Ω(V)) .
G

This is open by virtue of Theorem 4; it is, in fact, open in the weak
topology in Ω(V). Thus the set Cenγ\G) = Ω(G) is a weak open set,
for arbitrary open G, whence CenF is strongly continuous.

Let ΩN(E) n Ω(V) be an arbitrary weak open set in Ω(V). Ap-
plying Theorem 2 again we get

CenF (ΩN(E) n Ω{V)) - CenF

Π Ω(V)

This proves the weak openness (observe that £έf(E) is open on V).
We denote by V8 the set of all "strong" points of V, i.e., points

every strong neighborhood of which is Zariski-dense in V.

THEOREM 6. Assume k is dense in K. Then V8 = Vc = V19 i.e.,
for a point to be central it is necessary and sufficient that it be an
inner point or that no (strong) neighborhood of it be included in any
proper subvarίety.

Proof. That V1 is a subset of Vs is proved in [10], from the
case k = R (Dubois-Efroymson [12]), by means of an instant applica-
tion of Tarski's principle. The inclusion Vs c V1 is an easy exercise
with Jacobians. In [10] (cf. [11]) we proved V, c Ve. Now we prove
VcdV8. Assume that z' is a point of V\V8. There exists a neigh-
borhood Y of zf on V, which may be taken in the form

Y = 3ίf(E) , for some finite EczF ,

by virtue of the density hypothesis, and a nonzero polynomial func-
tion g(x) in k[x] such that g(Y) = {0}. Then each of g(x) and —g(x)
is positive definite over 3ίf(Έ), whence each of these belongs to
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according to Theorem 2. Since g(x) is not zero, there
are no orders centered on <5ίf{Έ) and, in particular, none centered
at z'. This completes the proof of the theorem.

4* Archimedean ground fields* For any orders P and Q of
any formally real extension F/k, we say that P and Q are equivalent
to each other and write "P ~ Q", whenever hP — hQ. The cor-
respondence P ι-> els P maps Ω(F/k) into the set of all real places on
F/k, its image being the set <%f(F/k), of all real places of the form
hp. The set <^f{F/k) is topologized by the quotient topology for the
map above. For any subset A of Ω(F/k), we use <£?(j) to denote
Δ/~\ in case F = k(V), V being a real variety, we write £f(y) in
place of Ω(V)/~. The easy proof of the following lemma is omitted.

LEMMA. Assume that k is an ordered sub field of K = R. As
usual, F = 5̂ (̂ &O for a real prime ideal A in k[X]. Then Ω(V)
and J%f(V) are open sets.

With the hypotheses of the lemma, recall that

hPf= s u p { r e Q ; / - reP} .

From here on in §4, we resume the notations of §1, taking
K = R, and V = 3^(J^O Assume also that E is a finite subset of
F(F = k(V)) with H = &?{$). The notation ^ίZ") denotes the ring
of all f(x) which are bounded on H, partially ordered by the posi-
tive cone &(H).

Assume H contains a simple point. From Theorem 6 we know
that there are orders centered on H and any such order belongs to
Ω(E). It follows (Theorem 3) that ^f{E) is an (AC/k) family and
so &(H) is an (AC/k) positive cone. Since k is Archimedean, &{H)
satisfies also the condition (AC) defined in Dubois [6], The norm
")] I)" is defined there as follows:

||/0*01| = sup {r e Q; f + r and / - r belong to &*(H)} .

The completion of B(H) in this norm is denoted B*(H).
Results of the above paper can now be applied to prove the

theorem following. Constructions of the maps and spaces mentioned
in the theorem are sketched after the statement. The proofs are
omitted. The key is that the ring B(H) is, by virtue of Theorem
3, a Stone ring (see [7] and Becker [3]).

