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APPROXIMATING COMPACT SETS IN NORMED
LINEAR SPACES

JACK GIROLO

It is shown that in normed linear spaces compact sets
can be approximated by compact absolute neighborhood
retracts in the following sense: If X is a compact subset
of a normed linear space, then for every ε > 0 there exists
a compact absolute neighborhood retract that contains X
and has the property that each point of the retract is within
ε of X. If the choice of ε is sufficiently large, the retract
can be chosen to be an absolute retract.

Suppose that X is a compact subset of a Banach space B. Then
the closure of the convex hull of X, conv(X), is a compact absolute
retract that contains X. Browder [4] has shown that if U is an
open subset of B that contains X, then there exists a compact
absolute neighborhood retract lϋ* such that X C R* £ U. Both of
these results have proven to be useful in Fixed Point Theory. See,
for example, the work of Browder mentioned above and the work
of Gόrniewicz and Granas [9].

Let X be a compact subset of a normed linear space N. The
purpose of this paper, Theorem 1, is to show that there exists a
compact absolute retract R such that XQRζZN. Further, it is shown
that if U is an open subset of N that contains X, then there exists
a compact absolute neighborhood retract R* such that X Q R* QU.

1* Preliminaries* Absolute retracts and absolute neighborhood
retracts for metric spaces will be denoted by AR and ANR respec-
tively. We use the notation d(x, E)(d(x, y)) for the distance from a
point x to a set E (to a point y). A continuous function f\X—>R
will be called a retraction if R £ X and f(x) = x for each x e R.

LEMMA 1. Let (N, || \\) be an infinite dimensional normed linear
space, X be a compact subset of N, F be a finite dimensional subspace
that is disjoint from X, and ε be greater than 0. Then there exists
a finite dimensional subspace E that contains F, is disjoint from X,
and for all x e X, d(x, E) < ε.

Proof Let U* be an open subset of N. We show that there
exists a finite dimensional subspace E* that contains F, meets U, and
is disjoint from X. Let B be the closure of an open set that is
contained in U and is disjoint from X. For each 6 θ B, let Eb be the
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subspace generated by 6 and F. Suppose that for each such 6, Eb n
X Φ 0 . Let bn be an arbitrary sequence in B, and let xn e Eb% Π X.
Now bn can be expressed in the form bn = vn + tnxn where vneF and
tn is a real number. The sequences \\vn\\ and \tn\ are bounded, and
the sequence xn lies in the compact set X. Thus there exist subse-
quences vnk, xnk, tnk, vectors v e F, x e X and t e R such that bnjc = vWfc +
^x«fc -*v + tx. Since J5 is closed v + txeB. This leads us to conclude
that B is compact contrary to the fact that B has nonempty interior.
Therefore, there exists a subspace E* satisfying the desired properties.

Now cover X with a finite collection of open sets Uu U2, , U%,
each with radius less than ε/2. By applying the result in the above
paragraph n times, we are able to construct a finite dimensional
subspace E that contains F, is disjoint from X, and meets each of
the Uj. Let xe X. There exists a Uj and a, y e E such that x, y e
Uj. Then <Z(a?, J5) <; d(x, y) < ε, and this completes the proof.

DEFINITION 1. [5] Let (N,\\ ||) be a normed linear space. Then
the norm is said to be strictly convex if for all x, y not equal to 0,
II # + 2/11 — \\χ\\ + II2/II implies that y — px for some p > 0.

Assume that (JV, || ||) is a strictly convex normed linear space
and E is a finite dimensional subspace of N. It was observed in [2]
that for each x e N there exists a unique closest point, denoted by
Φ(x), in E. That is, φ(x)eE and d(x, φ(x)) = d(α5, j&). The resulting
function φ:N-+E, which is called a metric projection, has the
following properties that are easily verified [2, 12].

0 is continuous,
Φ is idempotent: ^2 = φ,
^ is homogeneous: φ(tx) = tφ(x) for all t e R and α? e N, and
^ is quasi additive: φ(x + y) = ^(α) + 1/ for all #eiV and

We establish ^ . Let a e l and suppose xn is a sequence that
converges to x. Without loss of generality we may assume that Φ(xn)
converges to some point y e E. Then || x — y || = lim^oo || x — ̂ (α?J || =
d(x, E). So y = φ(x), and we conclude that φ is continuous.

