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A CHARACTERIZATION OF M-IDEALS IN
B(4) FOR 1< p <

PATRICK FLINN

For 1 < p < o the only nontrivial M-ideal in B(,), the
bounded linear operators on /,, is K(/,), the ideal of compact
operators on /.

1. Introduction. Certain theorems for B(H) (the bounded
linear operators on H a separable Hilbert space) are known to hold
for B(4), 1 < p < . For example, it is well known that the only
nontrivial closed two-sided ideal in B(4), 1 < p < «~ is K(4), the
compact linear operators on 4. Hennefeld [4] has shown that K(s,)
is an M-ideal in B(s) for 1 < p < . It is also known that K(4)
is the only nontrivial M-ideal in B(4). This follows from the fact
that in a B*-algebra, the M-ideals are precisely the closed two-sided
ideals [5]. The purpose of this paper is to show that this result
also generalizes to B(4,), for 1 < p < «. As this paper is largely
based on the work of Smith and Ward [5] it is perhaps not surprising
that a result of theirs, namely that every nontrivial M-ideal in B(,)
for 1 < p < o contains K(4,), has a new proof.

2. Preliminaries. A closed subspace L of a Banach space X is
said to be an L-ideal [M-summand] if there exists a closed subspace
L’ such that X=L@PL and |7+ || =2l + |7 [l + 7| =
max {||7]], ||#’||}] for every v e L and ~'€L’. A closed subspace M
of a Banach space X is an M-ideal if M* is an L-ideal in X*,
Note that M-summands are M-ideals, but the latter is a more general
concept. [For example, K(4) is an M-ideal in B(s,) but not an M-
summand, as K(s,) is not complemented in B(4).] For basic proper-
ties of M-ideals, L-ideals and M-summands, refer to [1].

The state space S of a banach algebra A with identity e is
defined to be {gc A*: ¢(e) = ||¢|| = 1}. An element i € A is hermitian
if ||e*|| = 1 for all real n. Equivalently [2] 2 is hermitian if and
only if {¢(h):heS} S R. A** when endowed with Arens multipli-
cation [3] is a Banach algebra with identity e, and by the weak-star
density of A in A**, he A** is hermitian if and only if A is real
valued on the state space of A.

In [5] it is shown that M-ideals in Banach algebras are neces-
sarily subalgebras. Other results of this paper and [6] needed in
the sequel are now summarized:

Let M be an M-ideal in B(4,), 1 < p < co. Then clearly M** is
an M-summand in B(4)**; that is, B(4)*"* = M** @, M Let
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P: B(«,)** — M** be the associated M-projection. Let I denote the
identity in B(s,), and let P(I) = 2. Throughout this paper, the fol-
lowing arithmetical facts will be collectively referred to as (*):

2z = 2° is hermitian, and commutes with every other hermitian
element of B(s)**. zM**< M**, zM* < M*, and zM*2 = 0. Like-
wise, (e — 2)M*+* S M**, (e — 2)M* & M*¥, and (e — 2)M**(e — z) = 0.

If S is the state space of B(s), then S = F,@eons F. where
B)y* =M@, M,F,=M*nS, and F, =M nS (ie., €S — there
exist unique ¢, € F, ¢, € F,, and ¢ € [0, 1] such that ¢ = tg, + (1 — t)¢,).
If z is regarded as a real valued affine function on S, then z|, =0
and zl|p, = 1.

An important fact used in this paper which follows easily from
the definition of the hermitian elements is that in B(s,), any diagonal
matrix with real entries in hermitian. [These are in fact precisely
the hermitian elements of B(s) if 1 < p < o, p =2 [7].]

In §3, a matrix A e B(s,) whose ith row jth column entry is a,;
will be denoted 3, ;. ai6; ® e;, where e; Qe; is the rank-one map
that sends e; to e;. ((e).z, is the canonical basis for «,.) Note that
if AeB(4,), then ||A(e,)|| < ||A]] for every <. That is, every column
of A is an element of 4, whose norm does not exceed ||A|. By
considering the adjoint, we have that every row of A is an element
of 4 [1/p + 1/g =1] whose norm is less than or equal to ||A].
Clearly, |a;;| =< ||A]| for every 4, j, and if A is a matrix with at
most one nonzero entry in each row and column, [for example if A
is diagonal] then ||A| is the #.-norm of the sequence of nonzero
entries.

