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ABSOLUTE C*-EMBEDDING OF F-SPACES

ALAN Dow AND ORTWIN FORSTER

Let 7% be an open cover of a space X. We define Z to
be a P-cover if each element of % is a proper subset of X,
7 is closed under countable unions and for every Uec %
there is a Ve Z such that U and X\V are completely
separated. We prove an F-space X is C*-embedded in every
F-gpace it is embedded in iff X has no P-covers or X is
almost compact.

1. Introduction. In 1949, Hewitt [7] proved that a Tychonoff
space is. C*-embedded in every Tychonoff space in which it is
embedded iff X is almost compact. C. E. Aull [1] has shown that
a P-space X is C*-embedded in every P-space in which it is embedded
iff X is almost Lindelof (given disjoint zero sets of X at least one
is Lindelof). These two theorems are examples of absolute C*-
embedding theorems. In §3 of this paper we will provide the
absolute C*-embedding theorem for F-spaces. In §4 we obtain
partial results concerning C*-embeddings in basically disconnected
spaces.

2. DEerFINITIONS. All topological spaces will be assumed to be
Tychonoff. The following theorem is useful when dealing with F-
spaces and also provides a definition of F-spaces.

THEOREM 2.1 [6, 14.25]. The following are equivalent

(1) X is an F-space.

(2) BX is an F-space.

(8) disjoint cozero subsets of X are completely separated.
(4) cozero subsets of X are C*-embedded.

(5) disjoint cozero subsets of BX have disjoint closures.

X is basically disconnected if the closure of every cozero set is
clopen. X is a P-space if every zero set of X is open. The reader
is referred to [6] for background on P-spaces, F-spaces and basically
disconnected spaces. X is weakly Lindeldf if every open cover of
X contains a countable subcollection whose union is dense in X [2].
If X is a subspace of Y and & is a collection of subsets of Y, we
define |, = {CN X: Ce %}

The cardinality of a set K is denoted by | K| and the immediate
successor of a cardinal « is denoted by a®. The cofinality of a non-
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successor ordinal «, denoted by cf(a), is the smallest cardinal £ such
that a = sup {0;: v < k}, where §, < . Our notation and terminology
follows that of the Gillman-Jerison text [6].

3. Absolute C*-embedding of F-spaces.

DEFINITION 3.1. An open cover & of X is called a P-cover if
each Ue® is a proper subset of X, & is closed under countable
unions and for each Ue % there is a V in & such that U and X\V
are completely separated in X.

It is immediate from the definition that a weakly Lindelof space
has no P-covers. In this paper we will find similarities between
weakly Lindelof F-spaces and F-spaces without P-covers, but in §5
we will give an example of an F-space without P-covers and which
is not weakly Lindelof.

DEFINITION 3.2. We will call Ac X a P-set of X if A is compact
and any disjoint cozero set of X is completely separated from A.
If A = {p} is a P-set, then p (as usual) is called a P-point.

The following result motivates the use of the term “P-cover”.

LeEMMA 3.3. There exists a P-set of BX contained in X\X iff X
has a P-cover.

Proof. Let P be a P-set of 8X which is contained in BX\X.
Let & = {C: C is a cozero subset of X and CN P = ¢}. We will
show that |, = {CN X: Ce &} is a P-cover of X. It is immediate
that & |, is closed under countable unions. If Ue%’, then P and
U are completely separated by the definition of a P-set. Hence
there is a zero set Z of BX containing P such that U and Z are
completely separated in 8X. Let V = gX\Z;then Ve&,and UN X
is completely separated from ZN X = X\V. Also if Ce% then
iy CNX)NP=¢ so CN X is a proper subset of X. Therefore
& |y is a P-cover of X.