LEMMA 2. Lei N be α strictly convex normed linear space, E
be a finite dimensional subspace of N, R be an absolute neighborhood
retract in E, φ: N-* E be the metric projection, and e be greater
than 0. Then φ~\R) = {x e N: φ(x) e R} and {x e Φ'\R): d(x, R) <> e]
are absolute neighborhood retracts.

Proof. There exists a neighborhood U* of R in E and a retrac-
tion r*:t/* ->#. Set U= Φ~\U^) and define r:U->φ-\R) by r(x) =
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x + r*(φ(x)) — φ{x). It follows by properties ^ and ^ that r is a
retraction.

Next set A = {xe Φ~\R)\ d(x, R) ^ e) and define s: Φ~\R) -> A by

Ix ΐ/ d(x, R) ^ e

l χ) + ex d R)^
-1 d(x, R)

χ) +

, R) -1 d(x, R)
The function s is a retraction. Since a retract of an ANR is an
ANR, the proof of the lemma is complete.

2* The approximation theorem* A function f:X~^R will be
called compact retraction provided / is a retraction and R is compact.
If N is a normed linear space, and xeN, then Bt(x) = {y e N: d(x, y) ^ ε}
is called an JV-ball. In order to simplify the proof of the approxima-
tion theorem, we state the following definition.

DEFINITION 2. Let K be a compact subset of a normed linear
space N. Then an ε-pair of K in N, denoted by (N, K, P*f P, ε),
consists of ANR's P* and P such that K £ Int(P*), P* £ P £ ΛΓand
if x e P*, | / e P and d(x, y) ^ ε, then the segment [x, y] — {tx + (l — t)y:
O^ί^ljSP.

The proof of the approximation theorem is similar in certain
respects to [3, p. 108].

THEOREM. Let (N, || ||) be a normed space and let X be a compact
subset of N. Then there exists a compact absolute retract R such that
X Q R £ N. If U is an open subset of N that contains X, then there
exists a compact absolute neighborhood retract R* such that X £
R* £ U.

Proof. A straightforward argument establishes the result when
the dimension of N is finite. In that which follows we assume that
the dimension of N is infinite.

Let D be a countable dense subset of X. Then the closure of
the linear span of D is a separable normed linear space that contains
X. Thus, without loss of generality, we may assume that JV is
separable. Further, we may assume that X does not contain the
origin. Every separable normed linear space has an equivalent
strictly convex normed [5]. Consequently, we may assume that || ||
is strictly convex.

It will be shown that for n = 1, 2, 3, , there exists
(IJ a finite dimensional subspace En 2 En_x{EQ = 0 ) with metric

projection φn: N->En such that if xeX then d(x, En) < εn <: e^/18
(fio - 1 8 ) ,
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(ΠJ a 36,-pair of φn{X) in Eny (En, φn{X), Pn*, Pn, 3εJ,
(IIIJ an ANR An = {x:xe φ~\PJ and d(x, PJ ^ 3εΛ} (Ao = N) such

that X S Int An9 An £ I n t ζ A ^ ) and P._1 n An = 0(P O - 0 ) , and
(IVJ a compact retraction / n : AΛ_!—> JRΛ (JB0 = 0 , / o = 0 ) that

satisfies ί n n A , = P., Λ Π i ^ = P*_lf Λ(α?) = /^(α?) for x e bd{An_,),
fn(x) = φn(x) for x 6 Any and if a? 6 An_, and d(α;, i2J <; 3, then d(x, fn(x)) ^
3en_le

Let Si = 1. By Lemma 1 there exists a finite dimensional subspace
JSΊ such that if xeX then d(x, EJ < ε19 and XΓiE1= 0 . Let ^ :
N-^Ex be the corresponding metric projection. There exists a finite
number of points p\, , pix e &(X) and corresponding JSΊ-balls jBβl/2(ί>}),
• , Bεi/I{<p\χ) such that φ,{X) £ Int U ^ i

Set P* - U ^/.(Pi) and P^{xe Et: d(x, P?) ^ 3eJ

It is easy to see that Pf and Px are ANR's [3, p. 90] and it follows
that (JBί, Φ^X), Pi, P ί , 3εx) is a 3ε rpair of φλ{X) in 25i. Set Ax^{x:xe
ΦΓ\Pi) and d(α, PJ ^ 3εJ. Clearly, X £ Int Ax, Λ £ N = Int(A0) and
P0Π Aj = 0 Π Ai = 0 . Set R± = conv (PJ. There exists a retraction1

s: Ex -* Rt. We define f,: N ~> i2x by /x = 8°&. Clearly, ^ Π Ax = P 1 ?

