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A CLASS OF PRIMALITY TESTS FOR TRINOMIALS
WHICH INCLUDES THE LUCAS-LEHMER TEST

H. C. WILLIAMS

When n is an odd prime, the well-known Lueas-Lehmer
test gives a necessary and sufficient condition for primality
of 2n—1. In this paper,primality tests of a similar character
are developed for certain integers of the form Ab2nJrBbn—1
and a criterion which generalizes the Lucas-Lehmer test is
obtained.

l Introduction* Let JV = 2* — 1 where n is an odd prime.
The Lucas-Lehmer test for the primality of N reads as follows:

If we put To = 4 and define Tk (mod N) by setting Tfc+1 =T\-
2 (modJV) for h ^ 0, then N is prime if and only if N\Tn_2.

(For proof, see [10, p. 443] or [13, p. 194]. This very elegant test
has attracted a great deal of attention (see Williams [17] for a
bibliography.) It is also the means by which the largest known
primes have been found over the past twenty years.

While the Lucas-Lehmer criterion would only be used when n is
a prime, it should be noted that it holds for any odd n ^ 3. When
viewed in this way, it falls into a class of primality tests charac-
terized by the following three properties.

( i ) The test is restricted to values of N given by some function
involving an exponent n which usually belongs to some fixed con-
gruence class and exceeds a certain bound.

(ii) A sequence {Th: h ^ 0} is employed, where To is an easily
calculated integer and Tk+ι is defined (mod N) for k ^ 0 by Tk+1 =
f(Tk) (modiV) where / is some polynomial such that f(Z) £ Z.

(iii) Write T[k] for Tk where k = mt. Then N is prime if and
only if Λ(Γ[mJ: 1 ^ i ^ /) Ξ 0 (modiNΓ) where h is a ϋΓ-valued poly-
nomial over Z' for some / ^ 1 and the m, depend on n.

We say that any test with the properties i) through iii) is a
primality test of Lucas-Lehmer (or LL) type. Such tests have been
given for integers of the form Acn — 1 with c = 2 (Lehmer [10, p. 445];
Riesel [11], [12]; Inkeri [5]; Stechkin [14] and with c = 3 (Williams
[16]). In this paper, we develop some tests of LL type for integers
of the form Ab2 + Bnbn — 1 and in particular a criterion (Theorem 2)
is obtained when 6 = 2 which yields a large number of examples
including of original LL test (A — 2, B = 0) and the new case A = 2,
B — ± 3 . Further, we are able to show that an LL primality test
exists even for integers of the form
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102ίt ± 107* - 1 .

2* The Lucas functions: congruence and divisibility properties*
We define the Lucas functions to be

(2.1) Un = Un(P, Q) = (an - βn)/(a - β) , Vn = UJUn ,

where a and β are roots of the auxiliary quadratic

x2 - Px + Q = 0

and exclude the case aβ = 0, i.e. Q = 0. (Here and in the sequel all
latin letters denote integers unless stated otherwise.) Un and F n are
defined in the obvious manner when a -= β or an = βn so that
Fo = 2.

REMARK. By virtue of Theorems 1, 2, 4, we can also exclude
the case a = β which holds if and only if P 2 = 4ζ>

In employing these functions (modiV) we frequently use the
following lemma connecting Un(P, Q), Vn(P, Q) and related Lucas
functions with second argument unity.

LEMMA 1. We have UtJUmeZ if t, m > 0. In particular Un,
VneZ for n > 0 (and for n = 0). // QP' = P 2 - 2Q (mod N) and
(Q, N) — 1 we have

(2.2) U2tJU2m^Q^)mUL/UL and F ^ T O i , m > 0 )

wfcere Z72fc = J72Jfc(P, Q), U'k = JTfcCP', 1) α^ώ likewise for the F's.

(Until further notice, all congruences hold (modiV).)

REMARK. When Uh = 0, and in particular h = 0, we interpret
Uth/Uh in the natural manner, i.e. as ta{t~ι\

Proof. We have Uth/UheZ[P, Q] since it is symmetric in a and
/3, so by (2.1) it remains only to consider the first part of (2, 2).
Determine 7, d by the conditions 7 + <? = P', 7<5 = 1, so that our
congruence is of the form A(a2, β2) = A(Qyf Qδ), where A(x, y) is a
symmetric Z-polynomial in x and y. Hence it can be expressed as
B(V2, Q2) ΞΞ B(QP', Q2) with B(x, y) e Z[x, y]. Since V2 = P 2 - 2Q, this
completes the proof.