For the converse, assume & is a P-cover of X. Define P to be
N{clx (X\C): Ce©¥}. We will show that P is the required P-set.
P is compact and nonempty since & is closed under finite unions
and therefore {cl;; (X\C): Ce &’} has the finite intersection property.
Also P is contained in BX\X since & is a cover of X. Let U be
a cozero subset of BX such that UNP=¢. Then U is Lindelof
and Nfclyx (X\C):Ce&}NU =g, therefore there is a subset
{C.:n < w} of & such that N{cl;x (X\C,):n < w}NU = ¢. In parti-
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cular, UnNely (X\U{C,:n < w}) =¢; so Ucecly U{C,: n < w}. Be-
cause % is a P-cover, there is a V in & such that U{C,: n < w}
and X\V are completely separated. Since Pcely, (X\V) and UcC
clgy U{C,: n < ®w}, we have P and U are completely separated in

BX. U

LEMMA 3.4. Let K be a compact F-space. If P is a P-set of K
and q is a point of K, then the quotient space formed by collapsing
P U{q} to a point is an F-space.

Proof. Let Y be the quotient space and f the quotient map.
Since P U {q} is compact, Y is Tychonoff. All that remains to be
shown is that disjoint cozero sets C° and C* of Y can be completely
separated. The cozero sets f~(C°) and f=(C*) of K are disjoint, so
el f(CYNelgf(CY) = ¢. We can assume w.l.o.g. that ¢ ¢eclf~(CY.
Since g ¢clgf~(C') implies ¢q¢ f~(C'), we have (PU{q}) n f(CY) = ¢,
and therefore Pnely f~(C*) = 4. The function f is one-to-one on the
set K\(PU{q}) and (PU{q})Nclg f~(C*) = 4, therefore the full preimage
of flely £F(CY) is elg £(CY). Thus flely £(C%) and flelg f~(CY)) are
disjoint compact sets of Y which contain C° and C* respectively, so
C° is completely separated from C! in Y. I

It is known that the property “weakly Lindelof” is inherited
by regular closed subspaces. Though a regular closed subspace of
an F-space without P-covers may have a P-cover [3, pg. 70], we do
have the following result.

LemMA 3.5. If C is a cozero set of an F-space X and X has
no P-covers thenm cly C has no P-covers.

Proof. Assume cl; C has a P-cover. Then, by Lemma 3.3, there
exists a P-set P of pB(cly C) contained in pB(cly C)\el, C. C, and
therefore cl, C, are C*-embedded in X, so Pc B(cl; C) = cl;x Cc pX.
We will show that P is a P-set of 8X. Let U be a cozero set of
BX such that UN P =¢. Then UNcl;y C is a cozero set of cly; C
which misses P, hence cl; (UNel,z C)NP = ¢. Since el (UNelz C)
and P are disjoint compact sets of BX, there is a zero set Z of X
which contains el;; (U N elyx C) and misses P. (U\Z)N X and C are
disjoint cozero sets of X, and have disjoint closures in 8X. But now
we have Z Uecl;, [(U\Z) N X] is a compact set containing U which
misses P, so PN(el;y U) = ¢. X has a P-cover since P is a P-set of
BX and PcCely, C\el, Cc gX\X. OJ

THEOREM 3.6. Let A and B be subsets of an F-space X such
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that meither A mor B have P-covers and cly AN B = ANcl, B=4¢.
Then A and B are completely separated in X.

Proof. Let K =cl;; (AU B). The compact set K, as a C*-
embedded subset of an F-space, is an F-space [6, 14.26]. It will
suffice to show A and B are completely separated in K.

Define v = {U: U is a cozero set of K and U and B are com-
pletely separated in K}. Define 7|, = {UN A: Ue %}. By assump-
tion, ANecly B = ¢, so |, is an open over of A. If Ae%|,, then
A and B are completely separated so we assume A ¢ %], and we will
arrive at a contradiction.

If Ue %, then there exists a zero set Z of K containing U and
completely separated from B. Choose a cozero set V containing Z
and completely separated from B. So we now have Uc ZcV c K\B
and Ve%. Since U is disjoint from the cozero set K\Z, U is
completely separated from K\V c K\Z. Since A has no P-covers,
% |4 is not a P-cover, therefore there exist countably many cozero
sets {U;:1 < w}cZ such that U{U, N At < o}eZ|,. Let W=
U{U;: 1 < w}.

