EXCEPTIONAL VALUES OF DIFFERENTIAL POLYNOMIALS

Willibald Doeringer

Let f be a meromorphic non-rational function on C and $Q[f], P[f]$ differential polynomials in f. Assuming that neither of them vanishes identically, functions of the form $f^{n} Q[f]+P[f], n \in N$, are shown not to have zero as a Picard or Borel exceptional value for sufficiently large n. Examples show that the estimates given for n are optimal.

1. Introduction and results. In the present paper we concern ourselves with the value-distribution of differential polynomials. We make use or results from value-distribution theory and we use the common notations $m(r, f), N(r, f), T(r, f), \bar{N}(r, f), S(r, f)$ and so on. (cf., e.g., [3], [8]).

There has been quite a bit of investigation (cf. [2], [12]-[14]) of Picard values of certain expressions in a meromorphic function f such as $f^{n} f^{\prime}$ or $f^{n}+f^{\prime}$. Our article extends some of the previous results, especially those of W. K. Hayman [4] and L. R. Sons [9]. Let f be a meromorphic function-in this paper always in the sense of meromorphic in the whole plane-and let $n_{0}, n_{1}, \cdots, n_{k}$ be nonnegative entire numbers. We call

$$
\begin{equation*}
M[f]=f^{n_{0}}\left(f^{\prime}\right)^{n_{1}} \cdots\left(f^{(k)}\right)^{n_{k}} \tag{1}
\end{equation*}
$$

a monomial in f (cf. L. R. Sons [9]), $\gamma_{M}:=n_{0}+n_{1}+\cdots+n_{k}$ its degree and $\Gamma_{m}:=n_{0}+2 n_{1}+\cdots+(1+k) n_{k}$ its weight. Further, let $M_{1}[f], \cdots, M_{\iota}[f]$ denote monomials in f and a_{1}, \cdots, a_{ι} meromorphic functions satisfying $T\left(r, a_{j}\right)=S(r, f), 1 \leqq j \leqq \ell$, then

$$
\begin{equation*}
P[f]=a_{1} M_{1}[f]+\cdots+a_{\iota} M_{\iota}[f] \tag{2}
\end{equation*}
$$

is called a differential polynomial in f of degree $\gamma_{P}:=\max _{j=1}^{\prime} \gamma_{M_{j}}$ and weight $\Gamma_{P}:=\max _{j=1}^{\prime} \Gamma_{M_{j}}$ with coefficients a_{j}.

Using these definitions we can state the following results:

Theorem 1. Let f be a nonrational meromorphic function and let $Q[f], P[f]$ be differential polynomials in f satisfying $Q[f](z) \not \equiv 0$, $P[f](z) \not \equiv 0$. Then zero is neither a Picard nor a Borel exceptional value of

$$
\Psi=f^{n} Q[f]+P[f]
$$

for any $n \in N$ with $n \geqq 3+\Gamma_{P}$ and in particular

$$
\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, 1 / \Psi)}{T(r, \Psi)}>0
$$

As an immediate consequence we get
Corollary 1. Let f be a nonrational meromorphic function and

$$
\Psi=a f^{n_{0}} \cdots\left(f^{(k)}\right)^{n_{k}}
$$

a differential polynomial in $f, a \not \equiv 0$. Barring zero, Ψ has no finite Picard or Borel exceptional values if only $n_{0} \geqq 3$ holds. And again

$$
\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, 1 /(\Psi-c))}{T(r, \Psi)}>0
$$

holds for $c \in \boldsymbol{C} \backslash\{0\}$.
Remark. L. R. Sons proved similar results in [9] for the case $a \equiv 1$ and $n_{0} \geqq 2$, however under the additional assumptions $n_{k} \geqq 1$ and $2^{k}\left(n_{0}+\sum_{i=0}^{k}(1+i) n_{i}\right)<\left(2^{k}+n_{0}-1\right)\left(\sum_{i=0}^{k}(1+i) n_{i}\right)$.

Theorem 1 can be sharpened by considering entire functions only.
Theorem 2. Let f be a transcendental entire function and let $Q[f], P[f]$ be differential polynomials in f, both not identically vanishing. Then

$$
\Psi=f^{n} Q[f]+P[f]
$$

does not assume zero as a Picard or Borel exceptional value for any $n \in N, n \geqq 2+\gamma_{P}$; and here also

$$
\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, 1 / \Psi)}{T(r, \Psi)}>0
$$

holds for these n.
Remark. Assuming f to be entire Corollary 1 holds already for $n_{0} \geqq 2$.