3. Results. Assume all notation in §2, and assume M = 0.
Recall that I denotes the identity on 4, where throughout this
section 1 < p < oo, p # 2.

LEMMA 1. If h is hermitian in B(s,) and h* = I, then for every
meM, hmeM and mh e M.

Proof. Considering h as canonically embedded in B(4)**, h =
h, + h, where h,e M**, h,e M* and | k| = max{||h,]], ||h.]}. Note
that h, and h, are themselves hermitian elements of B(s)**, for if
fie F, then fi(h,) = 0 and if f, e F, fi(h,) = fo(h) e R. So for any ¢¢€ S,
¢(h) e R, i.e., h, is hermitian. The same reasoning applied to h,
shows that h, is also hermitian. A* = I = h} + h,h, + h.h, + hZ, how-
ever it is easy to see that hh, = 0 = h,h,, since by (*) we have that

h.hy, = 2hh, + (¢ — 2)hh, = h2h,2 4+ (6 — 2)h,(e — 2)h, = 0 .
Similarly, h,h, = 0, hence I = h? + hi.
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Now pick m € M, and wlog assume ||m| =1. We’ll show that
hme M. [mhe M is shown in similar fashion.] There exist m,e M*+
and m,c M* such that Am = m, + m,. Claim: zm, =0 = m,z. To
see this, note that zhm = zm, + zm, where [using (*)] zhm = zhzm €
M*+ and zm,e M**. Hence zm,c M** N M* and so zm, = 0.

To show m,z = 0 is a little harder: himz = hymz + hymz = m,z +
m,2 where hymze M** and mze M*t. If we knew that hymze M*H,
then as before we’d have m,ze M*+* N M? = 0 and our claim would
be established. So suppose h,mz¢ M**. Then there exists some
fieSN M+ so that fi(hymz) %= 0. [This happens as the state space
spans B(4)* and hence F, spans M*.] Choose R so that
fi(e?hymz) = 6 > 0. Then emze M** has norm at most one, h, € M*
has norm at most one, so ||h(e’mz+h,)||=<1. But 1=fi(e?’h,mz+h2)=
0+ filhd) =6 + fi(I) = 6 + 1, a contradiction which proves the claim.
Now (¢ — 2)hm(e — 2) = (e — 2)m,(e — 2) + (e — 2)my(e — z). But by
(*) we have that (e—2)hm(e—z) = h(e—z)m(e—z) = 0 = (e—=z)m,(e—2z),
so 0 = (e — 2)my(e — 2) = m,, that is, hm = m,e M**NB(4,) = M. []

REMARK. Although stated for B(4,), this lemma is true [by the
same proof] for any M-ideal M and norm-1 hermitian % where h* = I.

COROLLARY. If h is any diagonal matrix in B(s,), then hM = M
and Mh S M.

Proof. At this point we know that if A is a diagonal matrix
with only =£1’s on the diagonal, then A*= I and so AM < M and
Mh < M. But by averaging two such hermitian elements, we have
that if » is any diagonal matrix with only 1’s or 0’s on the diagonal,
then hM < M and Mh < M. Hence the result holds for any finite
valued diagonal matrix. But such matrices are dense in the diagonal
elements of B(<), and so as M is closed, hM = M and Mh < M for
any diagonal h. ]

COROLLARY. M 2 K(<4,).