It is convenient to prove now the following result which is used
in §3. We have

PROPOSITION 1. The following three assertions are equivalent:
( i ) Uh(P, Q) or Uh{P\ 1) = 0 for some (minimal) h > 0;
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(ii) a2 — Qp or y = p respectively, where p is a primitive hth.
root of 1 with h\i or 6, h ^ 2;

(iii) P 2 = cQ with c ^ 3, or ~2 <; P' <* Ί respectively.

For (Q, 2V) = 1 set P ' + 2 = c, 0 ^ o < iV* so that P 2 = cQ (mod JV).
Then the two inequalities in (iii) are equivalent.

REMARK. Let aΦ β. Then Un and Vn are bounded if and only
if a and β are roots of 1, this being an easy consequence of the
partial-fraction expansion of the respective generating functions.

REMARK. Since Un and Vn are here of the form Qn/2B(ri), where
B(n) is uniformly bounded, it is intuitive on examining the later
Theorems and LL-type tests (§§3-5) that this case will be useless
therein. Hence it seems desirable to enumerate these "degenerate"
Lucas sequences in this paper. We will see that this case is excluded
in Theorem 2, but not in Theorems 1 and 4.

Proof. Set a2 = Qp so that β2 = Qρ~\ p + p'1 = P2/Q - 2 = : α,
and P 2 = (a + 2)Q. (The discussion for 7 and δ is the same so we
omit it.) We first show that (i) implies (ii) and (ii) implies (iii).
We have ph — 1 so that p has degree <; min(2, φ(h)) over Z and h \ 4
or 6. We require that a Φ β which holds if and only if p Φl9 i.e.
h ^ 2. Moreover aeZ so that — 2 <; a ^ 2 and c ^ 3. We now show
that (iii) implies (i). For each a above there exists a p + p"1 = a
and jo* = 1 with h Ξ> 2.

The last assertion is trivial so the proof is complete.

REMARK. The discussion here is like that in [1, 35-36] but more
general.

In the sequel we use the following expansion of Vnm in terms of
Vm when Q = 1 or m — 1. (We suppress the parameters P and Q
of the Lucas functions when their values are obvious from or
irrelevant to the context.)

LEMMA 2. Define Fn = Fn{x) by setting Fo = 2, JP2 = x and Fk =
- Ffc_2 /or αZZ &. Then

( i ) F_ n = F n for all n;
( ϋ ) y n m = Qnm/2Fn(VmQ~m/2) for all n, m, where Q1/2 is fixed;

(iii) Fn{x) = Σ ί (-l)r(W(« - r))( Λ ~ r ) ^ - 2 ^ /or Λ ^ 1,

(iv) Fn{x) = 2 cos wz /or αiί tt, where x — 2 cos «.
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Proof, (i) Set F1(x)( = x) = t + t'1 as a formal equality. Then
the above recurrence gives Fn(x) = tn + ί~n and (i) follows at once.

(ii) Choose any square roots of a and β and set θ = (a/β)1/2.
Then FnmQ-nw/2 = #TCm + 0"™ - .FTC(fl

m + 0~m) which gives (ii).
(iii) We find without difficulty that Σ£U Fn{x)yn~l = Σ*U (a? - 2?/)

(#2/ — |/2)fc as a formal identity or as an absolutely convergent series
when \xy\ + \y2\ < 1, from which (iii) follows after term-by-term
integration in y.

(iv) This follows at once on setting t — eίz above (and is of
course well-known).

The following lemma will play a crucial role in the later work.
We have.

LEMMA 3. Set Wt(P, Q)=Wt = ( Ut{m^ J7t(w+Λ)/( UmW) and Jt(x, y) =
((FtW-Ft(y))l(x-y)eZ[x,y].

( i ) For Q — 1 we have

(2.3) Wt = Jt(VtM, V«).

(We define Wt and Jt by the above convention when a zero denom-
inator occurs.)

(ii) For (Q, N) = 1 set Ln =Vn(P', 1) for Pf as in Lemma 1
and take t ^ 1. Then

(2.4) Jt(Lm,Ls)^Q^Wt(P,Q) if 2 | (m,/) ,

where Q~k has the usual meaning (mod N) for k > 0.

REMARK. The expansion of Jt(x, y) in x and y is obtainable at
once from (ii) of Lemma 2.

Proof. Our two formulas follow without difficulty from (2.1)
and (2.2) respectively.

In the rest of this section we present some divisibility and con-
gruence properties of the Un and Vn. Though these results are known
(see [10] or [1]) we supply proofs for the reader's convenience. For
a given m ^ 1 such that (m, Q) — 1 we define a) — ω{m) to be the
least positive k such that m\Uk.

