A CHARACTERIZATION OF M-IDEALS IN $B\left(\iota_{p}\right)$ FOR $1<p<\infty$

Patrick Flinn

For $1<p<\infty$ the only nontrivial M-ideal in $B\left(\ell_{p}\right)$, the bounded linear operators on ℓ_{p}, is $K\left(\ell_{p}\right)$, the ideal of compact operators on ℓ_{p}.

1. Introduction. Certain theorems for $B(H)$ (the bounded linear operators on H a separable Hilbert space) are known to hold for $B\left(\ell_{p}\right), 1<p<\infty$. For example, it is well known that the only nontrivial closed two-sided ideal in $B\left(\iota_{p}\right), 1 \leqq p<\infty$ is $K\left(\iota_{p}\right)$, the compact linear operators on ι_{p}. Hennefeld [4] has shown that $K\left(\ell_{p}\right)$ is an M-ideal in $B\left(\ell_{p}\right)$ for $1<p<\infty$. It is also known that $K\left(\ell_{2}\right)$ is the only nontrivial M-ideal in $B\left(\ell_{2}\right)$. This follows from the fact that in a B^{*}-algebra, the M-ideals are precisely the closed two-sided ideals [5]. The purpose of this paper is to show that this result also generalizes to $B\left(\ell_{p}\right)$, for $1<p<\infty$. As this paper is largely based on the work of Smith and Ward [5] it is perhaps not surprising that a result of theirs, namely that every nontrivial M-ideal in $B\left(\ell_{p}\right)$ for $1<p<\infty$ contains $K\left(\delta_{p}\right)$, has a new proof.
2. Preliminaries. A closed subspace L of a Banach space X is said to be an L-ideal [M-summand] if there exists a closed subspace L^{\prime} such that $X=L \oplus L^{\prime}$ and $\left\|\iota+\iota^{\prime}\right\|=\|\iota\|+\left\|\iota^{\prime}\right\|\left[\left\|\iota+\iota^{\prime}\right\|=\right.$ $\left.\max \left\{\|\iota\|,\left\|\iota^{\prime}\right\|\right\}\right]$ for every $\iota \in L$ and $\iota^{\prime} \in L^{\prime}$. A closed subspace M of a Banach space X is an M-ideal if M^{\perp} is an L-ideal in X^{*}. Note that M-summands are M-ideals, but the latter is a more general concept. [For example, $K\left(\iota_{p}\right)$ is an M-ideal in $B\left(\ell_{p}\right)$ but not an M summand, as $K\left(\iota_{p}\right)$ is not complemented in $B\left(\iota_{p}\right)$.] For basic properties of M-ideals, L-ideals and M-summands, refer to [1].

The state space S of a banach algebra A with identity e is defined to be $\left\{\phi \in A^{*}: \phi(e)=\|\phi\|=1\right\}$. An element $h \in A$ is hermitian if $\left\|e^{i 2 h}\right\|=1$ for all real λ. Equivalently [2] h is hermitian if and only if $\{\phi(h): h \in S\} \subseteq \boldsymbol{R}$. $A^{* *}$ when endowed with Arens multiplication [3] is a Banach algebra with identity e, and by the weak-star density of A in $A^{* *}, h \in A^{* *}$ is hermitian if and only if h is real valued on the state space of A.

In [5] it is shown that M-ideals in Banach algebras are necessarily subalgebras. Other results of this paper and [6] needed in the sequel are now summarized:

Let M be an M-ideal in $B\left(\iota_{p}\right), 1<p<\infty$. Then clearly $M^{\perp+}$ is an M-summand in $B\left(\ell_{p}\right)^{* *}$; that is, $B\left(\iota_{p}\right)^{* *}=M^{+1} \oplus_{c_{0}} M^{*}$. Let
$P: B\left(\iota_{p}\right)^{* *} \rightarrow M^{\perp \perp}$ be the associated M-projection. Let I denote the identity in $B\left(\iota_{p}\right)$, and let $P(I)=z$. Throughout this paper, the following arithmetical facts will be collectively referred to as (*):
$z=z^{2}$ is hermitian, and commutes with every other hermitian element of $B\left(\ell_{p}\right)^{* *} . \quad z M^{\perp \perp} \subseteq M^{\perp \perp}, z M^{\#} \subseteq M^{\#}$, and $z M^{\#} z=0$. Likewise, $(e-z) M^{\perp \perp} \subseteq M^{\perp \perp},(e-z) M^{\#} \subseteq M^{\#}$, and $(e-z) M^{\perp \perp}(e-z)=0$.

If S is the state space of $B\left(\ell_{p}\right)$, then $S=F_{1} \bigoplus_{\text {conv }} F_{2}$ where $B\left(\iota_{p}\right)^{*}=M^{\perp} \bigoplus_{\iota_{1}} \tilde{M}, F_{1}=M^{\perp} \cap S$, and $F_{2}=\widetilde{M} \cap S$ (i.e., $\phi \in S \rightarrow$ there exist unique $\dot{\phi}_{1} \in F_{1}, \phi_{2} \in F_{2}$, and $t \in[0,1]$ such that $\left.\phi=t \phi_{1}+(1-t) \dot{\phi}_{2}\right)$. If z is regarded as a real valued affine function on S, then $\left.z\right|_{F_{1}}=0$ and $\left.z\right|_{F_{2}}=1$.

