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A RECIPROCITY LAW FOR RAMANUJAN SUMS

KENNETH R. JOHNSON

Certain arithmetic functions are representable by two
types of series involving Ramanujan sums. A reciprocity
law for Ramanujan's sum is derived which relates these
series.

Ramanujan [7] and Hardy [4] found representations for several
arithmetric functions of n, of the form

(1) F(n) = £a(k)ck(n),

where ck(n) is Ramanujan's sum. Rearick [8] showed that such
representations exist for a large class of arithmetic functions, and
called them C-series representations. In this paper we show that
functions of a certain class are also representable as series of the
form

( 2 ) F(k) = Σ b(n, k)ck(n) .

Let us call representations like (2) C'-series. The class of functions
represented by C'-series is smaller than the class of functions repre-
sentable by C-series; however we can use a reciprocity law for
Ramanujan sums to show that (1) and (2) are equivalent under certain
conditions.

Ramanujan proved

(3) C 4 ( Λ ) = Σ dμ(k/d).
d|(ft,»)

Rearick and Donovan [3] showed that for fixed square-free k, the
function μ(k)ck(ri) is multiplicative in n. After this observation it
is easy to prove

LEMMA 1. For fixed square-free k,

( 4 ) μ(k)ck(n) = Σ dμ(d) .
d\{k,n)

Proof. We need only show that the right hand side of (4) is
multiplicative and then demonstrate the equality when n is a power
of a prime.

DEFINITION 2. Let k denote the largest square-free divisor of
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k (the core of k), and let &* = k/ϊc.
Hardy [4] proved that ck(ri) = 0 unless &* | n. Using this fact,

one may work directly from (3) to prove

LEMMA 3. ck(nk*) = k*c%(n).

THEOREM 4. Let F be an arithmetic function. Let A(k) be the
function which is zero whenever k is not square-free, and for square-
free values of k is defined recursively by the equation

( 5 )

Suppose

( 6 )

Define

( 7 )

Then

( 8 )

F(k) =

oo oo

b(k) =
t

μ(k)F(k)

Σ dμ(d)A(d)
alk

A(kκ)l < - .

Σ μ(n)A(nk) ,

for all square-free k, and this series converges absolutely. On the
other hand, if F has a series representation like (8) with
ΣΓ=i! b(k) I < co, and b{k) = 0 if k is not square-free, then the
coefficient function is given by (7).

Proof. Using a well known inversion property of the Mobius
function ([5, Theorem 270]),

(9 ) A(k) = Σ b(nk) .

Using this in (5) we obtain

F(k) = Σ dμ(d) Σ Knd)

= Σ b(n) Σ dμ(d)
n=l d\Uc,n)

oo

= Σ Kn)ck(n)μ(k) , by Lemma 1

since k is square-free. So μ(k)F(k) = Σ?=i b(n)ck(n). The absolute
convergence of (8) follows from (6).
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On the other hand, given (8) with b(k) = 0 for all non square-
free k, and ΣϊU !&(&)! < °°, we can reverse the steps to obtain (9),
which after (6) is equivalent to (7), so the coefficient function is
uniquely determined.

The restriction of the argument of the coefficient function to
the square-free integers is necessary for uniqueness. For example,
if we expand Σ*n=Λμ(k)ck(n)ln8) and ΣιZ=ά\Kn)\μ(k)ck(n)/φ.(n)) in
Euler products (s — σ + it) for σ > 1 we find

and also

2-ι :
«=i ns

22 J 7 τ 9
n=i φs(n)

for any square-free value of k (see [6]). Here φjjc) = ks J\p\k (l — (l/ps)).
Since the sum in Lemma 1 is symmetric in k and n, we have

LEMMA 5. For all square-free k and n,

μ{k)ck{n) = μ(n)cn(k) .

We may now obtain the general reciprocity law for Ramanujan
sums.

THEOREM 6. For all k and n,

n*

Proof. By Lemma 5, μ(k)c%(n) — μ(ή)cz(ίc). From (3) it follows
that c%(n) — cι(n), so μ(k)c%(n) = μ{n)c^{k). Upon application of Lemma
3 to both sides of this equation the reciprocity law is proved.

Using the reciprocity law for Ramanujan sums, we can show
that C'-series exist which represent certain functions for all integral
values of their argument. However, in these representations the
coefficient function becomes dependent on both variables. These C'-
series representations are equivalent to a class of C-series represen-
tations.

