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A CHARACTERIZATION OF M-IDEALS IN
B(sp) FOR 1 < p < oo

PATRICK FLINN

For 1 < p < oo the only nontrivial ikf-ideal in B(SP), the
bounded linear operators on /p, is K{SP), the ideal of compact
operators on /p.

l Introduction* Certain theorems for B{H) (the bounded
linear operators on H a separable Hubert space) are known to hold
for JB(4), 1 < p < oo. For example, it is well known that the only
nontrivial closed two-sided ideal in J3(4), 1 <; p < oo is K(sp), the
compact linear operators on 4. Hennefeld [4] has shown that K(/9)
is an ikf-ideal in B(/p) for 1 < p < co. It is also known that K(sz)
is the only nontrivial ikf-ideal in B(/2). This follows from the fact
that in a I?*-algebra, the ikf-ideals are precisely the closed two-sided
ideals [5]. The purpose of this paper is to show that this result
also generalizes to B(/p)9 for 1 < p < 00. As this paper is largely
based on the work of Smith and Ward [5] it is perhaps not surprising
that a result of theirs, namely that every nontrivial ikf-ideal in B(/p)
for 1 < p < 00 contains K(sp), has a new proof.

2. Preliminaries* A closed subspace L of a Banach space X is
said to be an L-ideal [ikf-summand] if there exists a closed subspace
U such that X = L 0 Z / and \\s + /'|i = Ikll + Ik'II [Ik + ' Ί I =
max{)k||, Ik'll)] for every / e i and /' eL'. A closed subspace M
of a Banach space X is an jkf-ideal if M1 is an L-ideal in X*.
Note that ilί-summands are M-ideals, but the latter is a more general
concept. [For example, K(/p) is an ikf-ideal in B(/9) but not an Mr
summand, as K(sP) is not complemented in B(sv).] For basic proper-
ties of ikf-ideals, L-ideals and M-summands, refer to [1].

The state space S of a banach algebra A with identity e is
defined to be {φeA*: φ(e) — \\φ\\ = 1}. An element he A is hermitian
if \\eiλh\\ = 1 for all real λ. Equivalently [2] h is hermitian if and
only if {φ{h)\ h eS} £ R. A** when endowed with Arens multipli-
cation [3] is a Banach algebra with identity e, and by the weak-star
density of A in A**, he A** is hermitian if and only if h is real
valued on the state space of A.

In [5] it is shown that Λf-ideals in Banach algebras are neces-
sarily subalgebras. Other results of this paper and [6] needed in
the sequel are now summarized:

Let M be an M-ideal in JB(4), 1 < p < 00. Then clearly MLL is
an M-summand in £(4)**; that is, 5(4)** - M11 @CQMK Let
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P: B(/p)** -+M11 be the associated ikί-projection. Let / denote the
identity in i?(4), and let P(I) = z. Throughout this paper, the fol-
lowing arithmetical facts will be collectively referred to as (*):

z = z2 is hermitian, and commutes with every other hermitian
element of £(4)**. zM11 £ ML\ zM* £ M\ and zM*z = 0. Like-
wise, (β - z)Mλl Q M11, (e - z)M* Q M\ and (β - z)Mlλ(e - s) = 0.

If S is the state space of B{/p), then S = 2^ 0conv F2 where
£(4)* = M1 φ , x M, ί\ = M1 n S, and F 2 - M n S (i.e., φ e S -> there
exist unique & e F x, φ2 e F2, and £ e [0,1] such that φ = tφγ + (1 — t)φ2).
If ^ is regarded as a real valued affine function on S, then z\Fί = 0
and ^|F2 = 1.

An important fact used in this paper which follows easily from
the definition of the hermitian elements is that in B{/p), any diagonal
matrix with real entries in hermitian. [These are in fact precisely
the hermitian elements of B(/9) if 1 < p < °o, p φ 2 [7].]

In § 3, a matrix A e B(yv) whose ith row Jth column entry is aiά

will be denoted Σ<,isi aiάeύ Θ eiy where es (x) et is the rank-one map
that sends eά to et. ((βΛ î is the canonical basis for 4.) Note that
if AeB(/p), then HAieJH ^ ||A|| for every i. That is, every column
of A is an element of 4 whose norm does not exceed ||A||.' By
considering the adjoint, we have that every row of A is an element
of 4 [1/p + 1/q = 1] whose norm is less than or equal to ||A||.
Clearly, [α̂ -l ^ ||A|| for every i, j , and if A is a matrix with at
most one nonzero entry in each row and column, [for example if A
is diagonal] then ||A|| is the /00-norm of the sequence of nonzero
entries.