^ n Ro = 0 = Po, /x(i») = /o(x) for x e 6d(A0) and /^a?) = Φ,(x) for a; e Aλ.
Suppose xeA0 and cί(x, Rx) ^ 3. Then it is easy to see that
d(x9 fi(x)) ^ 3ε0. Thus, the four conditions are satisfied for the case

Now assume that for k = 1, 2, , n the conditions can be
satisfied. We show that for k = n + 1, there exist appropriate func-
tions and sets that satisfy the conditions.

By condition (IIIJ we have X £ Int (A J = {x: x e Φ~\Pn) and
d(x9 Pn) ^ 3εw}. There exists an open set Wn of N such that l £
Wn <^An,Wnf)Pn=0, and φn(Wn) £ Int(P*). This follows from (II J .
Let e*+ι - d(Σ9 N - TFJ.2 Set

εn+1 < min {εJ18, εί+1/8} .

By Lemma 2 there exists a finite dimensional subspace En+1 with
metric projection φn+1:N—>En+1 such that if xeX then d(x, En+1) <
en+1, En £ En+l9 and Xf]En+1 = 0 . Thus, condition (In+ί) is satisfied.

There exists a finite number of points p?+1, p?+ 1 vl^ 6 ̂ n+1(-Σ)
and corresponding £7Λ+1-balls jBε%+l/2(pΓ+1), , ^ + 1 / 2 ( P C + I )

 s u c l 1 t h a t

£ Int U?=i+1 •βεw+ι/2(ί>?+1) Set

= U Bεn+l/2(p?+1) and P w + 1 = {xe# n + 1 : d(x, Pί+ 1) ^ 3ε%+1} .

1 The retraction is constructed in such a manner that d{x, s(x)) ^ 2d(x,
2 d(X, N-Wn) = mf{d(x, N-Wn):xeX]
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It is easy to see that P£+ 1 and Pn+ι are ANR's [3, p. 90], and it
follows that (En+1, φn+1(X)9 P£+i, P»+i, 3εH+1) is a 3εΛ+1-pair of φn+1(X)
in En+1. Thus condition (Π +i) ι s satisfied.

Suppose x 6 P n + 1 . Then there exists a -Bε%+l/2(^?+1) and a # e
Bεn+l/2(p?+1) such that d(a?, #) <; 3εΛ+1. There exists a 2 e X such that
φn+1(z) e B£n+l/2(p«+1). Thus d(x, z)£d(x, y) + d(yt Φ«+1(z))+d(φ%+1(z)9 z) <

5εn+1. We conclude the following:

( 1 ) If a? 6 Pn+1 then d(x, X) < 5εn+1 .

Set An+1 = {#: x e ^ii(ίVf-i) and d(α?, Pn + 1) ^ 3eΛ+1}. By Lemma 2,
An+1 is an ANR. We have φn+1 (X) £ Int P*+ 1 and if a e l then
rf(a?,PJ<eΛ+1. Thus, X£lnt(A Λ + 1 ) . Letα?6AΛ + 1. Then d(a?f φn+1(x)) ^
3εΛ+1 and by (1) d(φ%+1(x), X) < 5εn+ι. So d(x, X) < 8εn+1 < e*+1. Thus,
xe Wn and it follows, from the fact that An+1 QWnQ Int An, that
An+1 £ Int AΛ. By construction Pn f] AΛ+1 = 0 . Condition (IIIΛ+1) is
satisfied. We also note that φn(Pn+1) £ P*. This follows since