We conclude by giving two examples which show that the estimates given for n are optimal in the sense that they cannot be improved. First consider a nonconstant solution of the Riccati differential equation $w^{\prime}=-2(w-1)(w+1)$ which is a transcendental meromorphic function satisfying $w^{4}+w^{\prime} \neq 1$ (cf., e.g., [10], [11]); this settles Theorem 1.

Regarding Theorem 2 we choose an entire transcendental solution
of the linear differential equation $w^{(j)}=-2 a c(w-c), j \in N$, where a and c are nonzero constants. Then we have $w^{(j)}+a w^{2} \neq a c^{2}$ what is all we wanted to show.
2. Some lemmas. We prove a few auxiliary results. The following notations help to simplify our presentation. By $\lambda(f)$ and $\rho(f)$ we shall always denote the upper and lower order of growth of a meromorphic function f; for a differential polynomial $Q[f]$ in f we write $Q^{\prime}[f]$ instead of $(d / d z) Q[f]$. (Note that for an arbitrary monomial $M[f]$ in $f, M^{\prime}[f]$ can always be represented as a differential polynomial in f, each of whose monomials have the same degree as $M[f]$. Those differential polynomials are often called homogeneous).

Finally we shall say, following W. K. Hayman [4], that a certain property $\mathscr{P}=\mathscr{P}(r), r \in D \subseteq \boldsymbol{R}$, holds "nearly everywhere" (n.e.) in D, if there is a subset $A \subseteq D$ of finite linear measure such that $\mathscr{P}(r)$ holds for all $r \in D \backslash A$.

Lemma 1. Let f be a nonconstant meromorphic function. If $Q[f]$ is a differential polynomial in f with arbitrary meromorphic coefficients $q_{j}, 1 \leqq j \leqq n$ then
(i) $m(r, Q[f]) \leqq \gamma_{Q} m(r, f)+\sum_{j=1}^{n} m\left(r, q_{j}\right)+S(r, f)$
and
(ii) $N(r, Q[f]) \leqq \Gamma_{Q} N(r, f)+\sum_{j=1}^{n} N\left(r, q_{j}\right)+O(1)$.

Proof. Starting with $Q[f]=\sum_{j=1}^{n} q_{j} M_{j}[f]$ (cf. (2)) we can represent $Q[f]$ as $Q[f]=\sum_{j=1}^{n} q_{j}^{*} f^{m_{j}}$ with $m_{j}:=\gamma_{M_{j}}$ and with meromorphic functions q_{j}^{*} satisfying $m\left(r, q_{j}^{*}\right) \leqq m\left(r, q_{j}\right)+S(r, f), \quad j=1, \cdots, n$. This settles (i). Further, in an arbitrary $z_{0} \in C$ let $Q[f], f, q_{j}$ and $M_{j}[f]$ have poles of order μ, ν, μ_{j} and ν_{j} respectively (as usual a meromorphic function f has poles of order zero in points $z \in \boldsymbol{C}$ with $f(z) \neq \infty)$. It follows immediately, that $\mu \leqq \max \left\{\nu_{1}+\mu_{1}, \cdots, \nu_{n}+\mu_{n}\right\}$ and because of $\nu_{j} \leqq \Gamma_{M_{j}} \cdot \nu \leqq \Gamma_{Q} \cdot \nu, 1 \leqq j \leqq n$, we have

$$
\begin{equation*}
\mu \leqq \Gamma_{Q} \cdot \nu+\sum_{j=1}^{n} \mu_{j} \tag{3}
\end{equation*}
$$

Hence $n(r, Q[f]) \leqq \Gamma_{Q} n(r, f)+\sum_{j=1}^{n} n\left(r, q_{j}\right)$ and therefore (ii) holds.
Now we use Lemma 1 to improve a result of Clunie (cf. [1], Lemmas 1 and 2).

Lemma 2. Let f be a nonconstant meromorphic function. And let $Q^{*}[f]$ and $Q[f]$ denote differential polynomials in f with arbitrary meromorphic coefficients $q_{1}^{*}, \cdots, q_{n}^{*}$ and q_{1}, \cdots, q_{ι} respectively; further, let P be a nonconstant polynomial of degree p. Then from

$$
P(f) Q^{*}[f] \equiv Q[f]
$$

we can infer the following:
(i) if $\gamma_{Q} \leqq p$, then

$$
m\left(r, Q^{*}[f]\right) \leqq \sum_{j=1}^{n} m\left(r, q_{j}^{*}\right)+\sum_{j=1}^{\ell} m\left(r, q_{j}\right)+S(r, f)
$$