An important fact used in this paper which follows easily from the definition of the hermitian elements is that in $B\left(\ell_{p}\right)$, any diagonal matrix with real entries in hermitian. [These are in fact precisely the hermitian elements of $B\left(\ell_{p}\right)$ if $1<p<\infty, p \neq 2$ [7].]

In §3, a matrix $A \in B\left(\ell_{p}\right)$ whose i th row j th column entry is $\alpha_{i j}$ will be denoted $\sum_{i, j \geq 1} a_{i j} e_{j} \otimes e_{i}$, where $e_{j} \otimes e_{i}$ is the rank-one map that sends e_{j} to $e_{i} . \quad\left(\left(e_{i}\right)_{i \geq 1}\right.$ is the canonical basis for ℓ_{p}.) Note that if $A \in B\left(\ell_{p}\right)$, then $\left\|A\left(e_{i}\right)\right\| \leqq\|A\|$ for every i. That is, every column of A is an element of ℓ_{p} whose norm does not exceed $\|A\|$. By considering the adjoint, we have that every row of A is an element of $\ell_{q}[1 / p+1 / q=1]$ whose norm is less than or equal to $\|A\|$. Clearly, $\left|\alpha_{i j}\right| \leqq\|A\|$ for every i, j, and if A is a matrix with at most one nonzero entry in each row and column, [for example if A is diagonal] then $\|A\|$ is the ℓ_{∞}-norm of the sequence of nonzero entries.
3. Results. Assume all notation in § 2, and assume $M \neq 0$. Recall that I denotes the identity on ℓ_{p}, where throughout this section $1<p<\infty, p \neq 2$.

Lemma 1. If h is hermitian in $B\left(\iota_{p}\right)$ and $h^{2}=I$, then for every $m \in M, h m \in M$ and $m h \in M$.

Proof. Considering h as canonically embedded in $B\left(\ell_{p}\right)^{* *}, h=$ $h_{1}+h_{2}$ where $h_{1} \in M^{\perp \perp}, h_{2} \in M^{\sharp}$, and $\|h\|=\max \left\{\left\|h_{1}\right\|,\left\|h_{2}\right\|\right\}$. Note that h_{1} and h_{2} are themselves hermitian elements of $B\left(\iota_{p}\right)^{* *}$, for if $f_{1} \in F_{1}$ then $f_{1}\left(h_{1}\right)=0$ and if $f_{2} \in F_{2}, f_{2}\left(h_{1}\right)=f_{2}(h) \in \boldsymbol{R}$. So for any $\phi \in S$, $\dot{\phi}\left(h_{1}\right) \in \boldsymbol{R}$, i.e., h_{1} is hermitian. The same reasoning applied to h_{2} shows that h_{2} is also hermitian. $h^{2}=I=h_{1}^{2}+h_{1} h_{2}+h_{2} h_{1}+h_{2}^{2}$, however it is easy to see that $h_{1} h_{2}=0=h_{2} h_{1}$, since by (*) we have that

$$
h_{1} h_{2}=z h_{1} h_{2}+(e-z) h_{1} h_{2}=h_{1} z h_{2} z+(e-z) h_{1}(e-z) h_{2}=0
$$

Similarly, $h_{2} h_{1}=0$, hence $I=h_{1}^{2}+h_{2}^{2}$.

Now pick $m \in M$, and wlog assume $\|m\|=1$. We'll show that $h m \in M$. [$m h \in M$ is shown in similar fashion.] There exist $m_{1} \in M^{\perp \perp}$ and $m_{2} \in M^{\#}$ such that $h m=m_{1}+m_{2}$. Claim: $z m_{2}=0=m_{2} z$. To see this, note that $z h m=z m_{1}+z m_{2}$ where [using $\left(^{*}\right)$] $z h m=z h z m \in$ $M^{\perp \perp}$ and $z m_{1} \in M^{\perp \perp}$. Hence $z m_{2} \in M^{\perp \perp} \cap M^{\#}$ and so $z m_{2}=0$.

