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A MORITA CONTEXT RELATED TO FINITE
AUTOMORPHISM GROUPS OF RINGS

MIRIAM COHEN

Let R be a semiprime ring, G a finite group of automor-
phisms of R and RG the fixed ring. We investigate the
associated Morita context (RG, R, R, R*G), where R*G is the
skew group ring. We then apply these results to two situa-
tions: (1)G is X-outer (2)2? is |G|-torsion free.

0* Introduct ion and preliminaries* Let R be a ring, G a

finite group of automorphisms of R and RG = {x e R \ x9 = x for all
g 6 (?}. There has been considerable interest in the past years in
studying connections between RG and R. The two major ways to
approach the subject were the direct approach, and via the skew
group ring R*G which we denote by S. In this paper we inves-
tigate a third way which was used in the commutative case by
Chase, Harrison and Rosenberg [5], and was suggested to us by
S.A. Amitsur.

We consider an associated Morita context [RG

f R, R, S] with
(α, V) = Σigeaixyy and [x,y] = Σigeσvyg~'19f for all x,yeR. This
context incorporates all the relevant ingredients. The fixed ring is
known to be nonzero in three major situations: (1) [11] R is semi-
prime and G is X-outer. (2) [4] R is semiprime and |G|-torsion free
(3) [11] R has no nilpotent elements. Since in the third situation
*<?(&) = Σ<7e<?£ff might turn out to be 0 for all xeR [7], we apply
the results of § 1 only to the first two cases. It seems however
plausible that by changing the context one could deal with the
third situation by similar techniques.

Throughout the paper we assume that R is a semiprime ring,
an immediate consequence of which is that [ , ] is a nondegenerate
bilinear form. Another consequence is: if ~4^(S) = 0 where
is the prime, Jacobson, locally nilpotent or nil radical, then
0 [Lemma 1.2]. In § IB we investigate properties of the context
when also ( , ) is assumed to be nondegenerate. We prove, among
the rest, that (R, R) is essential in RG and that when RG is semi-
prime then R is Goldie (Artinian) iff RG is Goldie (Artinian); when
R is Artinian then ( , ) is onto. [Theorem 1.6 and Lemma 1.3.]
Some of the results were proved by Montgomery [15]. Since R is
semiprime, it is a faithful ^-module, however, it need not be a
faithful S-module. In § 1C we investigate the annihilator of R in
S, which turns out to be the annihilator (right or left) in S of a
two sided ideal of S, namely the ideal [R, R]. When ( , ) is non-
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degenerate and RG is prime then this annihilator is proved to be a
minimal prime ideal of S. [Theorem 1.14.] We give equivalent
conditions to faithfulness [Theorems 1.16, 1.17], and furthermore
investigate the context when R is assumed to be S-faithful. Among
the rest, we show that (R, R) and [R, R] are essential in RG and S
respectively, that ( , ) is nondegenerate, and that d{RGR) ^
\G\2d{RGR

G), where d denotes the Goldie dimension. [Theorem 1.15.]
We also show that ^Γ(RG) = 0 iff ^ ( S ) = 0 with ^Γ(*) as above,
and that RG is primitive iff S is primitive [Theorem 1.18]. When
RG is assumed to be an Ore domain we prove, among the rest, that
S is a prime Goldie ring with Q(S) = (Q(RG))n, where n = d(sS)
[Theorem 1.19]. In § ID we assume S to be semiprime and prove,
among the rest, that ( , ) is nondegenerate and that S — SjAxms{R)
is Goldie iff d(RGR) < oo and the singular ideal of RG is 0, and then
R and RG are Goldie and Q(S) = End B0(Q(R)). [Theorem 1.22.] In
§ IE we consider the context under the assumption that l e i ? and
( , ) or [ , ] is onto, or equivalently when R is a generator for

RG^ or s ^ respectively. Since RG = End<? (R), then [ , ] being
onto implies by the Morita theorem that R is a finitely generated,
protective ^-module, S ~ EnάRG(R) and R ®RG R = S. If both ( , )
and [ , ] are onto then R is called a G-Galois extension of RG [5],
and then, among the rest, RG is Morita equivalent to S. We show
that when R is a semisimple Artinian ring and a faithful S-module
then R is a G-Galois extension of RG [Theorem 1.28]. In proving
the results of this section we use extensively results of Amitsur [1].

In § 2 we apply § 1 to situations (1) and (2). By Fisher and
Montgomery [8], S is semiprime in both, and in case (1) R is S-
faithful. Moreover, if in case (1) R is G-prime, primitive or
<yK(R) = 0, with Λ^C) as above, then the same is true for S.
Hence if R enjoys one of these properties so does RG [Theorem 2.3].
We thus give, among the rest, an affirmative answer to question
11 [10]. We also show that in case (1) (R, R), [R, R], [R, R]ΠR
and [R, R] n RG are essential ideals of RG, S, R and RG respectively;
that S is Goldie iff RG is Goldie iff R is Goldie and that if RG is an
Ore domain then Q(S) = (Q(RG))n [Theorems 2.2, 2.3]. If R is semi-
simple Artinian or if RG is simple then R is a G-Galois extension
over RG [Theorems 2.4, 2.5]. This extends a theorem of Azumaya
and Nakayama [3]. When R is simple, [ , ] is onto hence results
of [14, 19, 20] follow directly.