(ii) if $\Gamma_{Q} \leqq p$ we have in addition

$$
N\left(r, Q^{*}[f]\right) \leqq \sum_{j=1}^{n} N\left(r, q_{j}^{*}\right)+\sum_{j=1}^{\ell} N\left(r, q_{j}\right)+O(1)
$$

Proof. For a proof of the first proposition see Clunie [1]. (ii) Let $n_{f}\left(r, Q^{*}[f]\right)$ denote the number of those poles of $Q^{*}[f]$ in $|z| \leqq r$ that are also poles of f with the poles of $Q^{*}[f]$ being counted according to their order. Set $n^{f}\left(r, Q^{*}[f]\right):=n\left(r, Q^{*}[f]\right)-n_{f}\left(r, Q^{*}[f]\right)$ and define $N_{f}\left(r, Q^{*}[f]\right), N^{f}\left(r, Q^{*}[f]\right)$ correspondingly. We obtain immediately

$$
\begin{equation*}
N^{f}\left(r, Q^{*}[f]\right) \leqq \sum_{j=1}^{n} N\left(r, q_{j}^{*}\right)+O(1) \tag{4}
\end{equation*}
$$

Now we choose a point $z_{0} \in \boldsymbol{C}$ where $Q^{*}[f]$ and f have poles of order μ and ν respectively; denoting by ν_{1}, \cdots, ν_{c} the orders of the poles of q_{1}, \cdots, q_{c} in z_{0} and considering (3) we get

$$
p \cdot \nu+\mu \leqq \Gamma_{Q} \cdot \nu+\max \left\{\nu_{1}, \cdots, \nu_{\ell}\right\}
$$

and $\Gamma_{Q} \leqq p$ yields

$$
n_{f}\left(r, Q^{*}[f]\right) \leqq \sum_{j=1}^{\ell} n\left(r, q_{j}\right)
$$

Adding (4) this proves (ii).
We conclude by proving a lemma that will enable us to compare the orders of growth of a differential polynomial in f with those of f.

Lemma 3. Let $T_{1}(r), T_{2}(r)$ be real valued, nonnegative and nondecreasing functions defined for $r>r_{0}>0$ and satisfying $T_{1}(r)=$ $O\left(T_{2}(r)\right), r \rightarrow \infty$, n.e., then we have
(i) $\lim \sup _{r \rightarrow \infty} \log ^{+} T_{1}(r) / \log r \leqq \lim \sup _{r \rightarrow \infty} \log ^{+} T_{2}(r) / \log r$ and
(ii) $\quad \lim \inf _{r \rightarrow \infty} \log ^{+} T_{1}(r) / \log r \leqq \lim _{\inf }^{r \rightarrow \infty}{ }^{+}{ }^{+} T_{2}(r) / \log r$.

This implies in particular that for meromorphic functions f_{1} and f_{2} with $T\left(r, f_{1}\right)=O\left(T\left(r, f_{2}\right)\right), r \rightarrow \infty$, n.e., the inequalities $\lambda\left(f_{1}\right) \leqq \lambda\left(f_{2}\right)$ and $\rho\left(f_{1}\right) \leqq \rho\left(f_{2}\right)$ hold.

Proof. (i) Assume without loss of generality that

$$
\lambda:=\underset{r \rightarrow \infty}{\lim \sup } \frac{\log ^{+} T_{2}(r)}{\log r}<\infty
$$

For arbitrary $\varepsilon>0$ there exist $R>\max \left\{r_{0}, 1\right\}, K>0$ and $D \subseteq[R, \infty)$ such that $T_{2}(r) \leqq r^{2+\varepsilon}$ for $r \geqq R, T_{1}(r) \leqq K T_{2}(r)$ for $r \in[R, \infty) \backslash D$ and $m:=\operatorname{mes}(D)<\infty$. Here m denotes the Lebesgue-measure of D. Now for $r>R+m$ and $r \in D$ one can find $r_{1}, r_{2} \notin D, R \leqq r_{1}<r<r_{2}$ and $r_{2}-r_{1} \leqq m+1$ such that $T_{1}(r) \leqq K T_{2}\left(r_{2}\right) \leqq K r_{2}^{\lambda+\varepsilon} \leqq K\left(r_{2} / r_{1}\right)^{\lambda+\varepsilon} r^{\lambda+\varepsilon} \leqq$ $C r^{\lambda+\varepsilon}$ with $C:=K(m+2)^{\lambda+\varepsilon}$, i.e., $T_{1}(r) \leqq C r^{\lambda+\varepsilon}$ for all $r>R+m$. Hence we obtain

$$
\limsup _{r \rightarrow \infty} \frac{\log T_{1}(r)}{\log r} \leqq \lambda+\varepsilon \text { for arbitrary } \varepsilon>0
$$