To show $m_{2} z=0$ is a little harder: $h m z=h_{1} m z+h_{2} m z=m_{1} z+$ $m_{2} z$ where $h_{1} m z \in M^{\perp \perp}$ and $m_{1} z \in M^{\perp \perp}$. If we knew that $h_{2} m z \in M^{\perp \perp}$, then as before we'd have $m_{2} z \in M^{\perp \perp} \cap M^{\ddagger}=0$ and our claim would be established. So suppose $h_{2} m z \notin M^{\perp \perp}$. Then there exists some $f_{1} \in S \cap M^{\perp}$ so that $f_{1}\left(h_{2} m z\right) \neq 0$. [This happens as the state space spans $B\left(\iota_{p}\right)^{*}$ and hence F_{1} spans M^{\perp}.] Choose $\theta \in \boldsymbol{R}$ so that $f_{1}\left(e^{i \theta} h_{2} m z\right)=\delta>0$. Then $e^{i \theta} m z \in M^{\perp \perp}$ has norm at most one, $h_{2} \in M^{\#}$ has norm at most one, so $\left\|h_{2}\left(e^{i \theta} m z+h_{2}\right)\right\| \leqq 1$. But $1 \geqq f_{1}\left(e^{i 0} h_{2} m z+h_{2}^{2}\right)=$ $\delta+f_{1}\left(h_{2}^{2}\right)=\delta+f_{1}(I)=\delta+1$, a contradiction which proves the claim. Now $(e-z) h m(e-z)=(e-z) m_{1}(e-z)+(e-z) m_{2}(e-z)$. But by (*) we have that $(e-z) h m(e-z)=h(e-z) m(e-z)=0=(e-z) m_{1}(e-z)$, so $0=(e-z) m_{2}(e-z)=m_{2}$, that is, $h m=m_{1} \in M^{\perp \perp} \cap B\left(\iota_{p}\right)=M$.

Remark. Although stated for $B\left(\iota_{p}\right)$, this lemma is true [by the same proof] for any M-ideal M and norm- 1 hermitian h where $h^{2}=I$.

Corollary. If h is any diagonal matrix in $B\left(\ell_{p}\right)$, then $h M \subseteq M$ and $M h \subseteq M$.

Proof. At this point we know that if h is a diagonal matrix with only ± 1 's on the diagonal, then $h^{2}=I$ and so $h M \subseteq M$ and $M h \subseteq M$. But by averaging two such hermitian elements, we have that if h is any diagonal matrix with only 1 's or 0 's on the diagonal, then $h M \subseteq M$ and $M h \subseteq M$. Hence the result holds for any finite valued diagonal matrix. But such matrices are dense in the diagonal elements of $B\left(\ell_{p}\right)$, and so as M is closed, $h M \subseteq M$ and $M h \subseteq M$ for any diagonal h.

Corollary. $\quad M \supseteqq K\left(\iota_{p}\right)$.
Proof. By the previous corollary, if $E_{i j}$ denotes the elementary matrix with a 1 in the i th row and j th column and zeros elsewhere, then $E_{i i} M E_{j j} \subseteq M$ for every $i \geqq 1$ and $j \geqq 1$. As $M \neq 0$ there is an $A=\sum a_{i j} e_{j} \otimes e_{i} \in M$ such that for some k and $\ell a_{k \ell}=1$. Hence $E_{k \iota}=E_{k k} A E_{\ell \iota} \in M$. Claim: for every $p \geqq 1, E_{p \iota} \in M$. If there is any $m=\sum m_{i j} e_{j} \otimes e_{i} \in M$ so that $m_{p \iota} \neq 0$, then $E_{p \iota}=\left(1 / m_{p \iota}\right) E_{p p} m E_{i \iota} \in$ M. So if every $m=\sum m_{i j} e_{j} \otimes e_{i} \in M$ has the property that $m_{p \iota}=0$, then the norm-1 functional $\rho_{2} \in B\left(\ell_{p}\right)^{*}$ defined by $\rho_{2}\left(\sum t_{i j} e_{j} \otimes e_{i}\right)=t_{p \ell}$ is in M^{\perp}. Let $\rho_{1} \in B\left(\zeta_{p}\right)^{*}$ be defined by $\rho_{1}\left(\sum t_{i j} e_{j} \otimes e_{i}\right)=t_{k \ell}$. Then
$\left\|\rho_{1}\right\|=1$. Claim: $\rho_{1} \in \widetilde{M}$. To see this, suppose that $\rho_{1}=\psi_{1}+\psi_{2}$ where $\psi_{1} \in M^{\perp}, \psi_{2} \in \widetilde{M}$. Then $\left\|\rho_{1}\right\|=\left\|\psi_{1}\right\|+\left\|\psi_{2}\right\|$, and $1=\left\|\rho_{1}\right\|=$ $\rho_{1}\left(E_{k \varepsilon}\right)=\psi_{1}\left(E_{k \epsilon}\right)+\psi_{2}\left(E_{k \iota}\right)=\psi_{2}\left(E_{k \ell}\right)$, so $\left\|\psi_{2}\right\|=1 \rightarrow\left\|\psi_{1}\right\|=0$. Hence $2=\left\|\rho_{1}+\rho_{2}\right\|$. Choose $T=\sum t_{i j} e_{j} \otimes e_{i} \in B\left(\iota_{p}\right)$ so that $\|T\|=1$ and $\left|\rho_{1}(T)+\rho_{2}(T)\right|>2^{1 / q}$ where $1 / p+1 / q=1$. Then $2^{1 / q}<\left|t_{p \iota}+t_{k \ell}\right| \leqq$ $\left(\left|t_{p \ell}\right|^{p}+\left|t_{k \ell}\right|^{p}\right)^{1 / p} \cdot 2^{1 / q} \leqq\left\|T_{\left(e_{e}\right)}\right\| \cdot 2^{1 / q} \leqq 2^{1 / q}$, a contradiction implying that $E_{p \iota} \in M$. A similar argument shows that if $E_{i j} \in M$, then for every $k \geqq 1, E_{i k} \in M$. Hence $M \supseteqq\left\{E_{i j}: i, j \geqq 1\right\}$ which is a basis for $K\left(\ell_{p}\right)$, that is, $M \supseteq K\left(\iota_{p}\right)$.