3* Results* Assume all notation in § 2, and assume 1 ^ 0 .
Recall that / denotes the identity on 4, where throughout this
section l < p < 00, p Φ 2.

LEMMA 1. If h is hermitian in #(4) and h2 = I, then for every
meM, hm 6 M and mh e M.

Proof Considering h as canonically embedded in 5(4)**, h =
hx + h2 where h^M11, h2eM*, and ||Λ|| = maxdl^H, ||A2||}. Note
that hx and h2 are themselves hermitian elements of B(/P)**f for if
f 6 F1 then f^hj = 0 and if f2 e F2, f2(h,) = f2(h) e R. So for any φeS,
ΦihJeR, i.e., ht is hermitian. The same reasoning applied to h2

shows that h2 is also hermitian. h2 = / = h\ + hjι2 + ^2^ + λ|, how-
ever it is easy to see that hjί2 = 0 = h2h19 since by (*) we have that

hxh2 = ^fe^g + (β — z)hjι2 = hxzh2z + (e — ^ ^ ( e — #)/&2 = 0 .

Similarly, / ^ = 0, hence / = ^ + fe|.
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Now pick meilf, and wlog assume | |m| | — 1. We'll show that
hm e M. [mh e M is shown in similar fashion.] There exist m1 e MLL

and m2 e M* such that hm — m1 + m2. Claim: zm2 = 0 = m2z. To
see this, note that zhm — zmλ + zm2 where [using (*)] zhm = zhzm e
M11 and zmteML}-. Hence ^m 26lί J- 1 n M% and so 2m2 = 0.

To show m2z = 0 is a little harder: fomz = ̂ mis + h2mz = m^ +
m2z where hjmzeM11 and m1z£MLL. If we knew that h2mzeMLL,
then as before we'd have m ^ e l 1 1 n l ί = 0 and our claim would
be established. So suppose h2mzί MLL. Then there exists some
/i e S Π M1 so that f{h2mz) Φ 0. [This happens as the state space
spans B(/p)* and hence Fx spans M1.] Choose θeR so that
fiίeft'Kmz) = 5 > 0. Then eii?mzeikf±x has norm at most one, h2eM*
has norm at most one, so \\h2(eίθmz + h2)\\^l. But l^/1(e<*/t2m3 + /i|) =
δ + /i(^) = δ + /i(/) = δ + 1, a contradiction which proves the claim.
Now (e — z)hm(e — z) = (e — z)mλ{e — z) + (e — z)m2{e — #). But by
(*) we have that (e — z)hm{e — z) — h{e — z)m{e — z) = 0 = (e — z)m1(e — z),
so 0 = (e — 2;)m2(e — 2) = m2, that is, fern = m1 e M11 Π i5(4) = Λf. Π

REMARK. Although stated for B(/p), this lemma is true [by the
same proof] for any M-ideal M and norm-1 hermitian h where h2 = I.

COROLLARY. // h is any diagonal matrix in B(sp), then hM Q M
and Mh Q M.

Proof, At this point we know that if h is a diagonal matrix
with only ± Γ s on the diagonal, then h2 = I and so hM Q M and
Mh £ M. But by averaging two such hermitian elements, we have
that if h is any diagonal matrix with only Γs or 0's on the diagonal,
then hM C M and Mh Q M. Hence the result holds for any finite
valued diagonal matrix. But such matrices are dense in the diagonal
elements of B(s9), and so as M is closed, hM £ M and Mh £ M for
any diagonal h. •

COROLLARY. M 2 K(sp).

Proof. By the previous corollary, if Eiβ denotes the elementary
matrix with a 1 in the ith row and ̂ th column and zeros elsewhere,
then EuMEάj £ M for every i ^ 1 and j ^ 1. As M Φ 0 there is an
A = X ^ϋ^^ (g) et e M such that for some A; and ^ ak^ — 1. Hence
•Eks = EkkAEt,eM. Claim: for every p^l, EPέ,eM. If there is
any m = Σ m^ e. ® e< e Λf so that m ^ =£ 0, then ^ = (l/mp^)EppmE^ e
M. So if every m = Σ ^ϋβ^ (x) βέ e Λί has the property that mp^ = 0,
then the norm-1 functional p2eB(/p)* defined by p2(Σ* ttάeά 0 eτ) = tP^
is in M1. Let ^ 6 5(4)* be defined by ft(Σ^A ®^) = ̂  Then
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| | f t | | = l . Claim: fteikf. To see this, suppose that ft = ψ\ + τ/r2