THEOREM 7. Assume kaR — K. Assume that V is an ir-
reducible real variety in Rn over k and that H = Sίf{E), for a finite
subset E of F(F = k(V)/k), contains a simple point of V. Then there
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exists, for i = 1, 2, a compact Hausdorff space Tt and a strongly
order-preserving isomorphism ψi of B*(H) onto the pointwise partial-
ly ordered ring C(Ti) of all continuous real functions on T€. For
any nonzero b(x) in B(H) the support of ψi(b(x)) is all of Tt. The
spaces Tt are canonically homeomorphic by a map

7: Tx > T2

and the induced map

7': Cm > C{T2)

in an isomorphism of partially ordered rings. This 7' is characte-
rized as the unique solution for a to the equation

Constructions. For 2\ we take the maximal ideal space of B*(H),
and for T2f we take J^f(E) = Ω(E)/~. The maps are defined as
follows:

fλb - {(M, r); r eR f] φ + M\ Me TJ .

This ψj) is actually a function on Γ2, continuous and real. To define
ψ2f let beB(H). Then for hej?f{E),

(ψ2b)h = Kb

now ψ2 is extended to all of B*(H) by continuity.
For any maximal ideal M in ϊ\ and any order P in Ω(H), we

say " P is centered at M", or α P is associated with M", provided P
contains every b(x) whose coset modilί contains a positive real
number—i.e., ψj> is positive at M. Then the correspondence:

M1 > hP providen P is centered at M ,

defines a map, which is the 7 of the theorem. To say that ψt is
strongly-order-preserving means simply that

THEOREM 8. Lei Λfe 2 ,̂ hP = 7M (/̂ ê ce P is centered at M).

Case 1. Assume P belongs to Ω(V), say z is the center of P
on F. Then for all b(x) e B(H),

A. b{z) = 0 <=> δ(a?) e J P <- δ(α?) e M.
B. δ(β) > 0 ~ δ(a?) e ?7P <- ̂ (6)M > 0.
C. For all e(x) in E, e{z) ̂  0.
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Case 2. Assume P has no center on V. Then some xi is in-
finitely large by P.

Because F/k is an Archimedes-Clifford field and kaR = K,
Theorems 7 and 8 have birational analogues for Ω(F/k), ^(F/k),
^f(F/k) = Ω(F/Jc)l~, with B(F/k) defined as follows:

B(F/k) = {f(x); for some reQ, f± &\F/k)) .

The proofs and statements require only routine modifications
(see [9], §6); the analogues follow.

THEOREM T'. {Birational form of Theorem 7) In the statement
of Theorem 7, delete E, H, 2ίf{JE). Replace B*(H) by B*(F/k).
The conclusions remain valid, ij the constructions below are made.

Constructions. Replace B(H) by B(F/k), <^(E) by
Ω(E) by Ω(F/k), B*(H) by B*(F/k).

THEOREM 8'. (Birational form of Theorem 8) Let the statement
of Theorem 8 stand. The conclusion is still valid for the construc-
tions above.

Finally we note that by introducing extended real functions
with values in the one-point compactification Rλ of R, improved
versions of Theorems 7, 8 and 7', and 8' can be obtained. The
routine details may be supplied by the reader. See our [9].

5* Snow-fields and Archimedes-Clifford fields* Let F/k be an
arbitrary formally real extension field, k being ordered, as usual.
Let j be a subspace of Ω(F/k). We define JA as follows:

DEFINITION. The subspace Δ is a snow-pack on F/k provided for
every (relatively) open subset Γ of z/, JΓ = {0}. Equivalently, j is
a snow-pack provided for every /, if / is infinitesimal by every order
in some nonempty open subset of Δ, then / is zero. The field F/k is
a snow-field provided Ω{F/k) is a snow-pack on F/k.

LEMMA (cf. [6], §3). If j is a snow-pack on F/k, then Δ is an
(AC/k) family. In case k is Archimedean-ordered, the converse is
valid.

Proof. The converse is an immediate consequence of Theorem 7
in §4. Assume Δ is not an (AC/k) family. It is easily verified (see
[6], Theorem 3.2), that there exists / in F, and Q in A such that
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/ e Π (P U JP)\Q .
PeΛ

The set Γ = {P P e j and /gP} is an open set containing Q.
Also / belongs to JΓ, but since f<£Q, f is not zero. Thus Δ is not
a snow-pack.