Let us define some terms, for a complete survey see [18]. Let
R be a semiprime ring, (that is, without nontrivial nilpotent ideals),
&~ the filter of essential ideals of JB, and R^ the (left) quotient
ring of R with respect to ^ . Then R c R^-9 denote by C = center
of R^-. For any g e Aut (R), g has a unique extension to R^. Define
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φg = {xeϋjrlxr — r9x, for all xeR}. We say that g is X-inner if
φg φ o. This is a generalization of the usual notion of inner. By
[12] φg = Cxg, a cyclic C-module. If φg = 0, then # is called X-outer.
For any group G c Aut (J?), let Ginn be the set of X-inner automor-
phisms in G. If Ginn = {1}, we say that G is X-outer. The algebra
of the group B = Σ^ e G ^ .

A ring related to both R and G is the skew group ring R*G
which will be denoted henceforth by S. The ring S is defined to
be ΣgeaζBRg with addition given componentwise and multiplication
g i v e n a s f o l l o w s : i f x,yeR a n d g,heG t h e n (xg)(yh) — xyg~ιgh.
Note that yg = gyg. We define R^G similarly. If s = ^rggeS,
then the support of s is the set supp (s) — {g e G\rg Φ 0}. Fisher
and Montgomery [8] have proved an important connection between
GiΏn and ideals of S. They showed:

THEOREM 0.1 [8]. Let R be a semiprime ring, and G a group
cAut(Λ) (not necessarily finite). Let I be a nonzero ideal of S,
and let x = X, rgg be an element of I of minimal support. Then
supp (x) c Ginn, and x = a^]xggf where aeR and xgβφg. In parti-
cular, if G is X-outer then every nonzero ideal of S intersects R
nontrivially.

They used this result to prove the important:

THEOREM 0.2 [8]. Let R be a semiprime ring and G a finite
group of automorphisms of R. If either R has no \G\-torsion or G
is X-outer then S is semiprime.

The proof of Theorem 0.1 which essentially appeared in [15],
depended on a notion of linear independence introduced in [11]. A
different and more elementary approach was used in [13, Lemma 1.5]
for prime rings and can be extended to semiprime rings by the
methods of [7, Lemma 1.5].

A Morita context [1] is a set M = (R, V, W, S) and two maps
( , ) and [ , ]; where R and S are rings, V is an R — S bimodule
and W is an S — R bimodule. The map ( , ): V®SW"-> R is an
R — R bilinear map, and [ , ]: W®R V -»S is S — S bilinear.
Furthermore, these maps satisfy the following associativity con-
ditions: lv (x) [ , ] = ( , ) (x) 1F and [ , ] (x) 1 = 1 (x) ( , ). That is,
for all v, vf 6 V and w, wf 6 W we have: v [w, vf\ = (v, w) vr and
[w, v]-w' — w (vf w').

We shall also use the following known notions and symbols:
Let n^£ denote the category of left iϋ-modules. Let RM be a left
jβ-module, then d(BM) — the Goldie dimension of RM as a left R-
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module is the supremum of the length of direct sums of submodules
of M. In particular, RM will be said to be uniform if d(RM) = 1.
A submodule RE c RM is essential (large) in BM if E Π U Φ 0 f or
every nonzero submodule U of M. The (left) singular submodule
Z{RM) = {meM\Em = 0, for some essential left ideal # of i2}. By
Anns(Af) we denote {reR\rM=0}, it is an ideal of R. If AnnβM=
0 then M is called a faithful ϋJ-module. M is called torsion-free if
rra = 0 implies r = 0 or m — 0. For any nonempty subset A oί R
we define rR(A) = {rei?|Ar = 0} and by *i(A) = {rei ί | rA = 0}. Let
ί be a semiprime Goldie ring. Denote by Q(RR) or in short Q(R)
its classical ring of quotients, and for each left 22-module RM denote
by Q(RM) = M®RQ{R), its module of fractions. If Z(RM) = 0 then
by [21, Cor. 2.8], ΛΓ®ΛQ(Λ22) is an injective envelope of BM. A
ring R is called prime if whenever A, B are ideals of β with AB—
0, then A = 0 or B == 0. It is called G-prime (with G c Aut (J2)) if
the same holds for A, B which are G-in variant ideals. It is easy
to see that if S is prime then R is G-prime, which was shown [13]
to imply that R is semiprime.

1A* The associated Morita context* Throughout, let R be a
semiprime ring and G a finite group of automorphisms of R. Let
S = R*G, then R may be viewed as a right or left S-module as
follows: for any 8 = ^rageS and reR, define: s-r = (Σr,βO r =
Σ r / " 1 and r β = Σ ( r O * This definition extends the product in
i2. Note that the S-submodules of SR(RS) are the G-invariant left
(right) ideals of R. In order to differentiate between the product
of r and s as elements of S and the above module action, we shall
throughout indicate the module action by a dot. R is obviously an
ί^-bimodule, and in fact R is an RG — S and an S — RG bimodule.
In order to differentiate between the two let V = R0R8 and W =

SRRG Let £ = Σί/e<?# be the formal sum, then for any reR,tG{r)
is formally r ί (or ί r). If l e i ? then t is an element of S. Let
us record some easily verified facts:

(1) gt = tg = t for all g e G. Hence St = 22t and tS = IB,
(2) if seS and reϋ? then srt = (β r)ί and ίrs = ί(r β),
(3) for any reR and #eG, r ί = t-r = r9 t,
(4) for any a? e RG, xt = tx,
(5) if r, r'Gie then (rr') t - r (r't) = (ίr) r'.
Now let us define:

