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ABSOLUTE C*-EMBEDDING OF F-SPACES

ALAN DOW AND ORTWIN FORSTER

Let <%S be an open cover of a space X. We define ^ to
be a P-cover if each element of ^ is a proper subset of X,
^ is closed under countable unions and for every Uz^
there is a Ve ^ such that U and X\V are completely
separated. We prove an F-space X is C*-embedded in every
.F-space it is embedded in iff X has no P-covers or X is
almost compact.

1* Introduction. In 1949, Hewitt [7] proved that a Tychonoff
space is C*-embedded in every Tychonoff space in which it is
embedded iff X is almost compact. C. E. Aull [1] has shown that
a P-space X is C*-embedded in every P-space in which it is embedded
iff X is almost Lindelof (given disjoint zero sets of X at least one
is Lindelof). These two theorems are examples of absolute C*-
embedding theorems. In §3 of this paper we will provide the
absolute C*-embedding theorem for jF-spaces. In §4 we obtain
partial results concerning C*-embeddings in basically disconnected
spaces.

2* DEFINITIONS. All topological spaces will be assumed to be
Tychonoff. The following theorem is useful when dealing with F-
spaces and also provides a definition of .P-spaces .

THEOREM 2.1 [6, 14.25]. The following are equivalent
(1) X is an F-space.
(2) βX is an F-space.
(3) disjoint cozero subsets of X are completely separated.
(4) cozero subsets of X are C*-embedded.
( 5 ) disjoint cozero subsets of βX have disjoint closures.

X is basically disconnected if the closure of every cozero set is
clopen. X is a P-space if every zero set of X is open. The reader
is referred to [6] for background on P-spaces, F-spaces and basically
disconnected spaces. X is weakly Lindelof if every open cover of
X contains a countable subcollection whose union is dense in X [2].
If X is a subspace of Y and & is a collection of subsets of Y, we
define <gf \x = {C Π X: C e <έ?}.

The cardinality of a set K is denoted by |JSΓ| and the immediate

successor of a cardinal a is denoted by a+. The cofinality of a non-
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successor ordinal α, denoted by cf(a), is the smallest cardinal K such
that a = sup {δr: 7 < /c}, where δr < α. Our notation and terminology
follows that of the Gillman-Jerison text [6].

3* Absolute C*-embedding of F-spaces*

DEFINITION 3.1. An open cover ^ of 1 is called a P-cover if
each U e^ is a proper subset of X, <& is closed under countable
unions and for each U7e^ there is a 7 in ^ such that U and X\V
are completely separated in X.

It is immediate from the definition that a weakly Lindelof space
has no P-covers. In this paper we will find similarities between
weakly Lindelof F-spaces and .F-spaces without P-covers, but in §5
we will give an example of an F-space without P-covers and which
is not weakly Lindelof.

DEFINITION 3.2. We will call ACLXB, P-set of X if A is compact
and any disjoint cozero set of X is completely separated from A,
If A = {p} is a P-set, then p (as usual) is called a P-point.

The following result motivates the use of the term "P-cover".

LEMMA 3.3. There exists a P-set of βX contained in βX\X iff X
has a P-cover.

Proof Let P be a P-set of βX which is contained in βX\X.
Let 9f = {C: C is a cozero subset of βX and CπP = Φh We will
show that ^ | X = {CΠX: Ce^} is a P-cover of X. It is immediate
that <&\x is closed under countable unions. If C/e^, then P and
U are completely separated by the definition of a P-set. Hence
there is a zero set Z of βX containing P such that U and Z are
completely separated in βX. Let V = βX\Z; then FeίT, and ί / ί l l
is completely separated from ZΓ) X = X\V. Also if Ce^ then
cW (CΠ -X") Π P = ^ so CflX is a proper subset of X. Therefore