We conclude that (i) holds.
(ii) Assume the contrary and carry on as above.
3. The proofs of Theorems 1 and 2. With the assumptions of Theorem 1 let

$$
\Psi=f^{n} Q[f]+P[f]
$$

By means of Lemmas 1 and 2 we see that Ψ connot be constant and setting $v=\Psi^{\prime} / \Psi$ we get

$$
\begin{equation*}
f^{n-1} H=v P[f]-P^{\prime}[f] \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
H=n f^{\prime} Q[f]+f Q^{\prime}[f]-v f Q[f] \tag{6}
\end{equation*}
$$

Now Lemmas 1 and 2 show that $H \not \equiv 0$. Otherwise $\Psi^{\prime} / \Psi=$ $P^{\prime}[f] / P[f]$, i.e. $\Psi=K P[f]$ for a suitable $K \in C$ leading to $f^{n} Q[f]+$ $(1-K) P[f] \equiv 0$. However, since $\Gamma_{P} \leqq n-3$ by assumption this implies $T(r, Q[f])=S(r, f)$ by use of Lemma 2 and therefore $T\left(r, f^{n}\right) \leqq T(r, P[f])+S(r, f)$ since $Q[f] \not \equiv 0$, again by assumption. Now Lemma 1 leads to $n T(r, f) \leqq \Gamma_{P} T(r, f)+S(r, f)$ which is impossible.

Further we infer from $S(r, \Psi) \leqq S(r, f)$

$$
\begin{equation*}
v P[f]-P^{\prime}[f]=T[f] \quad \text { with } \quad \gamma_{T} \leqq \gamma_{P} \tag{7}
\end{equation*}
$$

where all coefficients t of the differential polynomial $T[f]$ satisfy $m(r, t)=S(r, f)$.

Therefore we can invoke Lemma 2 and (5) leads to

$$
\begin{equation*}
m(r, H)=S(r, f) \tag{8}
\end{equation*}
$$

It remains to be shown

$$
\begin{equation*}
N(r, H) \leqq \bar{N}\left(r, \frac{1}{\Psi}\right)+S(r, f) \tag{9}
\end{equation*}
$$

First choose $z_{0} \in \boldsymbol{C}$ such that $H\left(z_{0}\right)=\infty$.
If $f\left(z_{0}\right)=\infty$ with order ν we get

$$
\mu \leqq \Gamma_{P} \cdot \nu+\max \left\{\nu_{1}, \cdots, \nu_{n}\right\}+1-(n-1) \cdot \nu \leqq \max \left\{\nu_{1}, \cdots, \nu_{n}\right\}
$$

where ν_{1}, \cdots, ν_{n} and μ denote the orders of the poles of the coefficients p_{1}, \cdots, p_{n} of $P[f]$ and H in z_{0} respectively (remember that $n \geqq 3+\Gamma_{P}$ by assumption).

Using the notations of Lemma 2 we can write this as

$$
\begin{equation*}
N_{f}(r, H) \leqq \sum_{j=1}^{n} N\left(r, p_{j}\right)+S(r, f)=S(r, f) \tag{10}
\end{equation*}
$$

Further, let q_{1}, \cdots, q_{ι} be the coefficients of Q. Then we can conclude

$$
N^{f}(r, H) \leqq 2 \sum_{j=1}^{\prime} N\left(r, q_{j}\right)+N^{f}(r, v)+S(r, f)
$$

and because of

$$
N^{f}(r, v) \leqq \bar{N}\left(r, \frac{1}{\Psi}\right)+\sum_{j=1}^{\ell} N\left(r, q_{j}\right)+\sum_{j=1}^{n} N\left(r, p_{j}\right)+S(r, f)
$$

we finally arrive at

$$
\begin{equation*}
N^{f}(r, H) \leqq \bar{N}\left(r, \frac{1}{\Psi}\right)+S(r, f) \tag{11}
\end{equation*}
$$

Now (10) and (11) together prove that (9) is valid.
Noting that $H \not \equiv 0$ one infers from (3), (8) and (9) using

$$
T\left(r, f^{n-1}\right) \leqq T\left(r, v P[f]-P^{\prime}[f]\right)+T(r, H)+S(r, f)
$$

and

$$
N\left(r, v P[f]-P^{\prime}[f]\right) \leqq \Gamma_{P} N(r, f)+\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{\Psi}\right)+S(r, f)
$$

the inequality

$$
T\left(r, f^{n-1}\right) \leqq \Gamma_{P} T(r, f)+\bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{\Psi}\right)+S(r, f)
$$

Here use was made of Lemma 1 (i). Keeping in mind however that $\Gamma_{P} \leqq n-3$ we get

$$
\begin{equation*}
T(r, f)=O\left(\bar{N}\left(r, \frac{1}{\Psi}\right)\right), \quad r \longrightarrow \infty, \text { n.e. } \tag{12}
\end{equation*}
$$

The rest is easy.