( , ): F (x) T7-> ϋf by: (v, w) = tG(vw) = vw t for any v e F and
w e W. Obviously ( , ) is an i?G-bimodule homomorphism and
furthermore (vsf w) — (v, s-w) for any v e V, we W and seS. For,
(v s, w) — ((v's)w)-t, however s,weS, hence (v's)w — v-sw, thus
((v 8)w) t — V'(swt). By (2) swt — (s-w)t, thus v-swt — v((s w)t),
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which by (5) equals (v(s'W)) t = (v, s w). Next define [ , ]: W(&RGV—>
S by: [w, v] = wYΛg&Gv

9~1g — wtv. The map [ , ] is an S-bimodule
homomorphism. For, if seS, then s[w, v] — s(wtv) = (swt)v which
by (2) equals ((s w)t)v = [s-w, v]. Similarly, [w, v]s — [w, v-s]. Now
let xeRσ, then by (4) [wx, v] = [w, xv]. Finally, we show that
these maps satisfy the associativity conditions: v [w, v'] = (v, w)vr

and [w, v]-w' — w(v, wr). Well, v-[w, vf] = v-{wtvr) = (y-wt)vf which
by (5) equals (y, w)v\ The second condition is proved similarly.

Note that for any w e W, veV, [w, V]([W, v]) is a right (resp.
left) ideal of S and (v, W)((V, w)) is a right (resp. left) ideal of BP.
In particular, [W, V] is an ideal of S and (V, W) is an ideal of Rσ.

LEMMA 1.1. If weW then wL = {v e V\[w, v] = 0} is a G-
invariant right ideal of R contained in rR{w). Similarly, v1 =
{w e W\[w, v] = 0} is a G-invariant left ideal of R contained in

Proof. Let v e W1 and g e G then [w, v9] — [w, v g] = [w, v]g = 0.
Hence w1 is (?-invariant, the rest is obvious.

A bilinear form /: A x B —> C where A, B, C are additive groups
is called nondegenerate if for any 0 Φ aeA and 0 Φ b e B, /(α, B) Φ 0
and /(A, b) Φ 0. A consequence of the previous lemma is that [ , ]
is always nondegenerate when R is semiprime.

LEMMA 1.2. Let R be a semiprime ring. Then:
(a) [ , ] is nondegenerate.
(b) Let î fX*) denote one of the following radicals: lower, locally

nilpotent, Jacobson or nil. Then ^V{S) = 0 implies Λ^(RG) = 0.
(c) If I is a minimal left ideal of S then V I is a simple

RG-module.

Proof, (a) Since R is semiprime, rB(w) Φ R and /R(v) Φ R,
hence the result follows from Lemma 1.1.

(b) By [1, Corollary 23], [w, ^T(RG)V] c ^ r ( S ) .
The result now follows from part (a) and the semiprimeness of R.

(c) If VΊ=0 then we are done. Otherwise, assume that
0 Φ JdVΊ, where J is a left i2ff-submodule of R. Then by part
(a), [W, J]ΦO; thnsθΦ[W,J](z[W, V I] = [W, V]IdI. By mini-
mality of /, [W, J] - /. But then, V-[W, J] - V I, however, V
[W, J] - (F, W)JdJ. Hence we have: Jd VΊ = (F, W)Jcz J,
which implies J = VΊ. We have shown that V I is a simple RG-
module.
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IB* ( , ) is nondegenerate* In the following we prove some
consequences of nondegeneracy of ( , ). Most of them are noted in
[1] and [15].

LEMMA 1.3. Let R be a semiprime ring and assume ( , ) is
nondegenerate then:

(a) [W, V]-w = 0 implies w = 0 and v-[W, V] = 0 implies
v = 0.

(b) sR(V, W) = rR(V, W) = 0. In particular, (F, W) is an
essential ideal of RG.

(c) If AaRG and rRG(A) = 0 (SBG(A) = 0) then rB(A) - 0
{/R{A) = 0).

(d) // E is an essential left ideal of R, or an essential RG-
submodule of R, then (V, E) is an essential left ideal of RG.

(e) d(RGR
G) - d(sR) £ d(RR) £ \G\d(RGR%

Proof, (a) By [1, Corollary 3].
(b) Assume r(V, W) - 0 for some reR. Then ((F, r)V, W) =

(V [r, VI W) = (V, [r, V] W) = (V, r(V, W)) = 0. Thus by non-
degeneracy of ( , ) we have (V, r) V = 0 which by semiprimeness of
R and nondegeneracy of ( , ) implies r = 0. Similarly, rR(V, W) = 0.

(c) For any AczRG, (V, sB(A)) c SRQ{A) and (rΛ(A), W)arRθ(A).
Hence if TRQ(A) = 0, then by nondegeneracy of ( , ), rR(A) = 0.
Similarly /RQ{A) = 0.

(d) Assume JE is an essential left ideal of R and let A be a
left ideal of RG, then EΠ i?A ̂  0. Thus choose reR and aeA
such that 0 =£ ra e E. But then 0 Φ (F, rα) = (V, r)α c A hence
(F, JE) n A Φ 0. The rest follows similarly.

(e) d(BGR
G) = d(sR) by [1, Corollary 3].

The proof that d(RR) <; \G\d(RGR
G) is the same as in [9] since non-

degeneracy of ( , ) implies that any nontrivial G-invariant right
(left) ideal of R intersects RG nontrivially.

COROLLARY 1.4. // RG is an integral domain, R is semiprime
and ( , ) is nondegenerate then [w, v] = 0 implies w = 0 or v — 0.