COROLLARY. Every snow-field is an Archimedes-Clifford field.
If the ground field is Archimedean ordered, the converse is varid.

THEOREM 9. Assume that Fjk is a formally real finite algebraic
extension of a pure transcendental extension of the ordered field k.
Then Fjk is an Archimedes-Cliford field: and if k is Archimedean
ordered, then F/k is a snow-field.

Proof. It is verified with small difficulty that the hypotheses
permit expressing F in the form F = K(U), with K = k(T), where
T is a finite set and U is a transcendence base of F over K (not k).
Since Kjk is finitely generated, it, along with every real finitely
generated extension of it, is an (A — C) field, by the corollary. The
theorem will be proved if we show the following: if K/k has the
property that each of its finitely generated pure transcendental
formally real extensions is (A — C), then every pure transcendental
extension of K is an (A — C) field.

To prove the italicized statement, assume F = K(U), and that
U is an infinite transcendence base of F/k. Let ^ be the family
of all subfields of F of the form K(S), where S is a finite subset
of U. By hypothesis this is a family of (A — C) fields. The family
is clearly totally directed, i.e., it satisfies the following conditions:

( i ) For every Ex and E2 in ^~* there exists Ez in &~ which
is an extension of each of Ex and E2.

(ii) For every Ex and E2 in J^7 if E2 is a field extension of
Elf then E2 is a total extension of Eί9 i.e., the restriction map eEi/Eί

which maps each order in Ω(E2/k) to its intersection in Eλ is sur-
jective (every order of EJk extends).
We next show that every totally directed family also satisfies:

(iii) The union E^ of all members of ^~ is a total extension
field of every Et in the family

The proof, sketched below, is a straightforward transfinite in-
duction. First, using Zermelo's theorem, we index the members of
^" by means of a well-ordered set. Now, given any E in ^ 7 a
re-indexing produces, by means of condition (i), a well-ordered as-
cending chain Ea (Eai)E), of members of J^ whose union is E^\
Eo — E, and for a > 0, Ea is the first member of the original well-
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ordered set which contains all preceding Eβ. In a similar way, given
an order P of E, an ascending chain of Pa is constructed by taking
Po = P, and using (ii) for passing from β to β + 1, while for a limit
ordinal a, Pa is the union of all Pβ for β < a. Then the union of
all Pa is an order of E^ which extends Po. In this way condition
(iii) is verified.

Since F = K{U) is the union of all the (A - C) fields in J ^ the
theorem will be proved if we prove the following:

LEMMA. The union E/k of any totally directed family J^ of
(A — C) fields is itself an (A — C) field.

To prove the lemma, assume / belongs to E and that for all
positive r in k, f + r belongs to P(E/k). There is a field E in J?r

which contains /. Let P be an order of E/k, and let P be an ex-
tension of P to E (such P exists by virtue of condition (iii) above).
Now f + r belongs to P for every positive r in k and hence f + r
belongs to P — PΓ\E. This latter condition is valid for every order
P of E; in other words, / + r belongs to ^{E/k) for every positive
r in &. Since E is by hypothesis an (A — C) field, we have / itself
in έ^(E/k). By Artin's easy theorem [1], / is a positive combination
of squares in E. Hence / belongs to &*(E/k). This proves that E
is (A — C), and the theorem is all proved.

Note. The finiteness restriction on the algebraic extension is
not superfluous, as shown in Dubois [9], §6.17.

THEOREM 10. Cf. Lang, loc.-cit. Theorem 9. For the same
hypotheses on F/k, for every f in F, f is positive definite over
<%f(F/k) if and only if f belongs to

Proof. (By Anonymous). Assume fiP(F/k). Take the K of
Theorem 9 above to contain /. Then f$&*(K/k). Lang's Theorem
9 gives us an order Q such that hQf < 0 holds, whence for some
(and every) extension of Q to an order P of F/k, we have hPf < 0.
This proves half of the assertion, and the converse is obvious.