Note that if h is hermitian and $h \in M$ then $h B\left(\iota_{p}\right) h \subseteq M$. This follows from the simple observation that if $h \in M$, then by (*), $(e-z) h=(e-z)^{2} h=(e-z) h(e-z)=0=h(e-z)$, since h is hermitian. So $z h=h z=h$, and for any $A \in B\left(\iota_{p}\right), h A h=h z A z h \in M$. From this we see that if $I \in M$, then $M=B\left(\iota_{p}\right)$.

Lemma 2. If $A=\sum a_{i j} e_{j} \otimes e_{i} \in M$ where $\left(a_{i i}\right)_{i \geqq 1} \in \ell_{\infty} \mid c_{0}$, then $M=B\left(\ell_{p}\right)$.

Proof. wlog there exists an infinite sequence of integers $f(1)<f(2)<\cdots$ so that $A=\sum_{i} e_{f(i)} \otimes e_{f(i)}$. The reduction to this case illustrates a typical use of Lemma 1 that occurs several times in this paper. This time it will be done in detail:

There exists a $\delta>0$ and a sequence of positive integers $i_{1}<$ $i_{2}<\cdots$ so that $\delta<\left|a_{i_{k} i_{k}}\right| \leqq\|A\|$ for each k. As $h A \in M$ where $h=\sum_{k \geq 1}\left(1 /\left|a_{i_{k} i_{k}}\right|\right) e_{i_{k}} \otimes e_{i_{k}}$ we may assume wlog that $a_{i_{k} i_{k}}=1$ for every k. Choose a sequence of positive numbers $\left(\varepsilon_{i}\right)_{i \geq 1}$ so that $\sum_{i \geqq 1} \varepsilon_{i}<\infty$. Let $f(1)=i_{1}$ and choose $\alpha_{1}>f(1)$ so that

$$
\left(\sum_{j \geq \alpha_{1}}\left|a_{f(1) j}\right|^{q}\right)^{1 / q}<\varepsilon_{1} \quad \text { and } \quad\left(\sum_{i \geqq \alpha_{1}}\left|a_{i f(1)}\right|^{p}\right)^{1 / p}<\varepsilon_{2} .
$$

Choose a k_{2} so that $i_{k_{2}}>\alpha_{1}$ and set $f(2)=i_{k_{2}}$. Now find $\alpha_{2}>f(2)$ so that $\left(\sum_{j \geqq \alpha_{2}}\left|a_{f(2) j}\right|^{q}\right)^{1 / q}<\varepsilon_{3}$ and $\left(\sum_{i \geqq \alpha_{2}}\left|a_{i f(2)}\right|^{p}\right)^{1 / p}<\varepsilon_{4}$, etc. Fix $\varepsilon>0$. There is an n such that $\sum_{i \geqq n} \varepsilon_{i}<\varepsilon$. If $h=\sum h_{i j} e_{j} \otimes e_{i}$ where

$$
h_{i j}= \begin{cases}1 & \text { if } i=j=f(k) \text { for some } k \\ 0 & \text { otherwise }\end{cases}
$$

and K denotes the first $f(n)$ rows and columns of $h A h-\sum_{k \geq 1} e_{f(k)} \otimes$ $e_{f(k)}$, then K represents a compact operator on ℓ_{p}, and by choice of $K\left\|h A h-\sum_{k \geqq 1} e_{f(k)} \otimes e_{f(k)}-K\right\|<\varepsilon . \quad$ As $\varepsilon>0$ is arbitrary and $h A h-K \in M$ we have that

$$
\sum_{k} e_{f(k)} \otimes e_{f(k)} \in M
$$

If $f(N)^{c}$ is finite, then there exists a compact K so that $A+K=$ $I \in M \rightarrow M=B\left(\iota_{p}\right)$. So assume $f(\boldsymbol{N})^{c}$ is infinite and let g enumerate $f(N)^{c}$.

