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DETERMINATION OF BOUNDS SIMILAR TO
THE LEBESGUE CONSTANTS

H. P. DIKSHIT AND A. KUMAR

Bounds for the Norlund transformation of a sequence
associated with Fourier series are determined. These are
applied to obtain a necessary and sufficient condition for
the convergence of the Norlund transformation of Fourier
series when the generating function satisfies a condition
lighter than the continuity requirement.

1* Introduction* It is well known that the unboundedness of
Lebesgue constants implies the existence of a function whose Fourier
series diverges at a point of continuity (e.g., see [5], §6). Consi-
dering a class of transformed sequences of Fourier series at a point
at which the generating function satisfies a lighter assumption than
the continuity, we first obtain bounds for the sequence. An interest-
ing application of such a result gives a necessary and sufficient
condition for the convergence of the transformed sequence.

In the present paper, we consider the Norlund transformation
W p J associated with a given sequence of numbers {pn} such that
Pn = ΣL=o Pk =£ 0 and p_± == 0. The (N, pn) transformation of a series
a = Σ?=o a>k or the sequence of its partial sums {sn}, is defined by
the sequence {tn(a)} where

Suppose f(t) is a periodic function with period 2π and /(ί) 6
L(0, 2π). Let F = ΣϊU A»0*0 denotes the Fourier series of /(£), at
t = x. We introduce the following notations for convenience. For
a given number s

φ{t) = /(α? + ί) + /(α? - ί) - 2s; tφβ) - [φ(u)du ,
Jo

J w s Λ = Δsn = s n - sn+1, 42sn ( J

P*VJτ) - w 1 Σ *Mrp*-r I; P.^(r) = w-1 Σ P**-r,

where r = 1, 2.
For sequences {αΛ} and {&„}, α w χ 6 Λ means that αΛ lies between

two positive constant multiples of bn.
K denotes a positive constant not necessarily the same at each

occurrence and [%] denotes the greatest integer not greater than x,
in particular w = [1/ί]. For any sequence {αj, a(x) = α[a.].
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2* The main results* The following theorem which provides
bounds of Lebesgue constants for Norlund method is essentially due
to Hille and Tamarkin ([4], Theorem 7).

THEOREM A. Suppose that {pn} is a positive sequence such that
{Vn(l)}eB, i.e., {Vn(l)} is a bounded sequence, then

(2.1) \"\N{n9t)\dtχSn(ϊ),
Jo

where {N(n, t)} is the sequence of (N, pn) transformation of 1/2 +

The original version of Theorem A as given in [4] contains the
additional hypotheses that {Rn} e B and (N, pn) is regular. However,
we observe that

(2.2) npn = - ΣAkPu) = Pn-i - Σ K4Pk-i)
Jc=O J f c = l

and, therefore, {Vn(ϊ)}eB implies {Rn}eB and the latter implies
that (N, pn) is regular.

As an interesting application of (2.1), Hille and Tamarkin ([4],
Theorem II) proved the following result.

THEOREM B. Suppose that pn>0, {Vn(l)}eB. Then in order
that the Fourier series F should be summable (N, pn) to s whenever
φ(t) = o(l) as t —> 0, it is necessary and sufficient that {Sn(ϊ)} e B.

Under a less restrictive condition on f(t) viz., φ^t) = o(l), £->0,
Astrachan ([1], Theorem I; see also Dikshit [3]) has obtained only a
set of sufficient conditions for the (N, pn) summability of the series F.

In the present paper, we first prove the following and then
deduce a necessary and sufficient condition for the (N, pn) summa-
bility of the series F under the assumption: φx(t) — o(l), t —> 0.

THEOREM 1. Suppose that {pn} is a positive sequence such that
{Vn(2)}eB, then

(2.3) \'\M(n,t)\dtxSΛ(2),
Jo

where {M(n, t)} is the (N, pn) transformation of {k cos kt}.

Using the result (2.3), we shall prove the following:

THEOREM 2. Suppose that {pn} satisfies the hypotheses of Theorem
1. Then in order that the Fourier series F should be summable
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(N, pn) to s whenever φλ(t) = o(l), t —> 0 it is necessary and sufficient
that {Sn(2)} e B.

3* Preliminary results* We use the following lemmas for the
proof of our theorems.

LEMMA 1. Let {an} be a given sequence, then for any x Φ 1, we
have

Σ akx
h = α(l ~ x)~2 { Σ (<d*ak)(xh+1 - xr) + (4αf_1)(a' - xr)\

+ (1 - x)~\arx
r - asx

s+1) ,

where r and s are integers such that s — 2 ^ r ^ 0.

The proof of Lemma 1 is direct.

LEMMA 2. Suppose a sequence {sn} satisfies the conditions:

Σ l**| ^ ^ Γ . αΛd Σ,k2\A%_2\ ^ KTn

k=l k=l

for some sequence of positive numbers {Tn}. Then

Lemma 2 is a particular case of a more general result given in
([3], Lemma 1).

LEMMA 3. // {pn} is a nonnegative sequence and {Vn(2)} eB,
then (i) {Vn(l)}eB, and (ii) n = 0(PJ.