where ^eM1, ψ2eM. Then | | ft | | = H^H + | | ^ 2 | | , and 1 = j | ft | | =
p^EfrJ) = ty^EfrJ) + ^2{EkJ) = ^(.fi^), so llψ^ II == 1 —> llψill ~ 0 Hence
2 = Hft + ^ ||. Choose Γ = Σ *<A ® β< e B{sp) so that | | Γ | | = 1 and
|ft(Γ) + ft(Γ)| > 21/q where 1/p + 1/g = 1. Then 2i;* < | %, + ί w | ^
(l*p/ I* + | ί*/IT* 21/ff ^ || Γ(V, || 21/? ̂  21/?, a contradiction implying that
Ep^eM. A similar argument shows that if EiάeMt then for every
k ^ 1, i ί^ e If. Hence ikf 2 {Et, : i, j ^ 1} which is a basis for K(/p),
that is, Af 2 ί Γ ( 4 ) . Π

Note that if h is hermitian and heM then hB(/p)h £ M. This
follows from the simple observation that if heM, then by (*),
(e — z)h = (e — zfh = (β — s)fc(β — «) = 0 = Λ(β — s), since fc is her-
mitian. So zh = hz = h, and for any i l e S ( 4 ) , hAh = hzAzheM.
From this we see that if IeM, then Λί = 5(4).

LEMMA 2. /f A = Σ α ϋ e i ® β< G Λf where (α^)^! 6 /oo\c0,

Proof, wlog there exists an infinite sequence of integers
/(I) </(2) < so that A — Σi β /(« ® β/w> The reduction to this
case illustrates a typical use of Lemma 1 that occurs several times
in this paper. This time it will be done in detail:

There exists a 8 > 0 and a sequence of positive integers ix <
V < ••• so that § < |α<4<JJ <£ | |A| | for each Jfc. As hAeM where
Λ = Σ*^i(l/|Λ<A<Jb|)e<Jfe(g)β<Jfc we may assume wlog that aίki]c = 1 for
every &. Choose a sequence of positive numbers fe)^ so that
Σ<2:i εί < °° Let /(I) = ix and choose αL > /(I) so that

( Σ k / ( i ) i l ί ) 1 / f f < e i and ( g |α< / ( 1 ) |
p) 1 / 2 > < ε2 .

Choose a Λ2 so that ik2 > αx and set /(2) = ifca. Now find α2 > /(2) so
that ( Σ ^ * 2 \a>f(2)Aq)1/q < ^ and (Σί2>«2 |α ί / ( 2 ) |

p ) 1 / 2 ) < ^, etc. Fix ε > 0.
There is an n such that Σ i s* εi < ε- If ^ = Σ ^ϋ^i ® e< where

(1 if i — j z=z f(k) for some &

(0 otherwise

and K denotes the first f{n) rows and columns of hAh — Σ ^ i efm (8)
β/(fc), then UL represents a compact operator on 4 , and by choice of
K \\hAh — Σ*ai0/(*) <E> e/(Λ) — KII < ε As ε > 0 is arbitrary and

— K 6 M we have that

Σ β/(W (g) β/(W 6 ikf .
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If f(N)c is finite, then there exists a compact K so that A + K —
IeM—>M= J5(4). So assume f(N)c is infinite and let g enumerate
f(NY.

Claim. B = Σi egu) (8) e/u) e ^

Note that proving this claim is sufficient to finish the lemma,
since the same argument can be modified to show that

0 — Σ β/(<) (x) βp(ί) 6 M, hence again / = A + CJ9 e M .
i

We first show that d(B, M) is zero or one.
Now if h = Σte/βi® e< where / is any subset of positive inte-

gers, then d(h, M) is either zero or one for any ikf-ideal M, for if
there is a δ > 0 and meM such that ||h — m|| = δ, then by the first
corollary to Lemma 1, (A — m)2 = h — (hm + mλ — m2) —> d(Λ, Λf) <ί δ2.

Let P be the permutation matrix which as an operator on 4
interchanges, for every i, e/(<) with eaii). Then AP = B. It is easily
checked that MP = {mP: m e M) is an Af-ideal isometric to M. Indeed
the isometry T: B(/p) ~> B(/p) given by T(N) = iVP induces an iso-
metry [call it T again] on J5(4)* by (N, Tφ) = (NP, φ). Then
T(M) = Λfp, 2 W 1 ) = Λfp1 and B(4)* = T{ML)®^ T{M). Therefore
d{B, M) = d(A, ΛfP) = 1 or 0.