THEOREM 7. A function F has an absolutely convergent C-series
representation F(n) = Σ?=i a(k)ck(n)f with a{k) — Oifkis not square-
free, if and only if F(ri)n*μ(n) has an absolutely convergent C'-series
representation F(ri)n*μ(n) = Σΐ=ib(k/n*)cn(k).
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Proof. Suppose F{ri) = Σ£U a(k)ck(n) is absolutely convergent
and a(k) = 0 if & is not square-free. Then

F(n) = Σ a(k)ck(ri)

oo

— Σ Kk)a(k)μ(k)ck(n) y since fc is square-free

= Σ μ(k)a{k)^cn(kn*) , by reciprocity

Σ b(k)cn(kn*) , where 6(fc) = (̂fc)α(fc)

Conversely,

F(n) =

n* *=i

= jr b(k^(k) Ck(nkη by reciprocity

= Σ a(k)ck(nk*) , where α(Jfc) =Σ a(k)ck(nk) , where α(Jfc)
*=1 ft*

= Σ a(k)k*Ck(ri) , by Lemma 3 .

If we now let H(k) — {meZ+: m = k} and put

β(fc) — Σ w*α(m)
mef(ϋ)

(this converges since the original sum converged absolutely), then

with a(k) = 0 if fc is not square-free.
For example, in [7] Ramanujan proved

If we now apply the reciprocity law to (10) we obtain

\t*k/n*)\cu(k)
77T~

which is a C'-series representation of φs_λ. This representation is



A RECIPROCITY LAW FOR RAMANUJAN SUMS 103

now valid for all n, generalizing our earlier result for φs_x.
Following Anderson and Apostol [1], we turn our attention to a

generalized Ramanujan sum, defined as follows.

DEFINITION 8. For any two arithmetic functions / and g let

THEOREM 9. Suppose f and g are multiplicative and g(n) = ± 1
for all n. Then for fixed n the function sk(n) is multiplicative in
the variable k, while for fixed k the function g(k)sk(n) is multiplica-
tive in the variable n.

Proof. The first assertion is easy and requires only that / and
g be multiplicative (see [2, Lemma 2.1]). To prove the second
assertion, fix k and choose (n, m) = 1. We have

(11) g{k)sk{m)g(k)sk(ri) = sk(m)sk(n) ,

since g\k) — 1. Both sides of (11) are multiplicative in k so we may
assume & is a prime power. Then

8k(m)8k(n)= Σ ΛdMWdJ Σ Λdi)g(k/d2) .
d ^ O ) d2\Ue,n)

Since (m, n) — 1 and k is a prime power, either dx or d2 must be 1,
so

= g{k)g{kldA)

and thus

sk(m)sk(n) = Σ ftd1di)g(k)g(kld1d2)

Σ f(d)g(k/d)
k

) Σ
d\{k,mn)

= g(k)sk(mn) ,

thus establishing the theorem.
In order to obtain a satisfactory reciprocity law for sk(n)f we

must now either restrict k and n to the square-free integers, or
restrict g to the class of completely multiplicative functions. We
choose the latter course.

LEMMA 10. Suppose f is multiplicative, g completely multiplica-
tive, and g(n) = ± 1 for all n. Then

g(k)sk(n)= Σ Λd)g(d).
d\(k,n)
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Proof.

= g(k) Σ f(d)g(d)
d\(k,n)

Σ
d\{kfn)

since g^is completely multiplicative,

= Σ f(d)g(d),
d\(k,n)

since g(n) = ± 1 for all w.
Under our assumptions on / and g, the reciprocity law for sk(n)

is somewhat simpler than that for ck(ri), namely:

THEOREM 11. With the hypotheses of Lemma 10,

g(n)sn(k) = g(k)sk(n) .

Proof. The sum in Lemma 10 is unchanged if we interchange
k and n.

Fnally, using the same proof as for Theorem 4, we can derive
general series expansions of certain arithmetic functions in terms of
either variable of sk(n)9 and the expansions are equivalent due to
reciprocity. We have

THEOREM 12. Let F, /, and g be arithmetic functions, with;:f
and g satisfying the hypotheses of Lemma 10. Let A(n) be the
function which is zero whenever f(n) = 0, and for other values of
n is defined recursively by the equation F(ri) = Yid\nf(d)g(d)A(d).
Suppose

(12)

Also

(13)

and

(14)

Then

(15)

and

define

for all

Σ Σ | A ( f c t t ) | < oo,
k=l n=l

b(n) = Σ A(kn)μφ\

a(n) — g(n)b(n) .

n such that f(n) Φ 0,

F(n) = Σ α(fc)βt(Λ)
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oo

(16) g(n)F(n) = Σ b(k)sn(k)

where both sums converge absolutely. On the other hand, if a(n) or
b(n) is the coefficient function in a series of the form (15) or (16)
representing F whose associated function A satisfies (12), with
Σn=i I Φ ) I < °°, and A{n) = 0 if f(n) = 0, then the coefficient func-
tions are given by (13) and (14).

For example, if we let sk(n) — Σ«m*,n) μ(d)Mk/d), we can expand
Σ£=i (KfySkM/Φsik)) in an Euler product for σ > 1, and obtain (for
all square-free n)

(σs(w) is the sum of the sth powers of the divisors of n.)
In light of reciprocity and the fact that \μ{k)\ — μ(k)X(k), we

may also write

ζ(s) Jc=x φs(Jc)
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