Define 7 = {V: V is a cozero set of K and VNW =¢}. 7
is a cover of B since BNel, A =¢andecly Wcelz A. If Ue 7 then
there exists a zero set Z of K containing W and completely
separated from U. If V= K\Z then Ve 7. U is completely
separated from K\V = Z, so UN B is completely separated from
B\(VNB). 7|z is obviously closed under countable unions. But
7|5 cannot be a P-cover of B, so Be 7|5 therefore there exists a
cozero set V of K such that BcVe? and VN W =¢. Therefore
B and W are completely separated, which is a contradiction to
WeZ. U

We now state and prove the main theorem of this paper.

THEOREM 3.7. Amn F-space X is C*-embedded in every F-space
it 18 embedded in iff X has no P-covers or X s almost compact.

Proof. Assume that X is an F-space with no P-covers and X
is embedded in an F-space Y. It will suffice to show that disjoint
cozero sets of X are completely separated in Y. Let C° and C* be
disjoint cozero sets of X. By Lemma 8.5, cl, C° and cl, C* have
no P-covers. We note that ecly(cl, C)Nel;C*=¢ and cl,C°'N
cly (ely C*) = ¢, so by Theorem 3.6, they are completely separated
in Y.
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For the converse assume X is not almost compact and X has a
P-cover. By Lemma 8.3 there is a P-set P of gX contained in
BX\X. Choose a point ¢ 8X\X such that |PU{g}| > 1. Then by
Lemma 3.4, the quotient space BX/(P U {q}) obtained by collapsing
PU{q} to a point is an F-space in which X is densely embedded
but not C*-embedded. ]

The next corollary uses a construction similiar to one given in
[10, pg. 96]. We will show that for every space X which is em-
bedded in an F-space Y, there is an F-space W in which

(1) X is embedded as a closed set and

(2) X is C*-embedded in W iff X is C*-embedded in Y.

COROLLARY 3.8. An F-space X is C*-embedded in every F-space
it is embedded in as a closed set iff X has no P-covers or X 4s almost
compact.

Proof. Suppose X is embedded in an F-space Y. Let A be the
least ordinal of cardinality |3Y|*. Define 4 = (A + D\{a: ¢f(a) = w}.
Negrepontis [8] has shown that the product of a P-space with a
compact F-space is an F-space. A is a P-space, so AXRY is an F-
space. Let W= (4 x sY)\({\} x sY\X). W is a dense C*-embedded
subspace of A x Y (see Example 5.1 or [10, pg. 96]), so W is an
F-space. X is homeomorphic to the closed subspace {\} x X of W.
For every continuous real-valued function f defined on W, there
exists an &« <\ such that for all xe X, f(a, x) = f(\, ). As a con-
sequence, {A} x X is C*-embedded in W iff X is C*-embedded in Y.
This will show that Corollary 3.8 is equivalent to Theorem 3.7. []

Note that if X is C-embedded in X then X is pseudocompact;
and a pseudocompact space is C-embedded iff it is C*-embedded. This,
along with Theorem 3.7, proves the next corollary.

COROLLARY 3.9. An F-space X is C-embedded in every F-space
it is embedded in iff X is almost compact or X is pseudocompact
and has mo P-covers.

4. Absolute C*-embedding in basically disconnected spaces.
Let & be a cover by cozero sets of a basically disconnected space
X, and assume the union of every countable subcollection of & is
not dense. The set of unions of every countable subset of the open
cover {cl, U{C,:n < w}: {C,: n < w} &} is easily seen to be a P-
cover of X. Therefore, for a basically disconnected space X, X has
a P-cover iff X is not weakly Lindelof. By Theorem 8.7 and this
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remark we have the following corollary.

COROLLARY 4.1. A basically disconnected space X is C*-embedded
in every F-space it is embedded in iff X is weakly Lindeldf or X
18 almost compact.

DEFINITION 4.2. A space X is almost weakly Lindelof if given
two disjoint cozero sets of X, at least one is weakly Lindelof.