Now assuming that B&M, there is a φeM1 so that | | ^ | | = 1 =
φ(B). Define ^ e £(4)* by (̂iNΓ) = 9>(JVB). Then AB = B-> φA{A) =
1 = ll^ll But then φAeM since AeM. [This calculation occurs in
the corollary above stating that If 2 If(4).] Thus | | ^ + φ| | = 2 .
But there is an ε > 0 such that for any norm-1 NeB(sp), we have
that I φA(N) + φ{N) I ̂  II φ II II iV || || B + /1| < 2 - ε, a contradiction
implying that BeM. Π

LEMMA 3. // β = Σ ^ A ® ei e -^ where B contains a sequence
of entries (bikh)k^ e 4o\c0, ί/̂ β̂  Λf =

Proof. As in the proof of Lemma 2, we may assume wlog that
there exist infinite sequences /(I) < /(2) < and #(1) < #(2) < •
such that f(i) Φ g(j) for all i and j , and so that Σt β «̂) Θ e/(i) 6 -Λf
Call this matrix B, and let A = Σiβ/«) ® β/(<). If P and ΛfP are â
in Lemma 2, then 0 = d(B, M) = d(il, ΛfP) —> [by Lemma 2] MP =

Π

If Γ = Σ ^iei (x) ̂ i 6 Λf and Γ is not compact, then it is not
necessarily the case that there is a subsequence of entries {t^^^ e
Soo\c0. But what is true [and will be shown in the proof of the next
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theorem] is that T has infinitely many square blocks each of whose
norm is larger than some fixed ε > 0. So what essentially remains
to be done is to generalize preceding arguments from 1 by 1 blocks
to square blocks of arbitrary dimension.

THEOREM. Suppose T — Σ t%aea 0 eί ^s n°t compact. Then T e
M-*M= B(/9).

Proof, wlog || JΓ|| = 1. The argument of Lemma 2 modifies to
show that wlog T is a direct sum of diagonal square blocks Tt where
|| TJI = 1. Although this is well known, it is included for the sake
of completeness. We can do this in more generality as follows:

Suppose T = Σ *ij e* 0 ^ e B(X) where X is a reflexive space with
I unconditional basis (^) ίS1 [so (ef) iέ l is a basis for X*]. Suppose T
is in an Λf-ideal M £ B{X). Since T is not compact, there is a
δ > 0 and a sequence (z,)i2ίl £ X such that | | ^ | | = 1 and || T{z%)\\ > 2δ
for every i, and zt —> 0 in the weak topology. Let xx = ^ where
%i — Σfc î #*e*. Then there exist px ^ 1 and pi i> 1 so that

II T(ΣΣ=i 4efc) II > δ, and if Γ(Σϊ=i 4 O = Σ**i vie*, then also
||Σfc=i^βfcll > ^ Define mx = 0, let % = max {̂ , p[} and let ϊ\ =
ΣΓJί»i+i *ϋe* ® ei Then δ < || ΓJI ^ 1. Choose a sequence fe)^ of
positive numbers so that Σ ^ i ει < °° Now ΣΠ=i Σyii *ϋβ* (8) ̂  re-
presents a compact operator [its adjoint is finite rank] and so there
exists βx > nx such that \\Σj7=β1 Σ*ii ^A* Θ eill < εi [^ ( P»)»̂ i are the
natural basis projections defined by Pw(ΣΓ=i α*β<) = ΣΓ=i «<«<, then
(?iPΛ l ~ P»ΓiPΛι)(α) -> 0 for every a? 6 X, and as ϊ\ is compact this
convergence is uniform on the unit ball, hence | | ϊ\P Λ l — Pnϊ\PW l | | ->0
asw->oo], As ΣΓ=iΣi^i^A*®βϊ is finite rank [hence compact] similar
reasoning shows that there is an αL > nx so that ||Σ?iiΣ?=«, Ufi* 0
e t | | < ε2. Define m2 = max {α1? β j . Since ^ - > 0 weakly, we can use
a standard gliding hump argument to find a k2 > 1 such that #2 — 2fc2

has the property that if x2 = Σ**i ^/b t-hen there exists a p2 ^ 1
and p2 ^ 1 such that || T{Σ2ίt%xlek)\\ > δ, and if T{^i+

m%x\ek) =
Σteiylejc, then also ||ΣΓliP

2ίi»
2*e*ll >_δ L e t ^ = max{p2, pj} and let

T2 = ΣΠiί*2

2+i M * ® ^ T h e n ^ < || Γ21| ^ 1. Again find β2> m2 + n2

and α2 > m2 + ^ 2 so that

V V t,-PΛ (5d a, < ε3 and
^

Let m3 = max {α2, yβ2} and repeat the process on Σi,y^m8+i*iiβ* ®
Let fe = Σ hue* 0 βi be the hermitian element defined by