Claim. $\quad B=\sum_{i} e_{g(i)} \otimes e_{f(i)} \in M$.
Note that proving this claim is sufficient to finish the lemma, since the same argument can be modified to show that

$$
C=\sum_{i} e_{f(i)} \otimes e_{g(i)} \in M, \quad \text { hence again } \quad I=A+C B \in M
$$

We first show that $d(B, M)$ is zero or one.
Now if $h=\sum_{i \in I} e_{i} \otimes e_{i}$ where I is any subset of positive integers, then $d(h, M)$ is either zero or one for any M-ideal M, for if there is a $\delta>0$ and $m \in M$ such that $\|h-m\|=\delta$, then by the first corollary to Lemma $1,(h-m)^{2}=h-\left(h m+m h-m^{2}\right) \rightarrow d(h, M) \leqq \delta^{2}$.

Let P be the permutation matrix which as an operator on ℓ_{p} interchanges, for every i, $e_{f(i)}$ with $e_{g(i)}$. Then $A P=B$. It is easily checked that $M_{P}=\{m P: m \in M\}$ is an M-ideal isometric to M. Indeed the isometry $T: B\left(\ell_{p}\right) \rightarrow B\left(\iota_{p}\right)$ given by $T(N)=N P$ induces an isometry [call it T again] on $B\left(\iota_{p}\right)^{*}$ by $\langle N, T \varphi\rangle=\langle N P, \varphi\rangle$. Then $T(M)=M_{P}, T\left(M^{\perp}\right)=M_{P}^{\perp}$ and $B\left(\iota_{p}\right)^{*}=T\left(M^{\perp}\right) \oplus_{\iota_{1}} T(\tilde{M})$. Therefore $d(B, M)=d\left(A, M_{P}\right)=1$ or 0.

Now assuming that $B \notin M$, there is a $\varphi \in M^{\perp}$ so that $\|\varphi\|=1=$ $\varphi(B)$. Define $\varphi_{A} \in B\left(\iota_{p}\right)^{*}$ by $\varphi_{A}(N)=\varphi(N B)$. Then $A B=B \rightarrow \varphi_{A}(A)=$ $1=\left\|\varphi_{A}\right\|$. But then $\varphi_{A} \in \tilde{M}$ since $A \in M$. [This calculation occurs in the corollary above stating that $M \supseteq K\left(\iota_{p}\right)$.] Thus $\left\|\varphi_{A}+\varphi\right\|=2$. But there is an $\varepsilon>0$ such that for any norm-1 $N \in B\left(\iota_{p}\right)$, we have that $\left|\varphi_{A}(N)+\varphi(N)\right| \leqq\|\varphi\| \cdot\|N\| \cdot\|B+I\|<2-\varepsilon$, a contradiction implying that $B \in M$.

Lemma 3. If $B=\sum b_{i j} e_{j} \otimes e_{i} \in M$ where B contains a sequence of entries $\left(b_{i_{k} j_{k}}\right)_{k \geq 1} \in \iota_{\infty} \backslash c_{0}$, then $M=B\left(\iota_{p}\right)$.

Proof. As in the proof of Lemma 2, we may assume wlog that there exist infinite sequences $f(1)<f(2)<\cdots$ and $g(1)<g(2)<\cdots$ such that $f(i) \neq g(j)$ for all i and j, and so that $\sum_{i} e_{g(i)} \otimes e_{f(i)} \in M$. Call this matrix B, and let $A=\sum_{i} e_{f(i)} \otimes e_{f(i)}$. If P and M_{P} are as in Lemma 2, then $0=d(B, M)=d\left(A, M_{P}\right) \rightarrow$ [by Lemma 2] $M_{P}=$ $B\left(\iota_{p}\right) \rightarrow M=B\left(\iota_{p}\right)$.

If $T=\sum t_{i j} e_{j} \otimes e_{i} \in M$ and T is not compact, then it is not necessarily the case that there is a subsequence of entries $\left(t_{i_{k} j_{k}}\right)_{k \geqslant 1} \in$ $\epsilon_{\infty} \backslash c_{0}$. But what is true [and will be shown in the proof of the next
theorem] is that T has infinitely many square blocks each of whose norm is larger than some fixed $\varepsilon>0$. So what essentially remains to be done is to generalize preceding arguments from 1 by 1 blocks to square blocks of arbitrary dimension.

Theorem. Suppose $T=\sum t_{i j} e_{j} \otimes e_{i}$ is not compact. Then $T \in$ $M \rightarrow M=B\left(\iota_{p}\right)$.

Proof. wlog $\|T\|=1$. The argument of Lemma 2 modifies to show that wlog T is a direct sum of diagonal square blocks \bar{T}_{i} where $\left\|\bar{T}_{i}\right\|=1$. Although this is well known, it is included for the sake of completeness. We can do this in more generality as follows:

Suppose $T=\sum t_{i j} e_{j}^{*} \otimes e_{i} \in B(X)$ where X is a reflexive space with 1 unconditional basis $\left(e_{i}\right)_{i \geqq 1}$ [so $\left(e_{i}^{*}\right)_{i \geq 1}$ is a basis for X^{*}]. Suppose T is in an M-ideal $M \subseteq B(X)$. Since T is not compact, there is a $\delta>0$ and a sequence $\left(z_{i}\right)_{i \geqq 1} \subseteq X$ such that $\left\|z_{i}\right\|=1$ and $\left\|T\left(z_{i}\right)\right\|>2 \delta$ for every i, and $z_{i} \rightarrow 0$ in the weak topology. Let $x_{1}=z_{1}$ where $x_{1}=\sum_{k \geqq 1} x_{k}^{1} e_{k}$. Then there exist $p_{1} \geqq 1$ and $p_{1}^{\prime} \geqq 1$ so that $\left\|T\left(\sum_{k=1}^{p_{1}} x_{k}^{1} e_{k}\right)\right\|>\delta$, and if $T\left(\sum_{k=1}^{p_{1}} x_{k}^{1} e_{k}\right)=\sum_{k \geq 1} y_{k}^{1} e_{k}$, then also $\left\|\sum_{k=1}^{p_{1}^{\prime}} y_{k}^{1} e_{k}\right\|>\delta$. Define $m_{1}=0$, let $n_{1}=\max \left\{p_{1}, p_{1}^{\prime}\right\}$ and let $\bar{T}_{1}=$ $\sum_{i, j=m_{1}+1}^{m_{1}+n_{1}} t_{i j} t_{j}^{*} \otimes e_{i}$. Then $\delta<\left\|\bar{T}_{1}\right\| \leqq 1$. Choose a sequence $\left(\varepsilon_{i}\right)_{i \leqq 1}$ of positive numbers so that $\sum_{i \geq 1} \varepsilon_{i}<\infty$. Now $\sum_{i=1}^{\infty} \sum_{j=1}^{n_{1}} t_{i j} e_{j}^{*} \otimes e_{i}$ represents a compact operator [its adjoint is finite rank] and so there exists $\beta_{1}>n_{1}$ such that $\left\|\sum_{i=\beta_{1}}^{\infty} \sum_{j=1}^{n_{1}} t_{i j} e_{j}^{*} \otimes e_{i}\right\|<\varepsilon_{1}$ [if $\left(P_{n}\right)_{n \geqq 1}$ are the natural basis projections defined by $P_{n}\left(\sum_{i=1}^{\infty} a_{i} e_{i}\right)=\sum_{i=1}^{n} a_{i} e_{i}$, then $\left(\bar{T}_{1} P_{n_{1}}-P_{n} \bar{T}_{1} P_{n_{1}}\right)(x) \rightarrow 0$ for every $x \in X$, and as \bar{T}_{1} is compact this convergence is uniform on the unit ball, hence $\left\|\bar{T}_{1} P_{n_{1}}-P_{n} \bar{T}_{1} P_{n_{1}}\right\| \rightarrow 0$ as $n \rightarrow \infty$]. As $\sum_{i=1}^{n_{1}} \sum_{j \geq 1} t_{i j} e_{j}^{*} \otimes e_{i}$ is finite rank [hence compact] similar reasoning shows that there is an $\alpha_{1}>n_{1}$ so that $\| \sum_{i=1}^{n_{1}} \sum_{j=\alpha_{1}}^{\infty} t_{i j} e_{j}^{*} \otimes$ $e_{i} \|<\varepsilon_{2}$. Define $m_{2}=\max \left\{\alpha_{1}, \beta_{1}\right\}$. Since $z_{i} \rightarrow 0$ weakly, we can use a standard gliding hump argument to find a $k_{2}>1$ such that $x_{2}=z_{k_{2}}$ has the property that if $x_{2}=\sum_{k \geqq 1} x_{k}^{2} e_{k}$ then there exists a $p_{2} \geqq 1$ and $p_{2}^{\prime} \geqq 1$ such that $\left\|T\left(\sum_{k=m_{2}+1}^{m_{2}+p_{2}} x_{k}^{2} e_{k}\right)\right\|>\delta$, and if $T\left(\sum_{k=m_{2}+1}^{m_{2}+p_{2}} x_{k}^{2} e_{k}\right)=$ $\sum_{k \geq 1} y_{k}^{2} e_{k}$, then also $\left\|\sum_{k=m_{2}+1}^{m_{2}+p_{2}^{\prime}} y_{k}^{2} e_{k}\right\|>\delta$. Let $n_{2}=\max \left\{p_{2}, p_{2}^{\prime}\right\}$ and let $\bar{T}_{2}=\sum_{i, j=m_{2}+1}^{m_{2}+n_{2}} t_{i j} e_{j}^{*} \otimes e_{i}$. Then $\delta<\left\|\bar{T}_{2}\right\| \leqq 1$. Again find $\beta_{2}>m_{2}+n_{2}$ and $\alpha_{2}>m_{2}+n_{2}$ so that

$$
\left\|\sum_{i=\beta_{2}}^{\infty} \sum_{j=m_{2}+1}^{m_{2}+n_{2}} t_{i j} e_{j}^{*} \otimes e_{i}\right\|<\varepsilon_{3} \quad \text { and } \quad\left\|\sum_{i=m_{2}+1}^{m_{2}+n_{2}} \sum_{j=\alpha_{2}}^{\infty} t_{i j} e_{j}^{*} \otimes e_{i}\right\|<\varepsilon_{4}
$$