Define

(2.5) Δ = P 2 - 4Q - (a - β)2

Then we have

LEMMA 4. (i) If 2\m and m\Un(n > 0) then ω(m)\n.
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(ii) ω(p)Ip — (Δ\p) where p is an odd prime (here and below)
and {Δ\p) denotes the Legendre symbol.

(iii) If (Δ\p) — —1 we have

(2.6) VP+ί+k = QVh ^Q f c + 1 F_, (modp).

REMARK. The conclusion of (i) hold also if 21 m but we will not
need that case.

In the proof we use the following simple identities:

(2.7) 2QkUn_k=UnVk-UkVn,

(2.8) 2Un+k=UnVk+UkVn,

(2.9) 2Vn+k=VnVk+ΔUnUk .

(Observe that (2.7) becomes (2.8) on multiplying by Q~k and replacing
—k by k in the result, and that (2.8) and (2.9) are essentially the
same.)

Proof of (i). In (2.7) take k = hω > 0 where n - k = r(0 <: r < ω).
It follows by Lemma 1 that m \ Ur so r = 0 by definition ω.

Proof of (ii). By definition of a and β we assume that 2α —
P + 1/4 2/3 = P — V~Δίoτ a fixed square root of Δ. It follows by
a standard congruence for binomial coefficients and Euler's criterion
that 2*UP Ξ 2(Δ \ p) or Up = (Δ\p) and F p = P = VΊ. (All congruences
hold (modp) in this proof.) We thus obtain (ii) at once if p\Δ. Next
by (2.7) and (2.8) with n - p, k - 1 we get 2QC7,_1 Ξ ^ ( ϋ , - U,) =
P((J|p) - 1) and 2UP+1 = P((4|p) 4- 1). Hence the assertion follows
when p\Δ since p | Q .

Proof of (iii). By (2.7) we get -2Q ^U^V,-Vp+1 so that
Vp+1 = 2Q by (ii). Suppose now that k ^ 0. Then by (2.9) we obtain
the first part of (2.6) and the second part follows trivially. If k < 0
the result follows in the same way on interpreting Qk (modp) for
k < 0 as in (2.4).

In Theorems 2 and 4 we use the following simple corollary. We
have

LEMMA 5. [10, pp. 441]. // (Δ |p) = (Q \p) = - 1 , then p\Vm

where m = (p + l)/2.

Proof. Square F w and apply (2.6) with k = 0.

LEMMA 6. If r, s ^ 1, we have (Urs/Us, U8) | rQ8m tί feβre m = [r/2].
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(We recall that this quotient is an integer by Lemma 1.)

Proof. Though we only need the case r a prime, the proof is no
more difficult for arbitrary r. Set Ck = Ck(x, y) = (xk — yk)/(x — y)
(x Φ y) and Ck(x, x) = kxk~ι so that Ck(a, β) — Uk by (2.1), and deter-
mine A = A(x, y) by the condition

(2.10) Cεs+1(CJCs) - ACS = r(xy)°™ (2ε = 1 + (-1)0 .

The proof of our Lemma will clearly follow as soon as we show that
A(a, β) e Z. On setting t = x%u = y8 we get (t — u)A = (x — y)ACs =
xD(t, u) - yD(u, t) where D(t, u) = tεCr(t, u) - r(tu)m. Since ε + r -
1 = 2m we have D(t, t) = 0 so that A(x, y)eZ[x, y]. By (2.10) we
have A(x, y) — A(y, x) and the assertion follows.

REMARK. If (P, Q) = 1 we can replace rQsm above by r, but this
refinement is not required. Carmichael [1, p. 51] proves this latter
assertion for r prime only and by a different method.

From this we derive a lemma similar to Theorem 5.3 of [10].

LEMMA 7. If r is a prime such that (r, N) — 1 and Ur3jUs =
0(mod N) where s > 0 and (Q, N) = 1, then any odd prime divisor
p of N is = ± 1 (mod r i+1) where rj | s.

Proof Let p\N so that p I 17. by Lemma 6 and define ω(m) as
in Lemma 4. Then α>(p) | rs and <*)(#) | s which gives rk+1 \ ω(p) if
rk\\s where Jc^ j . The result now follows form (ii) of Lemma 4.