The next lemma is similar to Lemma 3.4.

LEMMA 4.3. Let K be a compact basically disconnected space.
If P is a P-set of K, then the quotient space formed by collapsing
P to a point is basically disconmnected.

Proof. Let Y be the quotient space and f: K — Y the quotient
map. Since P is compact, Y is Tychonoff. Let C be a cozero set
of Y. eclgf(C) is open and f is a quotient map so we will prove
that ¢l C is open by showing f(cly C) = clg f~(C). It is obvious
that clg f(C)c f(clyC), so let e K such that f(x)ecl,C=
Sflelg f7(C)). We wish to prove xecly f(C). Thereisayecly f~(C)
such that f(z) = f(y). If x = y, we are done so assume z # y. Then
{x, yycP. We now have yePnecly f(C)+#* @ and since P is a
P-set and f~(C) is a cozero set, PN f(C) = @&. Therefore xcPC
F(C) celg £(C). O

We now prove the main result in this section.

THEOREM 4.4. If a basically disconnected space X is C*-embedded
is every basically disconmected space it 1s embedded in, then X is
almost weakly Lindelof.

Proof. Let X be a basically disconnected space which is not
almost weakly Lindelof. Let C° and C' be disjoint cozero subsets
of X neither of which is weakly Lindelof. A cozero set of a weakly
Lindelof space is weakly Lindelof [2, Lemma 1.2(c)], therefore cl; C°
and cl, C' are not weakly Lindelof, and since they are basically
disconnected spaces, they both have P-covers. By the proof of
Lemma 3.5 there are two disjoint P-sets, P° and P!, of 83X contained
in clyy C%cl; C° and clyy C'\cl; C* respectively. Then P°U P! is a
P-set and the quotient space obtained by collapsing P°U P! to a
point is basically disconnected by Lemma 4.3. X is a dense subspace
of the quotient space, but it is not C*-embedded since |P° U P*| > 1.

l
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Unfortunately, an example in §5 will show that the property
almost weakly Lindelof is not a sufficient condition for C*-embedding.
It remains an open question to characterize the basically disconnected
spaces which are C*-embedded in every basically disconnected space
in which they are embedded. But we do have the following theorem.

THEOREM 4.5. If a basically disconnected space X 1s embedded as
an open or dense subspace of a basically disconnected space Y, then
X is C*-embedded in Y iff X is almost weakly Lindelof.

Proof. Assume X is almost weakly Lindelof and is embedded
in a basically disconnected space Y. If C° and C* are disjoint cozero
sets of X, then we can assume that one of them, say C° is weakly
Lindelof. Define 7" = {V: V is a cozero set of Y, VNnel, C'= 0}.
7 |0 is a cover of C°, so there is a countable subcollection {V,: n < ®}
of 7" such that, if W= U{V,:n < ®}, then cly WD C’. But if X
is dense or open in Y, cl, WNC*= @. cl, W is a clopen subset of
Y and it is easily seen C° is completely separated from C'. The
other part of the proof is provided by Theorem 4.4. ™

5. Some further remarks and examples.

ExAMPLE 5.1. We construct a non-weakly Lindelof F-space
which has no P-covers. Let K = gw\w. Let \ be the initial ordinal
of cardinality |K|*. Define D= (A + D\{a < M ¢f(a) = @} where
A + 1 has the order topology. D is a P-space and K is a compact
F-space, so D X K is an F-space [8]. Choose a non-clopen cozero
set C° of K [6, 6W], and let B° = cl, C°\C°. Our example will be
X =B x K)\({7} X B%. To show X is an F-space we will first
show that Y= D x K\({\} X K) is C*-embedded in D x K. Let f
be a continuous real-valued function on Y. Modifying the arguments
in [6, 9L] one has for every ke K an interval [a,, A] of X + 1 such
that f is constant on ([a,, N\]N D) x {k}. Let B =sup{a,:kecK}.
Since c¢f(A) > | K|, we have g <\ and [ + 1,Ax]N D = V is a clopen
neighborhood of A in D. Define g: K — <2, where <2 is the real
line, by declaring g(k) = f(B, k). Obviously ¢ is continuous and for
all (9, k) e (V\(M}) X K, f(0, k) = g(k), so f can be continuously extended
to Vx K and hence to Dx K. We now have Y is a dense C*-embedded
subspace of the F-space DX K, so Y is an F-space and Yc XcpRY =
B(D x K), so X is also an F'-space.