is a P-cover of X

For the converse, assume ^ is a P-cover of X. Define P to be
n{cl^(X\C):Ce<if}. We will show that P is the required P-set.
P is compact and nonempty since ^ is closed under finite unions
and therefore {cl̂ x (X\C): Ce^} has the finite intersection property.
Also P is contained in βX\X since ^ is a cover of X. Let U be
a cozero subset of βX such that C7 Π P = Φ- Then U is Lindelof
and Π {cl/jx (X\C): Ce<^} f)U = φ, therefore there is a subset
{Cn: n < ω] of <g* such that Π {cl^ (X\CJ: w < α>} Π Σ7 = φ. In parti-
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cular, U Π cl^ (X\ (J {Cn: n < α>}) = Φ; so U c cl^ U {Cn: n < ώ). Be-
cause ^ is a P-cover, there is a 7 in ^ such that U {Cn: n < ώ)
and X\V are completely separated. Since P c c l ^ (JX"\F) and ί7c
cl̂ x U {Cn: n < ω}, we have P and £7 are completely separated in
βX. D

LEMMA 3.4. Let Kbe a compact F-space. If P is a P-set of K
and q is a point of K, then the quotient space formed by collapsing
P U {q} to a point is an F-space.

Proof. Let Y be the quotient space and / the quotient map.
Since P U {q} is compact, Y is Tychonoff. All that remains to be
shown is that disjoint cozero sets C° and C1 of Y can be completely
separated. The cozero sets /*~(C°) and /"(C1) of K are disjoint, so
cW*~(C°) Π cl^/^C1) = φ. We can assume w.l.o.g. that ggcl^/^C1).
Since q ί cl^C1) implies q $ /^(C1), we have (P U {q}) Π /^(C1) - φ,
and therefore Pficl^/^C1) = φ. The function / is one-to-one on the
set K\(P\J{q}) and (PU {<?}) Π cl^ /^(C1) = ^, therefore the full preimage
of / (c^r tC 1 ) ) is Q\κΓm. Thus /(clx/-(C0)) and /(cl^ /-(C1)) are
disjoint compact sets of Y which contain C° and C1 respectively, so
C° is completely separated from C1 in Y. •

It is known that the property "weakly Lindelof" is inherited
by regular closed subspaces. Though a regular closed subspace of
an jP-space without P-covers may have a P-cover [3, pg. 70], we do
have the following result.

LEMMA 3.5. If C is a cozero set of an F-space X and X has
no P-covers then clx C has no P-covers.

Proof. Assume clx C has a P-cover. Then, by Lemma 3.3, there
exists a P-set P of β(c\xC) contained in β(c\xC)\c\xC. C, and
therefore clx C, are C*-embedded in X, so Paβ(c\x C) = c\βxCczβX.
We will show that P is a P-set of βX. Let U be a cozero set of
βX such that U Π P = Φ- Then U Π cl^ C is a cozero set of cl^ C
which misses P, hence clβZ(UΓιclβZC)Γ\P = φ. Since cΊβx(Uf]clβxC)
and P are disjoint compact sets of βX, there is a zero set Z of βX
which contains cl^ (U Π cl^ C) and misses P. (U\Z) Γ) X and C are
disjoint cozero sets of X, and have disjoint closures in βX. But now
we have Z U cl^x [(U\Z) n X] is a compact set containing U which
misses P, so Pfl(cl^ U) = φ. X has a P-cover since P is a P-set of
βX and P c cl,x C\clx C c βX\X •

THEOREM 3.6. Let A and B be subsets of an F-space X such
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that neither A nor B have P-covers and clx A Π B = A ΓΊ cl^B — φ.
Then A and B are completely separated in X.

Proof. Let K = cl^ (AuB). The compact set K, as a C*-
embedded subset of an F-space, is an F-space [6, 14.26]. It will
suffice to show A and B are completely separated in K.

Define <%ί = {U: U is a cozero set of K and U and J5 are com-
pletely separated in K). Define <%f\A = {UΓ\ A: Ue^S}. By assump-
tion, Af\o\κB — <f>, so ^\A is an open over of A. If A e ^ | 4 , then
A and 5 are completely separated so we assume Aί^\A and we will
arrive at a contradiction.