Proof. By the previous corollary, if E,; denotes the elementary
matrix with a 1 in the 7th row and jth column and zeros elsewhere,
then E, ME;; < M for every 1 =1 and j = 1. As M = 0 there is an
A =3 a;6; Qe; € M such that for some % and 7~ a,, = 1. Hence
E.,= E,AE,,e M. Claim: for every p =1, E,,e M. If there is
any m = >, m;e; Q e, € M so that m,,+#0, then E,, =1/m,,)E,,mE,,
M. So if every m = >, m,;e; Qe; € M has the property that m,, = 0,
then the norm-1 functional p,€ B(4,)* defined by 0.3, te; R e;) = t,,
is in M*. Let p,e€B(4)* be defined by 0,3 te; ®e;) = t,,. Then
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lo.]| =1. Claim: p,e M. To see this, suppose that o, = ¥, + 4
where y e M*, yoeil. Then |p,| = ||l.]| + lly.], and 1= ol =
Px(EM) = q/r,(Ek;) + o(Byy) = "ﬁz(Ek()r S0 “"/"2” =1- H"l"l“ = 0. Hence
2=10 + p.]l. Choose T = >\t e; Re;,€B(4,) so that ||T]| =1 and
|0.(T) + p,(T)| > 2%% where 1/p +1/g =1. Then 2V < |t,, + &, | <
(It |7 + [t ?) 22 < | T, [|-2¥7 < 2v4, a contradiction implying that
E, e M. A similar argument shows that if E,;e M, then for every
k=1, E,cM. Hence M 2{E,;: 1, j =1} which is a basis for K(4,),
that is, M 2 K(+,). O

Note that if & is hermitian and A€ M then hB(4)h & M. This
follows from the simple observation that if he M, then by (%),
(e — 2)h = (e — 2)°h = (¢ — 2)h(e — 2) = 0 = h(e — 2), since h is her-
mitian. So zh = hz = h, and for any AeB(s), hAh = hzAzh € M.
From this we see that if e M, then M = B(<,).

LEMMA 2. If A= a,e; Qe €M where (a;)s; €4\C, then
M = B().

Proof. wlog there exists an infinite sequence of integers
S <K< f@) < --- so that A = 3}, ¢e54 ®esy. The reduction to this
case illustrates a typical use of Lemma 1 that occurs several times
in this paper. This time it will be done in detail:

There exists a 6 > 0 and a sequence of positive integers 1, <
7, < --- so that 0 <|a,,|=<|A| for each k. As hAcM where
h = e Ulay, e, @ e, we may assume wlog that a,, =1 for
every k. Choose a sequence of positive numbers (g);s; so that
Siizi& < . Let f(1) = ¢, and choose a, > f(1) so that

(Z larm; D7 <e and (3 [ayn|)" <e.
jea

izay

Choose a k, so that 4,, > a, and set f(2) = 4;,, Now find a, > f(2) so
that (Xljee, |07 DY < & and (Dize, |air[)? <e, ete. Fix ¢>0.
There is an n such that >...¢6 <e. If h=> h,e; Qe where

1 if ¢=45=f(k) for some £k

Ry =
! 0 otherwise

and K denotes the first f(n) rows and columns of hAh — >silrm &
¢;u, then K represents a compact operator on <, and by choice of
K ||hAh — Sysierm Rersy — K| <e. As €>0 is arbitrary and
hAh — K€ M we have that

Zk‘. e @ erm €M .
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If f(IN)" is finite, then there exists a compact K so that 4 + K =
IeM— M = B(4). So assume f(N)° is infinite and let g enumerate

SIN)°.
Clatm. B = 3¢, X e M.

Note that proving this claim is sufficient to finish the lemma,
since the same argument can be modified to show that

C=>3¢e;,®e,n€M, hence again [=A+ CBelM .

We first show that d(B, M) is zero or one.

Now if & = 3c;¢, X e; where I is any subset of positive inte-
gers, then d(h, M) is either zero or one for any M-ideal M, for if
there isa 6 > 0 and m € M such that ||z — m| = 6, then by the first
corollary to Lemma 1, (h — m)* = h — (hm + mh — m*) — d(h, M) < &°.

Let P be the permutation matrix which as an operator on /,
interchanges, for every 4, e;, with e,;. Then AP = B. It is easily
checked that M, = {mP: m € M} is an M-ideal isometric to M. Indeed
the isometry T: B(s,)— B(4) given by T(N) = NP induces an iso-
metry [call it T again] on B(4)* by (N, Te) = (NP, ). Then
TM) = M,, T(M*)= Mz and B(4)* = T(M")P,, T(M). Therefore
d(B, M) = d(A, M;) =1 or 0.