Proof. Assume [w, v] = Q, for w e W and v e V. Then 0 = [w, v]
W = w(v, W). If v Φ 0 then by nondegeneracy, 0 Φ (v, W)aRG.
Since SRG((V, W)) — 0 we deduce from Lemma 1.3c that w = 0.

COROLLARY 1.5. Lei i? δe semiprime, ( , ) nondegenerate and
Z(RGR

G) = 0. 27*<m ^(^^i?) = 0 αwώ Z(RR) = 0.

Proof. Let 1? be an essential left RG submodule of R then by
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Lemma 1.3.d (V, E) f) E is an essential left ideal of RG. Since
rpG({V, E)ΠE) = 0, Lemma 1.3.c implies that rR{(V, E) Π E) = 0
hence rB(E) — 0, and thus Z{RGR) — 0. Now, if E is an essential
left ideal of R then f\geσE° c E is essential G-invariant left ideal
of #, thus (F, ΠEg)czr\Egc:E. By Lemma 1.3.d (F, Π Eg) is
essential in RG, hence as above rΛ(J5) = 0.

THEOREM 1.6 [18]. Let R and RG be semiprime rings and
assume ( , ) is nondegenerate. Then:

(a) RG is Goldie if and only if R Goldie, and then Q(BR) =
Q(nGR).

(b) RG is semisimple Artinian if and only if R is semisimple
Artinian, and then ( , ) is onto.

(a) Is proved as in [18] using Lemma 1.3, Corollary 1.5 and
an argument as in [6].

(b) A criterion for being semisimple Artinian is having no
nontrivial essential left (right) ideals. Hence (b) is proved using
Lemma 1.3.b,c and part (a). Also, by Lemma 1.3.b (F, W) is essen-
tial in RG hence equals it. That is, ( , ) is onto.

1C. R is a faithful S-module* Since we deal with a semi-
prime ring R, V and W are faithful ϋ^-modules. However, they
need not be faithful S-modules (Example 2.1). We shall consider in
the following lemmas Ann^F and AτmsW, and then proceed to the
case in which they are 0. Since these annihilators are ideals in S,
Theorems 0.1 and 0.2 are applicable. First an easily verified:

REMARK 1.7. If xgeψg and veV (weW) then vxgg = xgv
{%gg*w = wxg).

Let A be an ideal of S, denote by min (A) the set of elements
of A of minimal support; min (A) is obviously an i?-submodule of S.

PROPOSITION 1.8. Let R be a semiprime ring. Then min (Ann5 W) —
min(Ann<>F).

Proof. Let s e min (Ann^ V), then by Theorem 0.2, s = a Σ %gQ>
with aeR and xgeψg. Let veV, then by Remark 1.7, 0 = v-s =
v-(aΣxgg) = Σxgva. Since v was arbitrary, we have (Σxg)Ra — 0.
By [16] there exists a n / e ^ such that (Σxg)IaR and I{Σxg)aR.
Hence aRΣxJ is a right ideal of R of square 0, thus aRΣxg = 0.
By Remark 1.7 this implies that s-W=Q. Hence min(Ann s F)c
Ann,? W. Similarly, min (Ann^ W) c Ann.? V. Hence min (Ann5 V) =
min (Ann<. W).



44 MIRIAM COHEN

COROLLARY 1.9. Let R be a semiprime ring. Then Anns V = 0
if and only if Ann5 W = 0.

Since [ , ] is nondegenerate, it is easy to verify

LEMMA 1.10. Let R be a semiprime ring. Then Ann^ W =
, V] and Ann* V = rs[W, F].

COROLLARY 1.11. Assume S is a semiprime ring, and [W, V]
is an essential right (left) ideal of S then SW is a faithful S-
module.

Let us note in passing a result which can be easily deduced
from [4].

LEMMA 1.12. Let R be a semiprime ring. If s — Σrgg e AnnsW
then Σrg — 0.

The following appears in the proof of [1, Theorem 20] for
general Morita contexts. It gives a correspondence between prime
ideals of RG and S.

LEMMA 1.13. Let R be a semiprime ring. Let P be a prime
ideal of RG then Ps = {seS\[W, V]s[W, V]<z[W, PV]} is a prime
ideal of S. Symmetrically, if Q is a prime ideal of S then

QpG = {xeB?\(V, W)x(V, W)c(V, Q-W)} is a prime ideal of RG .

THEOREM 1.14. Let R be a semiprime ring and assume ( , ) is
nondegenerate. If RG is a prime ring then Aτms(W) is a minimal
prime ideal of S.

Proof. Since RG is a prime ring, P = 0 is a prime ideal of RG.
Hence by Lemma 1.13 Ps = {s eS\[W, V]s[W, V] = 0} is a prime
ideal of S. We show that Ps — Anns(W) and then since Arms (W)f)
R — 0 it is a minimal prime by [13]. Well, obviously Anns (W)dPs.
Conversely, let sePs, then [W, F [s W, V]] = 0. By nondegeneracy
of [ , ], we get 0 - V [8 W, V] = (F, s W)V, implying (F, β- W) -
0. Now by nondegeneracy of ( , ) it follows that seAnn5(WΓ).
Hence Ps = Anns(TF) and the result is proved.

In the following we prove several consequences of S-faithfulness.
We show, among the rest, that the Morita context has nice proper-
ties and that [W, V] and (V, W) are essential. But first a defini-
tion. A finite set of elements {x{} c R^ is called C-weakly inde-
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pendent if Σctxt = 0, where ct e C, implies ctxt = 0 for all i.

THEOREM 1.15. Let R be a semiprime ring and assume SW (or
Vs) is S-faithful, then:

(a) rs[W, V] = ss[W, V] = 0, in particular, [W, V] is an
essential right (left) ideal of S.