If U 6 ^ , then there exists a zero set Z of K containing £/ and
completely separated from B. Choose a cozero set V containing Z
and completely separated from B. So we now have UcZaVaK\B
and V 6 ^ . Since C7 is disjoint from the cozero set K\Z, U is
completely separated from K\Vc:K\Z. Since A has no P-covers,
%\A is not a P-cover, therefore there exist countably many cozero
sets {Ui-.i <ω}a^r such that \J{UtΓ\ A:i < ω}^^\Λ. Let W =

Define 3^ = {V: V is a cozero set of K and Fί l TF = 0}. 3̂ U
is a cover of B since β n cl^ A = ^ and clπ T7c cl^ A. If Ue T then
there exists a zero set Z of K containing W and completely
separated from U. If F = K\Z then F e 7: Z7 is completely
separated from K\V = Z, so U f] B is completely separated from
B\(VΠB). T\B is obviously closed under countable unions. But
T*\B cannot be a P-cover of J5, so JSe^U, therefore there exists a
cozero set V of K such that B c F e f and Vn W = φ. Therefore
B and W are completely separated, which is a contradiction to
W$^. •

We now state and prove the main theorem of this paper.

THEOREM 3.7. An F-space X is C*-embedded in every F-space
it is embedded in iff X has no P-covers or X is almost compact.

Proof. Assume that X is an F-space with no P-covers and X
is embedded in an .P-space Y. It will suffice to show that disjoint
cozero sets of X are completely separated in Y. Let C° and C1 be
disjoint cozero sets of X. By Lemma 3.5, clx C° and clx C

1 have
no P-covers. We note that clF (clx C°) Π clx C

1 = φ and clx C° Π
clF (clz C

1) = φ, so by Theorem 3.6, they are completely separated
in Y.
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For the converse assume X is not almost compact and X has a
P-cover. By Lemma 3.3 there is a P-set P of βX contained in
βX\X. Choose a point qeβX\X such that |PU {q}\ > 1. Then by
Lemma 3.4, the quotient space βX/(P U {?}) obtained by collapsing
P U {q} to a point is an i^-space in which X is densely embedded
but not C*-embedded. •

The next corollary uses a construction similiar to one given in
[10, pg. 96]. We will show that for every space X which is em-
bedded in an jP-space Y, there is an F-space W in which

(1) X is embedded as a closed set and
(2) X is C*-embedded in W iff X is C*-embedded in Y.

COROLLARY 3.8. An F-space X is C*-embedded in every F-space
it is embedded in as a closed set iff X has no P-eovers or X is almost
compact.

Proof. Suppose X is embedded in an .F-space Y. Let λ be the
least ordinal of cardinality \βY\+. Define A = (λ + l)\{a: cf(a) = ώ).
Negrepontis [8] has shown that the product of a P-space with a
compact jP-space is an i^-space. A is a P-space, so AxβY is an F-
space. Let W = (A x βY)\({\} x βY\X). W is a dense C*-embedded
subspace of A x βY (see Example 5.1 or [10, pg. 96]), so W is an
jP-space. X is homeomorphic to the closed subspace {λ} x X of W.
For every continuous real-valued function / defined on W, there
exists an a < λ such that for all xeX, f(a, x) = /(λ, x). As a con-
sequence, {λ} x X is C*-embedded in W iff X is C*-embedded in Y.
This will show that Corollary 3.8 is equivalent to Theorem 3.7. •

Note that if X is C-embedded in βX then X is pseudocompact;
and a pseudocompact space is C-embedded iff it is C*-embedded. This,
along with Theorem 3.7, proves the next corollary.

COROLLARY 3.9. An F-space X is C-embedded in every F-space
it is embedded in iff X is almost compact or X is pseudocompact
and has no P-covers.

4. Absolute C*-embedding in basically disconnected spaces*
Let ^ be a cover by cozero sets of a basically disconnected space
X, and assume the union of every countable subcollection of ^ is
not dense. The set of unions of every countable subset of the open
cover {clx U {Cn: n < ω}: {Cn: n < ω} c ^} is easily seen to be a P-
cover of X. Therefore, for a basically disconnected space X, X has
a P-cover iff X is not weakly Lindelof. By Theorem 3.7 and this



68 ALAN DOW AND ORTWIN FϋRSTER

remark we have the following corollary.

COROLLARY 4.1. A basically disconnected space X is C*-embedded
in every Fspace it is embedded in iff X is weakly Lindelof or X
is almost compact.