Now assuming that B¢ M, there is a ¢ € M* so that ||@|| =1=
®(B). Define ¢, € B(4,)* by P4(N) = ¢(NB). Then AB = B — ¢ ,(A) =
1= ||p,||. But then ¢, el since Ae M. [This calculation occurs in
the corollary above stating that M 2 K(4,).] Thus ||@, + || = 2.
But there is an ¢ > 0 such that for any norm-1 Ne B(4), we have
that |p,(N) + oN)| = |le|l-IN||-||B + I]| <2 —¢, a contradiction
implying that Be M. ]

LEMMA 3. If B = 3\ b,e; Q e, € M where B contains a sequence
of entries (b;,;,)i=1 € Z=\Co, then M = B(4,).

Proof. As in the proof of Lemma 2, we may assume wlog that
there exist infinite sequences f(1) < f(2) < --- and g(1) < g(2) < ---
such that f(?) = g(5) for all = and j, and so that >, e,, ® es, € M.
Call this matrix B, and let A = X, ¢;, X esy- If P and M, are as
in Lemma 2, then 0 = d(B, M) = d(A, M,) — [by Lemma 2] M, =
B(4,) —» M = B(4,). ]

If T=3t,e;Qe, €M and T is not compact, then it is not
necessarily the case that there is a subsequence of entries (£,,;,)i=: €
Z\C,. But what is true [and will be shown in the proof of the next
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theorem] is that 7' has infinitely many square blocks each of whose
norm is larger than some fixed ¢ > 0. So what essentially remains
to be done is to generalize preceding arguments from 1 by 1 blocks
to square blocks of arbitrary dimension.

THEOREM. Suppose T = >, t,e; X e; is not compact. Then Te
M — M = B(<,).

Proof. wlog ||T|| =1. The argument of Lemma 2 modifies to
show that wlog T is a direct sum of diagonal square blocks 7, where
| T;]l = 1. Although this is well known, it is included for the sake
of completeness. We can do this in more generality as follows:

Suppose T = 3 t,;6f Q e; € B(X) where X is a reflexive space with
1 unconditional basis (¢,);», [s0 (ef),;s; is a basis for X*]. Suppose T
is in an M-ideal M < B(X). Since T is not compact, there is a
0 > 0 and a sequence (z,),>; & X such that ||2,]| =1 and || T(z,)| > 20
for every 7, and 2z, — 0 in the weak topology. Let 2, = 2, where
X = D=1 %, Then there exist p, =1 and p; =1 so that
ITCuWL e || > 6, and if TGk wier) = Dusi Yier, then also
| S5, yie,|| > 6. Define m, = 0, let m, = max {p, p}} and let T, =
St tief ®e,. Then § < || T,]| £1. Choose a sequence (&), of
positive numbers so that 3., & < 0. Now 32, Vi t.ef @ e, re-
presents a compact operator [its adjoint is finite rank] and so there
exists B, > n, such that |35, 3L t,ef @ el <e [if (P,),z are the
natural basis projections defined by P, a.e) = S\*,a., then
(T,P,, — P,T.P,)(x) — 0 for every xc X, and as T, is compact this
convergence is uniform on the unit ball, hence ||T\P, — P,T\P, || — 0
as m—oo].  As Dt s tief Qe is finite rank [hence compact] similar
reasoning shows that there is an a, > n, so that |32, 37, tuef ®
e;|| < &. Define m, = max{«a,, 8,}. Since 2, —0 weakly, we can use
a standard gliding hump argument to find a &, > 1 such that z, = z,,
has the property that if z, = >).., 2%, then there exists a p, =1
and p, =1 such that || T(Z,,’,"i;’;‘il ziey) || > 0, and if T( 202, ale,) =
Sies1 Yier, then also || 37455 yie || > 8. Let n, = max {p,, pj} and let
T, =002 tef Qe. Thend < || T.| <1. Again find 8, > m, + n,
and «, > m, + n, so that

o  matmg

> Dty Qe

1=fy j=mg+1

M2+’n2 oo

> itef Qe

ii=mo+1 j=ay

<.