We set 5 Λ + 1 - {x: a? 6 ^ Λ + 1 n ^ ( P ί ) and d(α;, P*) ^ (23/18)eJ. Sup-
pose a?ePΛ + 1. Then xeEn+1. Also, cZ(x, P*) ^ d(α?, X) + εn. By (1)
and the definitions of P* and εΛ+1, we have d(a?, P*) <; 5εΛ+1 + εΛ ^
(23/18)εΛ. We conclude that Pn+1 £ BΛ + 1. By Lemma 2 and the fact
that En+1 is finite dimensional, we have that Bn+1 is a compact ANR.
Furthermore, it is clear that Bn+1 £ Int(AJ. We defined

Sί+i = P U BΛ + 1 U AΛ+1 .

It is clear that R*+1 is a closed subspace of An and by [3, p. 90] Rn+1

is an ANR. So there exists an open subset Z7*+1 of Rn+1 in An and
a retraction rn + 1: Ui+ι —>• J2ί+1. For each α; e AΛ+1 U JBW+I there exists
a pair of neighborhoods M?+1, N?+1 such that dia(Mx*

+1) < εΛ+1/2,
dia ^.(Λfί+1) < εΛ+1, iV̂ -̂ 1 £ ΛΓX

 + 1 S U%+1 and r n + 1 (JV?+1) £ M^+1. Set

Now suppose a? 6 Un+1. Then it is easy to see that φn(φn+1(rn+1(x))) e
Pn. We argue that the segment [φn(φn+1(rn+1(x)))9 φn(x)] £ P Λ . Assume
rn+1(») 6 AΛ+1. Then there exists an My such that x, rn+1(x) e My.
Since dia(M^) < εΛ+1/2, d(xf rn+1(x)) < εw+1. By the definition of An+1 it
follows that d(0#+1(r.+1(αθ), rβ+1(a?)) < 3e#+1. By (1) d(φn+1(rn+1(x)), X) <
5εΛ+1. From condition (IJ, we conclude that if z e X then <Z(s, P J <
εΛ. Combining the above we get

d(x, ^»(^»+i(rΛ+1(ί»)))) ^ d(a?, r f t + 1(α)) + d(rn+1(x), Φn+1(rn+1(x)))

+ d(φn+ι(rn+1(x))f X) + en< 9εn

Thus, d(x, φn(x)) £ 9εn+1 + εn and

εn+1
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d(φn(φn+1(rn+1(x))),

By (IIJ the segment [φn(φn+1(rn+ι(x))), φn(x)] £ Pn. Suppose rn+1(x) e
Bn+1. As in the case above, d(xf rn+1(x)) < en+1. Note that in this
case rn+1(x) = Φ»+1(rn+1(x)). By the definition of Bn+U d(φn+ι(rn+1(x)),

^ (28/18)eΛ. So

i(^)))) ^ d(», rn+ί(x)) + d(&,+i(rn

oo

< βB+1 + -ge.

Thus, disc, φn{x)) ^ εn+1 + (23/18)εn and

(rn+ι(x))\ φn(x)) £ 2εn+1 + ^§-εn

Thus, by (ΠJ the segment [φn(φΛ+1{rn+ί(x)))9 ΦM]^P» Finally, suppose
rn+1(x) 6 Pn. As in the cases above, d(x, rn+1(x)) < en+1. Since rn+1(x) e
Pn, d(x, En) ^ εΛ+ι. Thus, d(r%+1(x), φn(x)) < 2εΛ+1. But in this case
f,+1(α?) = Φn(φn+1(rn+1(x))) So d(^(^+1(rΛ+1(α?))), »̂(α?)) < 2εn+1 < 3εn. We
also conclude in this final case that the segment [φ*(φn+ι(rn+ι(x))),
Φn(x)] £ P. .

Set Rn+1 = PM U 5 Λ + 1 . For each a; 6 Z7n+1 define an+1(x) = d(x, An+1 U
Bn+1) and &Λ+1(a?) = d(a?, An — Z7J. We define

fn+l' K •

by

if

bn+1(x)
i f

an+1(x) ^ bn+1(x) ,

f/γ\ /γ (2. Δ

By ^ 3 and ^ 4 we have that if x e Bn+1, then the segment
[x, ΦJx)]QBΛ+1. It follows that fn+1 is a compact retraction from AΛ

to Rn+1, Rn+1 n Aw+1 = Pn+ι, Rn+1 f]Rn = Pn, Λ+1(&) = Λ(α) for a; e bd(An)
and fn+1(x) — Φn+ι{x) for α G A Λ + 1 . It is easy to see that if x e An,
then d(x, Rn+1) ^ 3 and d(x, fn+1(x)) ^ 3eΛ.