(b) [ , ] and ( , ) are nondegenerate.
(c) (V, W) is an essential right (left) ideal of RG.
(d) To each g G Ginn associate an xg such that ψg — Cxg, then the

set {xg}geGinn is weakly C-independent.
(e) (F, s W) — 0 implies s = 0.
(f) d(RGR) = d(sS) = \G\d(BR) ^ \G\2d(RGR

G).

Proof, (a) is a consequence of Corollary 1.9 and Lemma 1.10.
(t>) [ > ] is nondegenerate by Corollary 1.2. Now assume

(Vf W) = 0 for some v e 7 . Then, 0 = W(v, W) = [W,v]-W. By
faithfulness and nondegeneracy of [ , ] we deduce that v = 0.

(c) Follows from (b) and Lemma 1.3.b.
(d) If Σcgxg = 0 with #eC, then by Remark 1.7 and since

c^eC, we have (Σcgxgg)W = WΣcgxg = 0. Hence, Σcgxgg = 0, but
then e ^ = 0 for each #.

(e) Follows from (b) and S-faithfulness.
(f) By [1, Theorem 2] d(ΛβΛ) = ώGS).

Since S is a direct sum of \G\ copies of R, d(RS) — \G\d(RR).
However, d(sS) ^ d(BS) and d(BR) ^ \G\d(RGR

G) by (b) and Lemma
1.3.e. Hence d(sS) ^ \G\2d(hGR

G).
The next two theorems constitute a generalization of [16,

Theorem 7] from domains to prime rings.

THEOREM 1.16. Let R be a semiprime ring. Then the following
are equivalent:

(1) S is a prime ring.
(2) SW is a faithful S-module and RG is a prime ring.

Proof. (1)=>(2) since [W, V] is an ideal of S, a prime ring,
Ann^[T7, V] = 0. Hence by Lemma 1.10 SW is S-faithful. i2ff is
prime for by Lemma 1.13. QβG = {xeβ G | (7, W>(7, T7) - 0} is a
prime ideal of RG. However, since SW is & faithful S-module
Theorem l.lδ.c implies that QRG = 0.

(2) ==> (1) by Theorem l.lδ.b ( , ) is nondegenerate hence by
Theorem 1.14 Ann5 W = 0 is a prime ideal of S.

If i? is assumed to be a prime ring we can show another equi-
valence which is implicit in the proof of [16],
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THEOREM 1.17. Let R be a prime ring, then the following are
equivalent:

(1) W is a faithful S-module.
(2) άimcB = |G l n n | .

Proof. (1) => (2) follows from Theorem l.lδ.d and the fact that
C is a field.

(2) => (1) if s G min (Ann^ W) then s = aΣxgg, where a e R. As
in the proof of Proposition 1.8 this implies that aRIΣxg = 0 for
some IeJ^ such that IΣxgczR. By primeness of R this implies
that a = 0 or Σxg = 0. Since ΰ is a vector space over C of dimen-
sion |(?n m | and since {xg\geGinΏ} generate B over C we have ΣxgΦθ.
Hence a = 0, which implies 8 = 0. We have shown that Ann5Tr=0.

As a consequence of Theorem 1.15 and results from fl] we get
the following correspondences between S and RG.

THEOREM 1.18. Let R be a semiprime ring and assume SW is
a faithful S-module, then:

(a) ,^K\S) = 0 if and only if Λ'\Ra) = 0, where ,yVX") is one
of the following radicals: lower, locally nilpotent, Jacobson or nil.

(b) RG is primitive if and only if S is primitive.

Proof, (a) By [1, Theorem 20 and Corollary 23] (F, ̂ / (S) W)a
Λ\RG) and [W, Λ\RG)V\ c ^ r ( S ) . By Theorem 1.15 [ , ] and
( , ) are nondegenerate hence the result follows from RG and S
faithfulness.

(b) By Theorem l.lδ.e, (V,s>W) = 0 implies s = 0. Hence by
[1, Theorem 27] if RG is primitive then so is S. Symmetrically,
since [W, xV] = 0, (where xeRG) implies x — 0, we have, as above,
the reverse implication.

When RG is an Ore domain and SW is a faithful S-module then
S has a very specific characterization.

THEOREM 1.19. Let R be a semiprime ring, SW a faithful S-
module and RG an Ore domain, then:

(a) S is dense (in the sense of [1]) in EnάRG(R).
(b) S is a prime Goldie ring, with d(sS) = n = d(pGR) <: | G | 2 .

(c) Q(S) - EnάrG(Q(R)) = (Q(Ra))n

(d) d(sR) = l.
(e) RGR and RrG are torsion-free.

Proof. Let us apply [1, Theorem 4] to the Morita context
(S, W, V, RG) with change of roles of the maps ( , ) and [ , ]. By
Theorem l.lδ.b ( , ) is nondegenerate hence by Lemma 1.3.e d(sW) =
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d(RGR?) = 1, hence (d). Furthermore, the product [ , ] satisfies by
Corollary 1.4 the property: [w, v] — 0 iff w — 0 or v = 0; and by
Lemma 1.3.a the property: [w, V]-w = 0 iff w = 0. We have shown
that condition 2 of [1, Theorem 4] is satisfied in our context hence:

(a) follows from [1, Theorem 4 (3)].
(b) follows from Theorem 1.16 and Theorem l.lδ.f.
(c) follows from [1, Theorem lθ.e.3] and Theorem 1.23.
(d) follows from Theorem 1.3.c or [1, Lemma 6].
We shall return to further properties of S-faithfulness in the

following sections.