Proof. It follows trivially from the assumption {Fw(2)} 6 B that

± \)
and (i) therefore follows from Lemma 2.

In order to show (ii), we observe that if, for any k, A2pk_2 Φ 0
then, for all sufficiently large n, KPn ^ n. Otherwise, if Δ2pk_2 = 0
for all k ^ 1, then Apk_2 is a constant which is obtained by putting
k = 1. Thus, KPn ^ -Σ*ίMp*-2 = (n + l)p0 and (ii) follows.

The next lemma follows from a result due to Hille and Tamarkin
([4], Lemma 9) when we observe that {VJX)} 6 B implies that {Rn} e B.

LEMMA 4. If {pn} is a positive sequence and {Vn(l)} e B, then
0 < ε 5S v/u ^ 1/ε implies the existence of an a such that 0 < a ^
P(v)/P(u) ̂  I/a.
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LEMMA 5. If {pn} is a positive sequence and {Vn(l)} e B, then
for any positive d 5Ξ π,

t — 1

Jl/n
dt = O(PJ .

The proof of Lemma 5 is essentially included in ([4], see (6.07)
and Lemma 7 with m = 2, 3 or 4 for which the condition: {Sn(l)}eB
is not used).

4* Proof of Theorem 1* We first write

ιv — 1 n

PnM(n, t) = Σ Pk(n — A?) cos (n — h)t + Re X 2>*(w — fc) e χ P i(n — k)t
k=o k=w

= Σ + Re Σ ,
1 2

say. Applying Lemma 1 to Σ 2 , we obtain

Σ = (1 "" e χ P (™^))~1PM;(^ — w) βxp i(ϋ — w)t — X(n, t)
2

where

(4.1) I X(n, t) I £ Kt

Thus, we have

(4.2) PnM(n, t) = Σ + Σ - Re X(^, t) ,
1 3

where Σs = Pw(n — w) sin (n — w + l/2)ί/{2 sin ί/2}.
We now introduce the intervals /r = ((2r + l/3)ττ/w, (2r + &J9)π/ri)

for r = 1, 2, , [w/47r] — 1, which are all disjoint subintervals of
(2/n, 1). Considering Σi> w e observe that the restriction 0 ^ k < w
implies 0 <̂  kt < 1 for all ί e (2/n, 1), so that whenever t e Ir,
(n-k)teJr = ((2r + lβ)π-l, (2r+4/9)ττ). Thus, for telr, cos (n-k)t
is not less than cos (4ττ/9). We also see that for te(2/n, 1/2),
0 < ί(w - 1/2) < 1 and, therefore, (n - w + l/2)ί e Jr whenever t e Ir.
Thus sin (n — w + l/2)ί is not less than sin (τr/3 — 1) = 2C0, say. In
view of these observations, if we write Έ— UIr and Yn=\ \X(n, t)\dt,
where n is sufficiently large, then

\M(n,t)\dt+ Γ . ^ Ί Σ
l/n J2/n l

(4.3) ^ 2 ^ y gPt(w - k) + pw(n - w)(2 sini-

> Con[ \ Σ PkUt = Con\ P(l/t)dt,
JE { k=0 ) JE
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since for t eEcz(2/n, 1/2), n - w > n/2.
Writing d = πβn, we observe that each interval Ir is of length

d and any two consecutive intervals J r, Ir+1 are separated by a
distance Πd. Now we move the intervals Ir to the left by taking
s = t — 17(r — l)d so that all the intervals Ir abut upon each other.
Suppose the shifted interval Ir is denoted by I*, then we see that
for s 6 1 * and t e Ir 18 s^t so that P(l/t) ^ P(l/18β) and P(l/t) ^
c'P(7π/3s) for some c' > 0, by virtue of Lemma 4. Thus, we have
from (4.3)

IM(n, t)\dt+ Yn^ Coc'n\ P(7π/Ss)ds

^ c"n[* u~2P(u)du ^ cPnSn{2) ,

where bn —> 14ττ/3 as n -> ©o, and c, cf, c" are some positive constants.
In order to obtain the lower bound in (2.3), we assume for the

moment that for some fixed K,

(4.5) Y»

and deal with the cases SΛ(2) ^ 2Z/c and >SΛ(2) < 2K/c separately.
In the former case, (4.5) gives that Yn <̂  (l/2)cPnSn(2) so that we
have from (4.4),

(4.6) Γ \M(n,t)\dt^±cS%(2).
h/n 2

For the other case, we first observe that if t <* πβnf then for all
k with 0 ^ k ^ n, cos kt >̂ 1/2. Hence under the hypothesis: that
pM > 0, we have

[*\M(n, t)\dt > \π'*n\M(n, t)\dt
Jo Jo

π
Λ 12PΛ *«r(«)

where 2r(w) = ^ or ^ + 1 according as n is even or odd. Now
using Lemmas 3 and 4, we have

\]\M(n,

where c* is some positive constant. Thus, in view of the condition
Sn(2) < 2K/c, we have