6. Compatibility* Let k be an ordered field, k[X] the polynomial
ring in n variables as in the early paragraphs. Let J7~ be a finite
set of indices. Consider the relations

ί/XX) = 0 , 1 ̂  j £ v

\gt(X) > 0, ie^7~ ,

where f5 and gt belongs to k[X}. The solution set to &* is a semi-
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algebraic set. Let B be the ideal generated by the fd(X) and let
G be the (indexed) set of all gt(X). By a central solutiou to Sf we
mean a solution z in K% which is a central point on one or more of
the irreducible real components of 3^(2?). Since we are not assum-
ing that B is either real or prime, we digress briefly to the situa-
tion of a commutative ring A with unity, without (ordered) ground
field k. For an ideal B in A the real radical of B is the intersection
of all real prime ideals over B. For this definition and the lemmas
below, see our 1970 paper [12], §1. In case A has no ground field,
all references below to pt and Jc should be deleted.

LEMMA 1. The real radical VB is the set of all x in A which
saisfy a relation of the form

for some natural number m, positive pt in k, and aύ in A.

For a set G — {g^ie T}, where T is finite, the set G (compare
§D is

<? = {p Π f t ; 0 < p e Λ , UciT}.
ieU

For an ideal B in A, G is compatible with B provided for all gt in
G and all at in A,

Σ 9i°H e fyB implies every at e ^B .

THEOREM 11. The condition that every irreducible real component
of T^iB) contain a central solution to S is equivalent to compatibili-
ty of G with B.

Proof. By means of Lemma 2 below the proof is reduced to
the case where B is a real prime ideal, and that case is settled by
Lemma 3 below.

LEMMA 2. Let A be a unitary commutative ring, let B be an
ideal in A and let G be a finitely indexed subset of A.

A. Assume G is compatible with B. Then G is compatible with
every minimal real prime over B.

B. Assume A is Noetherian. Then the converse of A is valid.
G. Assume G is compatible with every real prime over B.

Then G is compatible with B.

Proof. We make liberal use of the results of [12]; theorems,
lemmas, etc., referred to below are from that paper.
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A. Let P be a minimal real prime over J5 —see Theorem 1.3G.
Then P is also a minimal real prime over VB, hence it is associated
with Λ/B . We choose an element c outside of VB SO that P =
τ/[ Λ/B : c] . Now assume for gt in G, at in A, that Σ &<&? belongs
to P = VP . Then for some m,

[ Σ &(<5<OT* - [c2 Σ M 2 " = c4m(

Reality of v 7 ^ now implies that Σ 9i(cat)
2 belongs to Λ/B. Com-

patibility implies that each cα̂  belongs to ψjB, which is contained
in P. Since P is prime and c is not in it, ai belongs to P for every
i. Hence G is compatible with P.

B. Assume that y = Σ &a* belongs to Λ/J3 . Then 7/ belongs
to every real prime over B. Now assume that G is compatible with
every minimal real prime of B. Then every at belongs to every
minimal real prime, and hence, by the Noetherian assumption, every
a,i belongs to VB —see Theorem 1.4b.

C. This is now obvious.

LEMMA 3. Now let A = k[X] — k[Xu , JSΓJ, with ordered field
k. Assume B is a real prime ideal in A, and that G — {g^ ie T)
is a finite indexed subset of A. Assume G is compatible with B.
Then the system S^ has a central solution. The converse is also
valid.

Proof. We take an order of k(%) which contains G/B = {g%(x);
ie T) as allowed by the assumed compatibility. The algebraic order
theorem guarantees that S^ has a central solution.

Conversely, assume that z is a central solution to Sf. Assume
further that Σ gi(X)at(XY belongs to B. Let Q be an order of k(x)
which is centered at z. Then gt(z) > 0 holds for every i whence
gt(x) is a nonzero member of Q. Also we have Σ 9i<x>i(x)2 = 0. Hence
every a^x) is zero so at(X) belongs to B. This proves compatibility.
The lemma, and with it the theorem, is proved.
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