ID* S is semiprime* When S is assumed to be semiprime, R
is easily seen to be semiprime. In both applications of §2, S is in
fact semiprime, as noted in § 0. In the following we prove con-
sequences of this assumption, some of which were proved in [15].
Next we define prime (semiprime) Morita contexts [22], A Morita
context is said to be prime (semiprime) if for every 0 Φ v eV,
0 Φ v, e V, (v, W)vλ Φ 0 ((v, W)v Φ 0).

THEOREM 1.21. If S is a semiprime ring, then:

(a) [ , ] and ( , ) are nondegenerate.
(b) R and RG are semiprime.
(c) RG is Goldie if and only if R is Goldie and then Q(R) —

Q(RGR)

(d) RG is Artinian if and only if R is Artinian and then ( , )
is onto.

(e) (V, W) is an essential ideal of Rσ.
(f) (RG, V, W, S) is a semiprime Morita context.
(g) § = SfArmsV is a semiprime ring.

Proof, (a) [ , ] is nondegenerate since R is semiprime. Now,
if (v9 W) = 0 then [W, v][W, v] = [W, v[W, v]] = [W, (v, W)v\ = 0.
Hence by semiprimeness of S, [W, v] = 0 which by nondegeneracy
of [ , ] implies v = 0.

(b) Follows from Lemma 1.2.b.
(c), (d) follows from (a) and Theorem 1.6.
(e) Follows from (a) and Lemma 1.3.b.
(f) If (v, W)v = 0 for some veV. Then, 0 = [W, (v, W)v] =

[W(v, W), v] = [[W, v] W, v] = [TΓ, v]2. Since [W, v] is a left ideal
of S this implies [W, v] = 0, hence v = 0.

(g) Since [ W9 V] is an ideal in a semiprime ring S, it is routine
that S/Arms[W, V] is semiprime. Since Ann5 V = Anns[W, V], (g)
is proved.
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The following two theorems are consequences of Theorem 1.21
and [22, Theorem 3.5] and form a generalization of Theorem 1.19.

THEOREM 1.22. Let R be a ring. If S is semiprime then S =
S/ArmsR is Goldie if and only if d(RGR) < oo and Z(RGR

G) = 0. And
then R and RG are semiprime Goldie and Q(S) = ΈnάRG(Q(R)).

Proof By Theorem 1.21. a ( , ) is nondegenerate hence by
Lemma l.β.b (V, W)v Φ 0 if 0 Φ v e V. Furthermore, by Corollary
1.5 Z{RGR

G) = 0 implies Z{RGR) = 0. The context is semiprime by
Theorem 1.21.f hence if d{RGR) < oo and Z(RGR

G) = 0 then by [22]
S is Goldie. Conversely, if S is Goldie, then by Theorem 1.21.g it
is semiprime Goldie. Since RG is isomorphic to a subring of S it
inherits the chain condition on annihilators. Now by [22] d(RGR)<
oo, hence d(βGR

G) < oo. Thus, since RG is semiprime it is semiprime
Goldie implying Z(RGR

G) = 0. By Theorem 1.6.a R is semiprime
Goldie and Q(R) = Q(RGR) and by § 0. Q{RGR) is the injective enve-
lope of RβR. Hence by [22] Q(S) = EnάRG(Q(R)).

Note that if in addition to the above conditions we assume RG

is prime then the context is prime and S is prime.
As a corollary to Theorem 1.22 we have:

THEOREM 1.23. Let R be a ring and assume S is semiprime
and R is a faithful S-module. Then S is Goldie if and only if RG

is Goldie if and only if R is Goldie. And then Q{S) = EndΛβ(Q(Jβ)).
Furthermore, RG is prime Goldie if and only if S is prime Goldie.

Proof. By Theorem 1.22 S Goldie implies RG Goldie. Now, if
RG is Goldie then by Theorem l.lδ.f, d(RGR) < oo, hence by Theorem
1.22 R and S are Goldie and Q(S) = End^(Q(J?)). By Theorem 1.6.a
R is Goldie if and only if RG is Goldie. Finally, by Theorem 1.16
RG is prime if and only if S is prime.

IE* G-Galois extensions and related aspects* In [2], Auslander
and Goldman introduced the notion of a Galois extension of a com-
mutative ring. Chase, Harrison and Rosenberg [5] have given an
equivalent definition which was later used by Miyashita [14] for
noncommutative rings. Let us define a G-Galois extension. Let R
be a ring with 1, G a finite group of automorphisms of R, then R
will be called a G-Galois extension of RG with Galois group G if,
(1) RG = tG(R), (2) there exist xu — ,xn and ylf , yn in R such
that

<=i * * (0 if g Φ 1 .
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(Miyashita dropped (1) from his definition.) Obviously, (1) is equi-
valent to ( , ) being onto RG. Condition (2) is equivalent to [ , ]
being onto S. For if [ , ] is onto, then 1 = Σ?=i [%%, vλ f° r some
{xi9 y%) c R, but then 1 = Σx.ty, = Σ?=i ΣseG XiVf'g = ΈS^G (Σx.yf^g,
hence (2) tis satisfied. The converse is now obvious. Let us recall
a version of the Morita theorem [18].

THEOREM (Morita). Let V be a left A-module and B = EndA(F).
Then the following are equivalent:

(1) Some direct sum of copies of AV can be mapped onto A
(i.e., V is a generator for A^%).