DEFINITION 4.2. A space X is almost weakly Lindelof if given
two disjoint cozero sets of X, at least one is weakly Lindelof.

The next lemma is similar to Lemma 3.4.

LEMMA 4.3. Let K be a compact basically disconnected space.
If P is a P-set of K, then the quotient space formed by collapsing
P to a point is basically disconnected.

Proof. Let Y be the quotient space and f: K-+Y the quotient
map. Since P is compact, Y is Tychonoff. Let C be a cozero set
of Y. dκf*~(C) is open and / is a quotient map so we will prove
that clFC is open by showing /*~(clFC) = cl*/*~(C). It is obvious
that clx/<-(C)c/^(clFC), so let xeK such that f(x)eclγC =
/(el* .Γ~(C)). We wish to prove x e c\κ f*~(C). There is a y e c\κ /-(C)
such that fix) = f{y). If x = y, we are done so assume x Φ y. Then
{x, y) c P. We now have y e P n clκ f"(C) Φ 0 and since P is a
P-set and f~{C) is a cozero set, P n Γ ( C ) Φ 0 . Therefore xePc

•
We now prove the main result in this section.

THEOREM 4.4. If a basically disconnected space X is C*-embedded
is every basically disconnected space it is embedded in, then X is
almost weakly Lindelof.

Proof. Let X be a basically disconnected space which is not
almost weakly Lindelof. Let C° and C1 be disjoint cozero subsets
of X neither of which is weakly Lindelof. A cozero set of a weakly
Lindelof space is weakly Lindelof [2, Lemma 1.2(c)], therefore clx C°
and c\x C

1 are not weakly Lindelof, and since they are basically
disconnected spaces, they both have P-covers. By the proof of
Lemma 3.5 there are two disjoint P-sets, P° and P1, of βX contained
in cl^C°\clχC° and e\βxC

1\clxC
1 respectively. Then P° U P 1 is a

P-set and the quotient space obtained by collapsing P° U P 1 to a
point is basically disconnected by Lemma 4.3. Xis a dense subspace
of the quotient space, but it is not C*-embedded since \P° U P 1 ! > 1.

D
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Unfortunately, an example in §5 will show that the property
almost weakly Lindelδf is not a sufficient condition for C*-embedding.
It remains an open question to characterize the basically disconnected
spaces which are C*-embedded in every basically disconnected space
in which they are embedded. But we do have the following theorem.

THEOREM 4.5. If a basically disconnected space X is embedded as
an open or dense subspace of a basically disconnected space Y, then
X is C*-embedded in Y iff X is almost weakly Lindelό'f

Proof. Assume X is almost weakly Lindelδf and is embedded
in a basically disconnected space Y. If C° and C1 are disjoint cozero
sets of X, then we can assume that one of them, say C°, is weakly
Lindelδf. Define T = {V: V is a cozero set of Y, Vn clr C

1 = 0}.
T^lco is a cover of C°, so there is a countable subcollection {Vn: n<ω)
of T such that, if W = \J{Vn:n < ω}, then clr WZDC0. But if X
is dense or open in Y, clF W Π C1 = 0 . clF W is a clopen subset of
Y and it is easily seen C° is completely separated from C1. The
other part of the proof is provided by Theorem 4.4. •

5* Some further remarks and examples*

EXAMPLE 5.1. We construct a non-weakly Lindelδf F-space
which has no P-covers. Let K — βω\ω. Let λ be the initial ordinal
of cardinality \K\+. Define D = (λ + l)\{α < λ: cf(a) == ω} where
λ + 1 has the order topology. D is a P-space and K is a compact
jP-space, so D x K is an i^-space [8]. Choose a non-clopen cozero
set C° of K [6, 6W], and let B° = d* C°\C°. Our example will be
X = /3(D x ϋΓ)\({λ} x #°) To show X is an F-space we will first
show that Y = D x K\({x} x K) is C*-embedded in D x K. Let /
be a continuous real-valued function on Y. Modifying the arguments
in [6, 9L] one has for every keK an interval [ak, λ] of λ + 1 such
that / is constant on ([ak, X] Π D) x {k}. Let /3 = sup {ak: keK}.
Since c/(λ) > | JBL|, we have β < λ and [̂  + 1, λ] Π J5 = V is a clopen
neighborhood of λ in D. Define g:K->&, where έ% is the real
line, by declaring g(k) = f(β, k). Obviously g is continuous and for
all (δ, k) e (F\{λ}) x K, f(δf k) = g(k), so / can be continuously extended
to VxKand hence to DxK. We now have Y is a dense C*-embedded
subspace of the .F-space DxK, so Y is an F-space and YdXdβY =
β(D x Z), so I is also an F-space.