Let $m_{3}=\max \left\{\alpha_{2}, \beta_{2}\right\}$ and repeat the process on $\sum_{i, j \geqq m_{3}+1} t_{i j} e_{j}^{*} \otimes e_{i}$. Let $h=\sum h_{i j} e_{j}^{*} \otimes e_{i}$ be the hermitian element defined by

$$
h_{i j}= \begin{cases}1 & \text { if there is a } k \text { so that } \quad m_{k}+1 \leqq i=j \leqq m_{k}+n_{k} \\ 0 & \text { otherwise } .\end{cases}
$$

Then $h T h \in M$. [Although the corollary to Lemma 1 need not hold here, what the proof of the corollary actually shows is that M is closed under multiplication by real diagonal matrices.] To see that $T^{\prime}=\sum_{i} \bar{T}_{i} \in M$, choose $\varepsilon>0$. There is an ℓ so that $\sum_{i \geqq \ell} \varepsilon_{i}<\varepsilon$. Let K denote the compact operator represented by the first $m_{\ell}+n_{\ell}$ rows and columns of $h T h-T^{\prime}$. Then by the choice of ℓ, $\left\|h T h-T^{\prime}-K\right\|<\varepsilon$ and as M is closed we have that $T^{\prime} \in M$. If $h^{\prime}=\sum h_{i j}^{\prime} e_{j}^{*} \otimes e_{i}$ is defined by

$$
h_{i j}^{\prime}= \begin{cases}\frac{1}{\left\|\bar{T}_{k}\right\|} & \text { if } \quad m_{k}+1 \leqq i=j \leqq m_{k}+n_{k} \\ 0 & \text { otherwise }\end{cases}
$$

then $\left\|h^{\prime}\right\| \leqq 1 / \delta, h^{\prime} T^{\prime} \in M$, and $h^{\prime} T^{\prime}$ is a direct sum of diagonal square blocks each having norm 1. Returning now to $B\left(\iota_{p}\right)$, we see that we may assume that if T is not compact and $T \in M$, then wlog $T=$ $\sum_{i} \bar{T}_{i}$ where each $\bar{T}_{k}=\sum_{i, j=m_{k}+1}^{m_{k}+n_{k}} t_{i j} e_{j} \otimes e_{i},\left\|\bar{T}_{i}\right\|=1$, and $m_{k}+n_{k}+1<$ m_{k+1}. Since $\left\|\bar{T}_{k}\right\|=1$, there exist $x_{k}=\left(x_{1}^{k}, \cdots, x_{n_{k}}^{k}\right) \in \ell_{p}^{n_{k}}, y_{k}=\left(y_{1}^{k}, \cdots, y_{n_{k}}^{k}\right)$ and $z_{k}=\left(z_{1}^{k}, \cdots, z_{n_{k}}^{k}\right) \in \ell_{q}^{n_{k}}$ all of norm-1 such that $\left\langle\bar{T}_{k}\left(x_{k}\right), y_{k}\right\rangle=1=$ $\left\langle z_{k}, x_{k}\right\rangle$ for all k. Define norm-1 matrices A, X, Y, and Z in $B\left(\ell_{p}\right)$ by

$$
\begin{aligned}
& A=\sum_{k \geq 1} e_{m_{k}+1} \otimes e_{m_{k}+1}, \quad X=\sum_{k \leq 1} X_{k}, \quad Y=\sum_{k \geq 1} Y_{k}, \quad \text { and } \\
& Z=\sum_{k \leq 1} Z_{k}
\end{aligned}
$$

where

$$
\begin{aligned}
X_{k} & =\sum_{j \leq n_{k}} x_{j}^{k} e_{m_{k}+1} \otimes e_{m_{k}+j}, \quad Y_{k}=\sum_{j \leq n_{k}} y_{j}^{k} e_{m_{k}+j} \otimes e_{m_{k}+1}, \quad \text { and } \\
Z_{k} & =\sum_{j \leq n_{k}} z_{j}^{k} e_{m_{k}+j} \otimes e_{m_{k}+1}
\end{aligned}
$$

Then $Z X=Y T X=A$. Claim: If $X \in M$, then $M=B\left(\iota_{p}\right)$. For if not, choose $\varphi \in c_{0}^{\perp}$ so that $\|\varphi\|=1=\varphi(1,1, \cdots)$. Define $\gamma \in B\left(\ell_{p}\right)^{*}$ by $\gamma(N)=\varphi\left[\left(n_{m_{k}+n_{k}+1, m_{k}+1}\right)_{k \geq 1}\right]$ where $N=\sum n_{i j} e_{j} \otimes e_{i}$. We may assume that $\gamma \in M^{\perp}$, or else M contains an element with a sequence of entries in $\iota_{\infty} \mid c_{0}$, hence $M=B\left(\iota_{p}\right)$. If $X \in M$, then the functional γ_{1} defined by $\gamma_{1}(N)=\varphi\left[\left((Z N)_{m_{k}+1, m_{k}+1}\right)_{k \geq 1}\right]$ is in \widetilde{M}, as $\gamma_{1}(X)=1$ and as has been noted before, any functional attaining its norm at a norm-1 element of M is in \widetilde{M}. Therefore $2=\left\|\gamma+\gamma_{1}\right\|$. However for any $N \in B\left(\ell_{p}\right)$ of norm-1, we have that