(2) VB is a finitely generated protective B-module and A =

It is easy to show [2 or 18] that when l e i ? ,
Furthermore, if [ , ] is onto S then l = ΣE=i lwu vλ Let/: Σί^sΛ—*
S be defined by: Σ?=i rt —* Σ?=i iru vλ- Then / is an S-module homo-
morphism onto S. That is, if [ , ] is onto S, then SR satisfies (1)
with B ~ RG. Also, if [ , ] is onto then it is mono [21, p. 113].
Similar remarks can be made if ( , ) is onto. Finally, define
T: S^-*RG^€ by: T(A)= V®s A for any A e ObjV^T and U: RQ^£-*
s^/έ by U(B) = W®RβB, for any JBeobjΛ f f^r.

In the following we use R to denote both V and W. It is
understood, however, from the context of things, which module
structure we mean.

LEMMA 1.24. Let R be a semiprime ring with 1. If [ , ] is
onto S then:

(a) R is a finitely generated protective RG-module.
(b) R is a faithful S-generator.
(c) S = EndRG(R) as an RG-module.
(d) The mapping [ , ]: R(&RGR-> S is an S-bimodule isomor-

phism.
(e) The functor UT is naturally equivalent to the identity

functor on s

LEMMA 1.24'. Let R be a semiprime ring with 1 and let B =
^CR). If ( , ) is onto RG then:
(a)' R is a finitely generated protective B-module.
(b)' R is a faithful RG-generator.
(c)' RG = End£(i2).

(d)' The mapping ( , ): R ®s R-*RG is an RG bimodule isomor-
phism.

(e)' The functor TU is naturally equivalent to the identity
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functor on R

(f)' RG is a direct summand of RGR(RRG).

Proof, (a), (b), (c), (d) follow from the remarks and the Morita
theorem, (e) follows from (d), (f) follows since tG is onto.

Consequently, a lemma which also appears in [5].

LEMMA 1.25. Let R be a semiprime ring with 1 which is a
G-Galois extension of RG. Then RG is Morita equivalent to S, in
particular:

(a) R is finitely generated, faithful and protective both as an
RG-module and an S-module.

(b) S = EndBo(R) and RG = Ends(R); S=SR®RGR and RG =

RGR®SR.

Furthermore, UT and TU are naturally equivalent to the identity
functor on S ί ^ and RG^Jί respectively.

(c) RG is a direct summand of RGR(RRG).

Let £f(BM) denote the lattice of ί?-submodules of M. We shall
briefly outline some connections between £f(RGR) and jSf^S). Let
σ: £f(pGR)-+3?(sS) be defined by σ(A) = [W, A] and τ: £f(sS) ->
£?(BGR) be defined by τ(X)=V-X. Now τσ(A)= V [W, A}=(V, W)A
and στ(X) - [W, V-X] = [W, V]X. If leR and ( , ) is onto then
τσ = id^( σR). In particular, σ is order preserving. Similarly, if
[ , ] is onto then τ is order preserving hence we have:

THEOREM 1.26. Let R be a semiprime ring with 1. If { , ) is
onto and RR is Noetherian (Artinian), then so is RGR.

Proof. If RR is Noetherian (Artinian) then since RS is a finite
free ϋί-module it is Noetherian (Artinian), but then so is SS. The
result now follows since σ is order preserving.

THEOREM 1.27. Let R be a ring. If S is a simple ring then:
(1) [ , ] is onto S and SW is a faithful S-module.
(2) RG is primitive.
(3) If 16 S then (V, W) is the intersection of all nonzero

ideals of RG, hence, in particular, it is a simple ring.

Proof. (1) Since R is semiprime, [W, V] Φ 0, hence as an ideal
of S [W, V] = S. By Theorem 1.16 SW is faithful.

(2) Follows from Theorem 1.18.b.
(3) Let A be an ideal of RG, then A => (V, W)A(V, W) =

(V, WA(V, W)) = (V, [WA, V]-W). Since [WA, V] is a nonzero
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ideal of S it equals S. Hence 4 D ( 7 , W).
We end with a situation in which R is a G-Galois extension of

RG.

THEOREM 1.28. Let R be a semisίmple Artinίan ring and a
faithful S-module and assume R° {or S) is a semiprime ring then
R is a G-Galois extension of RG, and RGR is Artinian.

Proof Since BS is a finite free ϋJ-module, BS hence SS is
Artinian. By Theorem 1.18.a S is semiprime, hence semisimple
Artinian. By Theorem 1.15, [W, V] is an essential ideal of S, thus
[W, V] = S. That is, [ , ] is onto. By Theorem l.lδ.b ( , ) is
nondegenerate hence by Theorem 1.6.b ( , ) is onto. We have shown
that R is a G-Galois extension of RG, R0R is Artinian by Theorem
1.26.

2* Applications* We shall apply results of § 1 to two situa-
tions:

{1) R is semiprime and G is a finite group of X-outer auto-
morphisms.

(2) R is a semiprime, |(r|-torsion free ring, where G is a
finite group c Aut (R).

As mentioned in the introduction, in both cases S is semiprime,
and in (1) R is also S-faithful. The following example suggested
by Montgomery shows that this need not be true in case (2).

EXAMPLE 2.1. Let R ~ MB(Q), where Q = rationale. Let x =
1 0 0\ /I 0 0\
0 1 0 , i / = 0 - 1 0 and let g, h, gh denote the inner automorphisms
0 0 - 1 / \0 0 1/

of R determined by x, y and xy respectively. Then G = (l, g, h, gh)
is a (abelian) group of inner automorphisms of R. However x+y—
{xy + 1) = 0, hence R\xg — yh — xygh + 1] = 0. Thus R is not a
faithful S-module. Note that, as expected, dim ĴS = 3 < |G i n n | .