Choose a cozero set C’' of 3X = 8(D X K) such that C’'N (D x K) =
D x C°. Then we have C'N ({\} X B°) = @ and ¢l;; C' D ({\} X B°) =
BX\X, so there is no P-set of 83X contained in SX\X. By Lemma
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3.3, X has no P-covers. :

We now show X is not weakly Lindelof. Let % = {C:C is a
cozero set of BX, CN ({\} X B°) = @}. Z is an open cover of X.
If Ce% choose a continuous function f: 3X — < such that C =
coz (f). There is a clopen neighborhood V of A in D and a con-
tinuous function ¢: K — <2 such that f(6, k) = g(k) for all (3, k)¢
(VA{A}) x K. Since nonempty zero sets of K have nonempty interior
[5], N = intz ¢97(0) is not empty. Thus (V\{\}) X N is an open set
of the dense subspace (D\{\}) x K of X and it is disjoint from C,
so C cannot be dense in X. Since a countable union of elements of
Z¢ is again an element of % we have shown no union of a countable
subcollection of % is dense in X.

ExAMPLE 5.2. The next example shows that an almost weakly
Lindelof basically disconnected space need not be C*-embedded in
every basically disconnected splce it is embedded in.

Let A be (@, + 1)\{a: ¢f(®d) = ®} where ®, + 1 has the order
topology. The space A is basically disconnected, in fact a P-space
[6, 9L]. Let X be the free union of A\{w,} with the countable
discrete space w. This space is almost weakly Lindelof (see [9]) but
we will construct a basically disconnected space in which it is
embedded but not C*-embedded. The product Y=A4 X Bw is a
basically disconnected space [8, Theorem 6.3]. Let ¢ be any point
of pw\®w. The subspace ((A\{®,}) X {g}) U ({®} X @) of Y is homeo-
morphic to X. The closures in Y of the sets (A\{w,}) X {¢g} and
{w;} x @ have the point (®,, ¢) in common, so this copy of X is not
C*-embedded in Y.

Example 5.2 suggests a proof for the following theorem.

THEOREM 5.3. A P-space X is C*-embedded in every basically
discomnected space it is embedded in iff X is Lindelof.

Proof. Suppose X is a P-space which is not Lindelof. Then X
is infinite and therefore not pseudocompact [6, 4K.2]. This also
means that X is not almost compact. Zero sets of X are clopen so
let A and B be complementary clopen subsets of X neither of which
is compact. As X is not Lindelof we can assume that A is not
Lindelof. A non-Lindelof P-space also fails to be weakly Lindelof
and if a basically disconnected space is not weakly Lindelof, it has
a P-cover. Therefore there is a P-set P of A contained in gA\A.
If we let Y = A U{P} be the quotient space of A U P obtained by
collapsing P to a point then Y is also a P-space. Since B is not
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compact we can choose g€ 8B\B. The space Y X 8B is basically
disconnected [8, Theorem 6.3] and (A X {¢}) U ({P} X B) is homeomor-
phic to X but it is not C*-embedded in Y X 8B. The converse
follows from Corollary 4.1. O

Recall that X is an extremally disconnected space if the closure
of every open set of X is open. The class of extremally discon-
nected spaces is contained in the class of basically disconnected
spaces, and though the absolute C*-embedding theorem for basically
disconnected spaces is not known, the first author has proven,

THEOREM 5.4. [4] An extremally disconnected space X is C*-
embedded in every extremally discommected space it is embedded in
iff X 1s weakly Lindelof or almost compact.
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