$$
\begin{aligned}
\left|\gamma(N)+\gamma_{1}(N)\right| & =\left|\varphi\left[\left(n_{m_{k}+n_{k}+1, m_{k}+1}+\sum_{j \leq n_{k}} z_{j}^{k} n_{m_{k}+j, m_{k}+1}\right)_{k \geq 1}\right]\right| \\
& \leqq\left\|\left(z_{1}^{k}, z_{2}^{k}, \cdots, z_{n_{k}}^{k}, 1\right)\right\|_{q}=2^{1 / q},
\end{aligned}
$$

a contradiction implying that $M=B\left(\ell_{p}\right)$. What this argument in fact shows is that if M contains any element with the same form as X then $M=B\left(\ell_{p}\right)$. In particular the functional φ_{2} defined by
$\varphi_{2}(N)=\varphi\left[\left((Y N)_{m_{k}+1, m_{k}+n_{k}+1}\right)_{k \geq 1}\right]$ is in M^{\perp}. [For if there is an $m=$ $\sum m_{i j} e_{j} \otimes e_{i} \in M$ such that $\varphi_{2}(m) \neq 0$, then there exists $\varepsilon>0$ such that $\left\|\bar{m}_{k}\right\|>\varepsilon$ for infinitely many k where $\bar{m}_{k}=\sum_{j \leq n_{k}} m_{m_{k}+j, m_{k}+n_{k}+1} e_{m_{k}+n_{k}+1} \otimes$ $e_{m_{k}+j}$. Reasoning as in Lemma 2 we may pass to a subsequence if necessary to get $\sum_{\ell \geqq 1} \bar{m}_{k_{\ell}} \in M$, which up to normalization of the blocks $\bar{m}_{k_{\ell}}$ has the same form as X.] Finally define $\varphi_{1} \in B\left(\iota_{p}\right)^{*}$ by $\varphi_{1}(N)=\varphi\left[\left((Y N X)_{m_{k}+1, m_{k}+1}\right)_{k \geq 1}\right]$. As $\varphi_{1}(T)=1, \varphi_{1} \in \widetilde{M}$, and so $2=$ $\left\|\varphi_{1}+\varphi_{2}\right\|$. But for any norm-1 $N \in B\left(\ell_{p}\right)$, we have that

$$
\begin{aligned}
\left|\varphi_{1}(N)+\varphi_{2}(N)\right| & \leqq \sup _{k}\left|\sum_{j \leq n_{k}}(Y N)_{m_{k}+1, m_{k}+j} x_{j}^{k}+(Y N)_{m_{k}+1, m_{k}+n_{k}+1}\right| \\
& \leqq \sup _{k}\left\|\left(x_{1}^{k}, \cdots, x_{n_{k}}^{k}, 1\right)\right\|_{p}=2^{1 / p}
\end{aligned}
$$

a contradiction showing that if $T \in M$ then $M=B\left(\iota_{p}\right)$.
The properties of ℓ_{p} used to prove this theorem are the existence of a symmetric basis and of certain convexity conditions in the space and its dual.
J. Hennefeld recently announced the following result [AMS Notices Volume 25, Number 6, 760-B8].

Theorem. The only 1-symmetric spaces X for which $K(X)$ is an M-ideal in $B(X)$ are c_{0} and $\iota_{p}, 1<p<\infty$.

Hence combining these theorems we have that if X is not c_{0} or $\ell_{p}, 1<p<\infty$, has a symmetric basis in X and X^{*} and satisfies the required convexity conditions, then there are no nontrivial M-ideals in $B(X)$.

References

1. E. M. Alfsen and E. Effros, Structure in real Banach spaces, Ann. of Math., 96 (1972), 98-173.
2. F.F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Series 2, Cambridge (1971).
3. _-, Complete Normed Algebras, Ergebnisse der Math., S0, Springer-Verlag, 1973.
4. J. Hennefeld, A decomposition of $B(X)^{*}$ and unique Hahn-Banach extensions, Pacific J. Math., (1973), 197-199.
5. R. R. Smith and J. D. Ward, M-ideal Structure in Banach Algebras, J. Functional Analysis, 27 (1978), 337-349.
6. \quad, -ideals in $B\left(\ell_{p}\right)$, Pacific J. Math., 81 (1979), 227-237.
7. K. W. Tam, Isometries of certain function spaces, Pacific J. Math., 31 (1969), 233-246.

Received February 20, 1979 and in revised form March 5, 1981.
The Ohio State University
Columbus, OH 43210