Let us deal first with (1). Some of the results appeared in the
work of [11, 14, 15, 18, 19].

THEOREM 2.2. Let R be a semiprime ring and G be a finite
group of X-outer automorphisms. Then:

(a) (V, W) is an essential ideal of Ra.
(b) [TF, V], [W, V]Γ\R and [W, V]Γ)RG are essential ideals

of S, R and RG respectively.
(c) RG is a semiprime ring.
(d) ( , ) and [ , ] are nondegenerate.

(e) d{RGR) = d{sS) ^ \G\W
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Proof, (a), (d) and (e) follow from Theorem 1.15. (c) S is
semiprime, hence by Theorem 1.21, RG is semiprime. (b) [W, V] is
essential in S by Theorem 1.15. Now let B = [W, V] Π R, and A =
AΐmB(B). Then [AW, V] is an ideal of S. However, ([AW, V]f]
Rf c ([AW, V] ΓΊ R)[AW, V] = ([ATF, F] n R)A[W, V] = 0. Thus by
Theorem 0.1 [AW, V] = 0 which by nondegeneracy implies A = 0.
Hence JB is essential in i?. Now by Lemma 1.3 (B, W) is essential
in RG. However, since B is G-invariant (B, W) dB f] RG = [W, V]Π
RG.

Next we impose various conditions on the rings, (b) extends a
result of [11], (c) gives an affirmative answer to Question 11 of [10].
(d) is partially proved in [15].

THEOREM 2.3. Let R be a semiprime ring and G a finite group
of X-outer automorphisms, then:

(a) ^Γ(RG) = 0 if and only if ^V(S) = 0 where ^V(*) is one
of the: Jacobson, locally nilpotent or nil radicals. Thus <yK(R) — 0
implies tyΓ(RG) = 0.

(b) R is G-prime if and only if S is prime if and only if RG

is prime.
(c) S is primitive if and only if RG is primitive. Thus if R

is primitive then so is RG.
(d) S is Goldie if and only if RG is Goldie if and only if R

is Goldie, and then Q(S) = EnάBG(Q(R)).
(e) If RG is an Ore domain then S is a prime Goldie ring,

Q(S) = (Q(RG))n where n = d(sS) = d(RGR) ^\G\\

Proof, (a) The first part follows from Theorem 1.18. Now if
^V(JR) = 0 then since ^Γ(S) Π R<c<yK(R) = 0, Theorem 0.1 implies
that ^V(S) = 0, which by the first part implies that Λ*(RG) = 0.

(b) It is easy to see that R is G prime if and only if S is
prime [13]. The rest follows from Theorem 1.16.

(c) The first part follows from Theorem 1.18. Now, if R is
primitive then so is S [8], hence so is RG.

(d) and (e) follows from Theorems 1.23 and 1.19 respectively.
We shall next give instances in which R is (τ-Galois over RG.

The following generalizes a result of [3] from simple Artinian to
semisimple Artinian rings.

THEOREM 2.4. Let R be a semisimple Artinian ring and assume
G is a finite group of X-outer automorphisms then R is a G-Galois
extension of RG. In particular, RG and S are Morita equivalent
hence semisimple Artinian, and S = End^i?. Also, R is finitely
generated, protective and faithful both as an RG and an S-module,
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and RGR is Artinian.

Proof. By Theorem 1.28 and Lemma 1.25.

THEOREM 2.5. Let R be a semiprime ring with 1 and G a
finite group of X-outer automorphisms. If RG is a simple ring
then R is a G-Galois extension of RG.

Proof. By simplicity of RG, ( , ) is onto. Now by Theorem
2.2.b [W, V]f\R°Φ 0 is an ideal of RG hence le[W, V] implying
[ , ] is onto. Thus, R is a G-Galois extension of RG.

We next record results of [14, 19, 20] which were proved using
ideas similar to the ones in § 1.

THEOREM 2.6. Let R be a simple ring and assume G is a finite
group of X-outer automorphisms of R. Then

(a) [ , ] is onto.
(b) RG is a primitive ring.

If in addition, l e i ? then:
(c) R is a finitely generated protective RG-module.
(d) S = EnάRG(R) and R is a faithful S-generator.
(e) (V, W) is a simple ring and is the intersection of all non-

zero ideals of RG.

Proof. S is simple by [8] hence the result follows from Lemma
1.24 and Theorem 1.27.

We conclude by considering case (2).

THEOREM 2.7. Let G be a finite group of automorphisms of a
semiprime, \G\-torsion free ring then:

(a) RG is semiprime.
(b) (V, W) is an essential ideal of RG.
(c) ( , ) is nondegenerate.
(d) RG is Goldie if and only if R is Goldie and then Q(BR) —

(e) RG is Artinian if and only if R is Artinian and then ( , )
is onto. Hence, in particular R (&SR = RG (βs an RG-bimodule),

pGR is Artinian and RG is a direct summand of R0R.
(f) S = S/ArmsR is Goldie if and only if d(RGR) < <>o and

Z{RGR
G) = 0, and then R and RG are semiprime Goldie and Q(S) =

ΈnάIiG(Q(R)).

Proof, (a), (b), (c), (d) follow from Theorems 1.21 and 1.26, (f)
follows from Theorem 1.22.
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Added in proof. Theorem 2.3.c has been proved independently
by J. L. Pascaud in: Two results on fixed rings.
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