Choose a cozero set C of βX = β(D x K) such that C Π (D x K) =
D x C°. Then we have C ΓΊ ({λ} x 5°) = 0 and o\n C 3 ({λ} x B°) ='
βX\X, so there is no P-set of /3X contained in βX\X. By Lemma
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3.3, X has no P-covers.
We now show X is not weakly Lindelof. Let ^ — {C: C is a

cozero set of βX, C(Ί ({λ} x B°) = 0}. ^ is an open cover of X.
If C e % choose a continuous function /: βX —> & such that C =
coz(/). There is a clopen neighborhood V of λ in D and a con-
tinuous function g\K-+& such that f(δ,k)='g(k) for all (δ,k)e
(Vλ{λ}) x JK" Since nonempty zero sets of K have nonempty interior
[5], N — int*flΓ(0) is not empty. Thus (F\{λ}) x JV is an open set
of the dense subspace (Z?\{λ}) x K of X and it is disjoint from C,
so C cannot be dense in X. Since a countable union of elements of
^ is again an element of ^ we have shown no union of a countable
subcollection of <& is dense in X.

EXAMPLE 5.2. The next example shows that an almost weakly
Lindelof basically disconnected space need not be C*-embedded in
every basically disconnected spice it is embedded in.

Let A be (ω2 + l)\{α: cf(a) = ω] where ω2 + 1 has the order
topology. The space A is basically disconnected, in fact a P-space
[6, 9L]. Let X be the free union of A\{α)2} with the countable
discrete space ω. This space is almost weakly Lindelof (see [9]) but
we will construct a basically disconnected space in which it is
embedded but not C*-embedded. The product Y — Ax βω is a
basically disconnected space [8, Theorem 6.3]. Let q be any point
of βω\ω. The subspace ((A\{α>2}) x {q}) U ({co2} x co) of Y is homeo-
morphic to X. The closures in Y of the sets (A\{ω2}) x {q} and
{α>2} x ω have the point (α)2, q) in common, so this copy of X is not
C*-embedded in Y.

Example 5.2 suggests a proof for the following theorem.

THEOREM 5.3. A P-space X is C*-embedded in every basically
disconnected space it is embedded in iff X is Lindelof.

Proof. Suppose X is a P-space which is not Lindelof. Then X
is infinite and therefore not pseudocompact [6, 4K.2]. This also
means that X is not almost compact. Zero sets of X are clopen so
let A and B be complementary clopen subsets of X neither of which
is compact. As X is not Lindelof we can assume that A is not
Lindelof. A non-Lindelof P-space also fails to be weakly Lindelof
and if a basically disconnected space is not weakly Lindelof, it has
a P-cover. Therefore there is a P-set P of βA contained in βA\A.
If we let Y = A{J {P} be the quotient space of A U P obtained by
collapsing P to a point then Y is also a P-space. Since B is not
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compact we can choose q e βB\B. The space Y x βB is basically
disconnected [8, Theorem 6.3] and (A x {q}) U ({P} x B) is homeomor-
phic to X but it is not C*-embedded in Y x /3.B. The converse
follows from Corollary 4.1. •

Recall that X is an extremally disconnected space if the closure
of every open set of X is open. The class of extremally discon-
nected spaces is contained in the class of basically disconnected
spaces, and though the absolute C*-embedding theorem for basically
disconnected spaces is not known, the first author has proven,

THEOREM 5.4. [4] An extremally disconnected space X is C*-
embedded in every extremally disconnected space it is embedded in
iff X is weakly Lindelδf or almost compact.
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