First one clearly sees that the assumption $\bar{N}(r, 1 / \Psi)=S(r, f)$ leads to a contradiction, hence zero cannot be a Picard exceptional value of Ψ and we have

$$
\lim _{r \rightarrow \infty} \frac{\bar{N}(r, 1 / \Psi)}{T(r, \Psi)}>0 .
$$

Applying Lemma 3 to equation (12) we get

$$
\lambda(f) \leqq \lim _{r \rightarrow \infty} \frac{\sup ^{+} \log \bar{N}(r, 1 / \Psi)}{\log r}=: \lambda,
$$

and observing $\lambda \leqq \lambda(\Psi) \leqq \lambda(f)$ we see, that zero cannot be a Borel exceptional value of Ψ either. This completes the proof of Theorem 1.

Remark. Using (12) and Lemma 3 we obtain $\lambda(f)=\lambda(\Psi)$ and $\rho(f)=\rho(\Psi)$ under the stated assumptions.

The proof of Theorem 2 is now easily accomplished. Assume $N(r, f)=S(r, f)$ then due to

$$
T(r, P[f]) \leqq(n-2) T(r, f)+S(r, f) \quad \text { and } \quad N(r, Q[f])=S(r, f)
$$

(cf. Lemmas 1 and 2, (5) and (6)) one gets just as in the proof of Theorem 1

$$
\begin{equation*}
\Psi \not \equiv c, \quad H \not \equiv 0, \quad T(r, H) \leqq \bar{N}\left(r, \frac{1}{\Psi}\right)+S(r, f) \tag{13}
\end{equation*}
$$

where analogous notation is used. And from

$$
f^{n-1} H=\frac{\Psi^{\prime}}{\Psi} P[f]-P^{\prime}[f]
$$

we infer that

$$
(n-1) T(r, f) \leqq(n-2) T(r, f)+2 \bar{N}\left(r, \frac{1}{\Psi}\right)+S(r, f)
$$

and therefore

$$
T(r, f)=O\left(\bar{N}\left(r, \frac{1}{\Psi}\right)\right), \quad r \longrightarrow \infty, \text { n.e. },
$$

holds again.
The statements of Theorem 2 are now obvious.
Remark. As above, Ψ and f have again the same upper and lower orders of growth.
4. Acknowledgement. I am indebted to Mrs. Kern, who did the typing and to Mr. and Mrs. B. Kawohl for valuable comments.

REFERENCES

1. J. Clunie, On integral and meromorphic functions, J. London Math. Soc., 37, (1962), 17-27.
2. -, On a result of Hayman, J. London Math. Soc., 47 (1967), 389-392.
3. W. K. Hayman, Meromorphic Functions, Oxford, Clarendon Press 1975.
4. ——, Picard values of meromorphic functions and their derivatives, Ann. of Math., II. Ser. 70 (1959), 9-42.
5. E. Mues, Über die Nullstellen homogener Differential polynome, manuscripta math. 23 (1978), 325-341.
6. - Über ein Problem von Hayman, Math. Z., 164 (1979), 239-259.
7. ——, Zur Wertverteilung von Differentialpolynomen, Arch. Math. 32 (1979), 55-67.
8. R. Nevanlinna, Eindeutige Analytische Funktionen, Berlin, Heidelberg, New York: Springer 1974.
9. L. R. Sons, Deficiencies of monomials, Math. Z. 111 (1969), 53-68.
10. H. Wittich, Einige Eigenschaften der Lösungen von $w^{\prime}=a(z)+b(z) w+c(z) w^{2}$, Arch. Math., 5 (1954), 226-232.
11. ——, Neuere Untersuchungen über eindeutige analytische Funktionen, Berlin, Göttingen, Heidelberg: Springer 1955.
12. C. C. Yang, Applications of the Tumura-Clunie Theorem, Trans. Amer. Math. Soc., 151 (1970), 659-662.
13. _-_, On deficiencies of differential polynomials, Math. Z., 116 (1970), 197-204.
14. -_, On deficiencies of differential polynomials II, Math. Z., 125 (1972), 107-112.

Received December 1, 1980 and in revised form March 27, 1981.
Abt. für Mathematik VII
der Universität Ulm
Oberer Eselsberg
D-7900 ULM
Federal Republic of Germany