We have satisfied the conditions for k = n + 1; thus, the condi-
tions can be satisfied for all k. Set R = (j£U (-RJ U X.

We define f:N-+R by
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x: if X 6 X

Λ(aO: if xeA^-A*.

It is clear that / is a continuous function for all x$ X. Now suppose
xeX and let ε > 0. By (IJ, there exists an M such that if n ^ M
then 3εn < ε/2. Choose a neighborhood Nx of diameter < ε/2 about
a? in Ajf. Then if y e JVβ> d(f(y), y) < SεM < ε/2 and d(y, x) < ε/2. Thus,
d(f(x), f(y)) < e and we conclude that / is continuous at x. It is
easy to see that R is compact and f(x) — x for each x e R. Thus,
f:N—>R is a compact retraction. The space R is the desired
AR.

Let U be an open set that contains X. Then there exists an n
such that An is a closed subset of U. Now An is an absolute neigh-
borhood retract for metric spaces. So there exists an open set V of
U that contains An and a retraction r:V —> AΛ. Then / | i l Λ or is the
desired retraction, and iϋ* — f(An) is the desired ANR.

3* Applications* In this section, Theorem 1 will be used to
establish a number of results.

The following extension theorem is due to Dugundji and Granas
[7].

THEOREM 2. Let A be a closed subset of a normal space X and
let N be a normed linear space. Suppose that f:A—>N is a con-
tinuous mapping such that f(A) is compact. Then there exists an
extension, F:X—>N, of f such that f{X) is compact.

Proof. The Dugundji extension theorem [6] assures that / has
an extension jp7*:X->iV. Theorem 1 implies that there exists a
compact AR R such that f{A) £ R. There exists a retraction r: N-*
R. The composition roF* — F is the desired extension.

THEOREM 3. [11] Let X be an AR and let f:X->Xbea con-
tinuous function such that f(X) is compact. Then f has a fixed
point.

Proof. By the Arens-Eells embedding theorem [1], X can be
realized as a closed subset of a normed linear space N.

There exists a retraction r:N->X from N to X. By Theorem
1 there exists a compact AR R such that f(X) £ R. Set g = f°r\R.
Since every compact AR has the fixed point property, the function
g: R->R has a fixed point x. Thus, x = g(x) = f(r(x)) = f(x). So
/ has a fixed point.
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v

The Cech homology groups and the singular homology groups
of a compact AR are isomorphic [13, p. 145]. Theorem 1 implies
that in the class of compact subsets of an open subset of a normed
linear space the compact AR's are cofinal. Thus we have the follow-
ing theorem.

THEOREM 43. The Cech homology groups with compact support
and the singular homology groups of an open subset of a normed
linear space are isomorphic.

A multi-valued upper semi-continuous mapping φ:X-+Y is said
to be admissible if for each xeX, φ{x) is compact and acyclic [8, 9].
The following theorem, which is a generalization of Theorem 2, is
an important special case of the principal result of [8].

THEOREM 5. Let X be an ANR and let φ: X -^ X be an admissible
map such that φ(X) is compact. Then the Lefschetz number of φ,
Aφ, can be defined, and Λφ Φ 0 implies that there exists an xe X
such that x eφ(x).

Proof. Gόrniewicz and Granas [9] prove this result for the case
that X is a topologically complete ANR. Their argument carries
over to the incomplete case if Lemma 9.1 of [9] is replaced by
Theorem 1.

The following theorem, which is a special case of [4.4, p. 95, 10]
follows from Theorem 1 and Theorem 11 of [4].

THEOREM 6. Let X be an AR and f:X—>Xbea continuous and
locally compact mapping from X to X. If for some positive integer
n, fn(X) is compact, then f has a fixed point.
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