< e and

Let m; = max {a,, 8;} and repeat the process on 3; jzn..:tief Qe
Let h = 3 h;;ef @ e; be the hermitian element defined by

3 1 if thereisa %k sothat m,+1=t1=7<m, + n,
“ 710 otherwise .
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Then AThe M. [Although the corollary to Lemma 1 need not hold
here, what the proof of the corollary actually shows is that M is
closed under multiplication by real diagonal matrices.] To see that
T =3,.T,eM, choose ¢ >0. There is an < so that 3. ¢ <e.
Let K denote the compact operator represented by the first m, + n,
rows and columns of ATh — T'. Then by the choice of ¢
|hTh — T' — K| < ¢ and as M is closed we have that T"e M. If
' = > hief Qe; is defined by

s — TT}—W i omy+1l<i=j<m+m
0 otherwise,

then ||'|| < 1/6, W'T' € M, and B'T’ is a direct sum of diagonal square
blocks each having norm 1. Returning now to B(s), we see that
we may assume that if 7' is not compact and 7€ M, then wlog T =
> T, where each T, = Z%an,:ﬂ tije; D e, |l T.|=1,and m, +n, + 1 <
Myy,. Since || T,||=1, there exist x,= (%, - -, ak,) € 4™, y, = (5, - -, ¥%)
and z, = (2, ---, 2%) e ™ all of norm-1 such that <Ty(x,), ¥,) =1 =
{#, ®,y for all k. Define norm-1 matrices 4, X, Y, and Z in B(4,) by

A=Semu®@emn, X=3X, Y=3Y,, and
21 21 21
Z = 3,7,

ka1

where
— k — k
X =2, Tlms Qlmprs s Y =2, Ylm; Q€p,  and
FESOA Jany
—_— k
Zk - Zl zjemk+:i ® emk+1 .
i<ny

Then ZX = YTX = A. Clatm: If Xe M, then M = B(s). For if
not, choose @ € ¢ so that ||@|| =1 =¢(1,1, ---). Define v€ B(4)* by
Y(N) = Pl(Mmpsnpt1,mps)izi] Where N = 3 m,e; Qe,. We may assume
that ye M*, or else M contains an element with a sequence of en-
tries in ZJ\c, hence M = B(s,). If XeM, then the functional v,
defined by 7u(N) = P[(ZN)ps1,mr)eza] is in M, as 7,(X) =1 and as
has been noted before, any functional attaining its norm at a norm-1
element of M is in M. Therefore 2 = |v + v,|. However for any
N e B(¢4,) of norm-1, we have that

I’Y(N) + 71(N)l = lq)[(nwﬂwhmk“ + fgt‘kz;gnmk+j,mk+1)k;1]l
g “(zf’ z;cy Y z,;tky 1) “q = 21/q .

a contradiction implying that M = B(s,). What this argument in
fact shows is that if M contains any element with the same form
as X then M = B(+4). In particular the functional @, defined by
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PoAN) = PLUAY N)mps1,mpingr)iz:] 18 in M+, [For if there is an m =
>imye; Q e, € M such that @,(m) # 0, then there exists ¢ > 0 such that
|7, || > e for infinitely many k where m;, = 3\;<n, Myt s, mp+ng+1€mptnrtr @
m,+j- Reasoning as in Lemma 2 we may pass to a subsequence if
necessary to get > ., M, € M, which up to normalization of the
blocks m, . has the same form as X.] Finally deﬁng @, € B(¢,)* by
P(N) = Pl(YNX)mpsr,mpr)ezn).  As @(T) =1, €M, and so 2=
lo, + @.]|. But for any norm-1 N ¢ B(s,), we have that
|¢1(N) + @2(N)| _—<_ Sgp ljgk(YN)mkH,mkal; + (YN)mk+1,mk+'nk+1[

= sup || (&t -+, @, D, = 27
a contradiction showing that if T'e M then M = B(s,). ]

The properties of ~, used to prove this theorem are the existence
of a symmetric basis and of certain convexity conditions in the space
and its dual.

J. Hennefeld recently announced the following result [AMS
Notices Volume 25, Number 6, 760-B8].

THEOREM. The only l-symmetric spaces X for which K(X) s
an M-ideal in B(X) are ¢, and 4, 1 < p < co.

Hence combining these theorems we have that if X is not ¢, or
4y, 1 < p < oo, has a symmetric basis in X and X* and satisfies the
required convexity conditions, then there are no nontrivial M-ideals
in B(X).
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