(4.7) ΓIM(n, t)\dt> (cc*/2K)Sn(2) .
Jo
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In view of (4.6) and (4.7), we have in either case

(4.8) [\M(n,t)\dt^ASn(2)
Jo

where A = min (c/2, cc*/2K).
We now complete the proof of the lower bound in (2.3) by

showing (4.5). Substituting t~x — u in (4.5) and observing that

{A\{n - k)pk} = (n - fc - 2)A2pk + 2Apk ,

KL(n)

we have

(4.9)

where

But

L(n)

L(n)

Jl/»

Jl/7r k=\_v

t)\dt ^

p | +

(4.10) r = 1 * = r r = 1 4 = r

by virtue of the hypothesis {Vn(2)}eB and Lemma 3. Combining
(4.9) and (4.10), we prove (4.5), when we observe that {Rn}eB by
Lemma 3.

It follows from the proof of Theorem I in ([1], pp. 551-553)
that under the hypotheses of Theorem 1

(4.11) ΓIM(n, t)\dt = o(ΐ) + o(Sn(2)) .
Jo

Writing m = [n/2] and using the hypotheses of Theorem 1 it
follows from Lemmas 3 and 4 that there is a positive number K
such that

(4.12) S n ( 2 ) ^ f β m f ^

We thus obtain (2.3) from (4.11) when we observe that the lower
bound in (4.12) tends to K as n —> w.

This completes the proof of Theorem 1.

5* Proof of Theorem 2* We first observe that in view of
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Lemma 3, the hypotheses of Theorem 2, imply the regularity of
the (JV, pn) method. Thus, if {tn(F)} is the sequence of (JV, pn)
transformation of the series F, then

tn(F) - s = o(l) + - M * φ^t-1 ( ± pn_k sin kt )dt
πPn Jo V fc=o /

<Pi(t)( Σ P»-kk cos kt)dt

= o(l) + 2\ - Γ2, say .

In order to prove the necessity part, we first observe that if
the Fourier series is (N, pn) summable whenever φx{t) = o(l), t-+0
then it is certainly summable (JV, pn) whenever φ(t) = o(l). The
latter implies that {Sn(l)} 6 B, when we appeal to Lemma 2 and a
result due to Hille and Tamarkin ([4], Theorem II). Further,
{Vn(ϊ)}eB by virtue of Lemma 2 and, therefore, following the proof
of Theorem 1 in ([4], pp. 769-770), we see that Tx = o(l) as n-* oo,
whenever ^(ί) = o(l), t -+ 0. Thus, the (JV, p j summability of F
to s implies that as n—>oo

(5.1)

We now claim that a necessary condition for (5.1) is that

(5.2) lim sup Γ|M(n, t)\dt < <*> .
n-><χ> J O

Assuming that (5.2) fails, that is, that

(5.2') l i m s u p Γ | M(n, t)\dt = <*> ,
J

we construct a function φx{t) such that (5.1) fails.
In view of the hypothesis {VJ2)} e B and Lemma 2, we have

from (4.1M4.2) that

(5.3) ^\M(n, t)\dt = C{z) = 0(1)

for any fixed z > 0. Taking xo(O) = π, we observe that in view of
(5.2'), we can find an increasing sequence of positive integers
{n(r)}?=1 and a decreasing sequence of numbers {α70(r)}?=1 such that

(5.4) ί IM(n(r), t)\dt> r\r + C(xo(r - 1))]
JQr

and
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(5.5)
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\'t{r)\M(n(r),t)\dt<r-\
JO

where Qr = [xo(r), xo(r - 1)].
By choosing

everywhere in Qr except in sufficiently small neighborhoods of
#o(?*)> %Q(T — 1) and those points of Qr at which M(n(r), t) changes
sign, it is clear that we can define φx(t) in each Qr in such a way
that its derivative exists and is bounded everywhere, that it
vanishes at xQ(r), xo(r — 1), that Iφ^t)] <; r~2, and that

M(n(r), t)φi(t)dt
Qr

is arbitrary near to

Thus using

IIV
IIV

(5.4M5.5),

tf(%(r), t)dt

r
JQr

- Γ «
J*0(r-l)

-0(r~ 2) + ?

r~2ί |Λί(w(r), t)\dt .

we have

(r), ί)dί — \ φJjϊjMtyty
Jo

t)M(Ύi(τ) t)dt

-2[ IΛfίnW.OIdί-Cίa oίr

•), *)dί

- i ) )
JQr

^ -0(r-2) + r .

This contradicts (5.1) and hence, we have shown that (5.2) is a
necessary condition for (5.1). The necessity part of Theorem 2 now
follows when we appeal to Theorem 1.

For the sufficiency part of Theorem 2, reference may be made
to [1] and [3].

REMARKS. A simple example of a function φx(t) meeting the
requirements of the construction given after (5.5) is a piece wise
quintic polynomial function or more precisely a deficient quintic
spline function. For the definition of such functions reference may
be made to [2].

The authors would like to express their grateful thanks to
Professor B. Kuttner of University of Birmingham for some valuable
suggestions.
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