[1 if there is a k so that mk + 1 ^ i = j ^ mk -\- nk

13 (0 otherwise .
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Then hTheM. [Although the corollary to Lemma 1 need not hold
here, what the proof of the corollary actually shows is that M is
closed under multiplication by real diagonal matrices.] To see that
T' = Σ* ?ί eM, choose ε > 0. There is an / so that Σ * ^ ^ < e.
Let K denote the compact operator represented by the first m, + n,
rows and columns of hTh — Tf. Then by the choice of /,
\\hTh - T - K || < e and as M is closed we have that f e l . If
h' = Σ h'iόe! ® eί is defined by

« , = | w i f »» + i * < = ' £ « * + * >
vθ otherwise,

t h e n | |Jt '] | <Z 1/δ, h'Tf eM, and ft/T" is a direct sum of diagonal square
blocks each having norm 1. R e t u r n i n g now to B(/p), we see t h a t
we may assume t h a t if T is not compact and TeM, t h e n wlog T —
Σ i T< where each f * = ΣΓ*ί i t+i **Λ <g> β«, || f< || = 1, and mk + nk + l<
mk+1. Since || Γfc || = 1 , t h e r e exist xk = (xϊ, , αj*fc) e 4Λ*ιJ/* = (2/f» , l/ίfc)
and ^ = (»f, , 2*Λ) e/ff

Λ* all of norm-1 such t h a t (Tk(xk), yk) = 1 =
<^, xk} for all fc. Define norm-1 matr ices A, X, Y, and Z in J5(4) by

A - Σ e 4+i (x) e^+i , ^ = Σ X* , Y=ΣYk, and
A ^ l fcl fc^l

where

Σ Φ»»+i (8) emfc+i , ΓΛ = Σ 2/fô +y ® ^mfc+i , and
ό^ 0

Then ZX= YTX = A. Claim: If JCeAf, then M = B(/9). For if
not, choose φ 6 Co1 so that | | φ | | = 1 = <p(l, 1, •)• Define 7 e £(/,)* by
y(N) = ^[(^+^+1,^+1)^1] where i\Γ = Σ % A ®e<e We may assume
that 7 6 AT1, or else M contains an element with a sequence of en-
tries in /oo\c0, hence M = B(/p). If XeM, then the functional 7i
defined by TiCJSΓ) = φK(ZN)mk+ltmf+1)k^] is in M, as 7,(X) = 1 and as
has been noted before, any functional attaining its norm at a norm-1
element of M is in M. Therefore 2 = | |7 + 7i| |. However for any
NeB(/p) of norm-1, we have that

\y(N) + 7i(A0l = \<P[(nmk+nk+ltmk+1 + Σ ^»Jfc+y,»Jfe+1)^i]I

^ life*, 24, • • • , < , l ) | | f f = 2 V ,

a contradiction implying that M=B(/P). What this argument in
fact shows is that if M contains any element with the same form
as X then M — B(sp). In particular the functional φ2 defined by
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<P2(N) = φ[((YN)mk+ltmk+nk+ι)k^] is in M1. [For if there is an m =
Σ ^iόeύ ®βi£M such that φ2(m) Φ 0, then there exists ε > 0 such that
II mh || > ε for infinitely many Jc where mk = Σ/s fc ^mfc+i,mfe+w&+î m&+Λfc+i Θ
emfc+i. Reasoning as in Lemma 2 we may pass to a subsequence if
necessary to get Σt^^m^eMf which up to normalization of the
blocks mh has the same form as X ] Finally define φ1eB{/PY by

^ φ[((YNX)mk+1,mk+1)k^l As 9>1(Γ) = 1, φ^M, and so 2 =
<Pi\\- But for any norm-1 NeB(sp), we have that

\φi(N) + 9>2(2SΓ)| ^ sup |_Σ

a contradiction showing that if TeM then Λf = S(4). •

The properties of /v used to prove this theorem are the existence
of a symmetric basis and of certain convexity conditions in the space
and its dual.

J. Hennefeld recently announced the following result [AMS
Notices Volume 25, Number 6, 760-B8].

THEOREM. The only 1-symmetric spaces X for which K(X) is
an M-ideal in B(X) are cQ and Sp, 1 < p < oo.

Hence combining these theorems we have that if X is not cQ or
4, 1 < p < co, has a symmetric basis in X and X* and satisfies the
required convexity conditions, then there are no nontrivial Λf-ideals
in B(X).
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