3* Some primality criteria for quadratic polynomials in powers
of an integer* We shall be concerned in what follows with primality
criteria for the numbers N such that

(3.1) 2V = Nn =:Ab2n + Bbn - 1; 2JfN; b ^ 2; A, w, N all > 0 ,

Here A and J5 are fixed parameters and we can assume that Ab~2

and Bb~λ are not both integers. In the following theorem we will
take b — ar where r is a (fixed) prime. (The references in §1 deal
with "linear polynomials" of this type, i.e. numbers of the form
Abn — 1.) We exclude the following two cases since N is then com-
posite or trivial: J52 + 4A a square; B = 0, A — b ^ 3. Other exclu-
sions will be presented later.

We being with some sufficient conditions for N to be prime.

LEMMA 8. Suppose that b = ar with rn > Aa2n + \B\an. (Here
and later we take r > 0.) // some prime factor of N is == ± 1 (modrn)
then N is prime.
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Proof. Set e = rn, C = Aa2n, D = Ban (so that e > 1). Let p | iSΓ
with p Ξ ±l(mode) and assume that N is composite. We show that
e <: C + \D\. Since J V Ξ - 1 (mode) we have N = (he - l)(je + 1) =
Ce2 + De — 1 for some h, j > 0, so that Ce + 7) = frie + h — j and
|C — λi |e = |Λ — ̂  — i?| ^ λ^ — 1 + |JD| as is easily seen. Set C —
hj — t so that ί ^ O since D 2 + 4C is non-square. Then \t\e ̂  C —
t - l + | D | < C + | D | + | ί | and the assertion follows.

(The reader can now pass on to the proofs of Theorem 1 and 2.)
Somewhat better results can be obtained for special classes of N as
follows, where N has a prime factor == ± 1 (mode). We note that
our hypotheses give e > 1 below, as can be easily verified.

LEMMA 9. Suppose that r is odd n^2. Then N is prime if
(i) e ^(C-3)/2 + \D\,
( i i ) 2\a,e>(C + 2\D\)/B.

(Here and in the next Lemma we use the notation introduced
above.)

Proof. We assume that N is composite and follow the proof of
Lemma 8. Since e and N are odd, we have 2\(h, j). On setting h =
2k, j = 2m we get (G — Akm)e — 2(& — m) — D. For t as above this
gives e - 1/2 ̂  (e - l/2)|ί| ^ C/2 + \D\ - 2, which gives (i). If now
21 a and n ^ 2 we have 4 | (C, Z?) and (ii) follows in the same way.

REMARK. The bounds for e in the preceding Lemmas and in the
following one are exact, as can be shown without difficulty.

LEMMA 10. N is prime if 2|α, e = l(mod 4), n ^ 5 and e |Ξ> (C +
6|Z>| -16)/24.

Proof. Assume N is composite. By hypothesis we can write
C = 32#, D = 32.P with E ^ 32. (We only need E ^ 7 in the following
proof.) The assertion to be proved can now be written as

(3.2) e^(AE- 5)/3

As in the proof of Lemmas 8 and 9 we find that

(3.3) (BE - km)e = (fc - m)/2 - SF

for suitable k and m > 0. Set 8̂ 7 — fern — u, v — \u\ so that u =
(C - ftj)/4 ^ 0 and e - 81 F\ ^ ((& - m)sgn u)/2v. Hence (3.2) holds if

(3.4) ((k - m)sng w)/v ^ (8^ - 10)/3 .

We have u ΞΞ 0,1 (mod 4) by (3.3) since e is odd and consider 3
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cases, namely v ^ 4, u = 1, u — — 3.
( i ) v ^ 4. have |A? - m | ^ &m - 1 ^ 8.5/ + v - 1, so (3.4) holds

if (SE - l)/4 ^ (8^7 - 13)/3 and this is so for E = 7, hence for # ^ 7.
(ii) w — 1. Since e ^ l (mod 4) we have u = (k — m)/2 (mod 4) for

all u by (3.3). For u = 1 the left side of (3.4) increases with & and
k = 8E — 1. The choice & = 8E — 1 contradicts the last congruence
so (3.4) holds if ( 8 ^ - l)/3 - 3 ^ (SE - 10)/3 which is true.

(iii) u = — 3. We maximize m in this case and argue as in (ii).
We are now ready to prove two related theorems, the second of

which will yield a large class of LL-type tests. It is convenient to
isolate part of the argument as the following

LEMMA 11. For any N > 0 and a, b, P determine Tk (mod N) for
k^O by

(3.5) To = Fa(P), Tj+1 = Fb(Tj)

for Fn(x) as in Lemma 2. If d — gbk(k ^ 0) write V[d] for Vd —
Vd(P, 1) (here and later) to avoid subscripts with exponents. Then

(3.6) Fc(Tk) = V[cabk] (mod N) .

Proof By (2.1) we have P = Vt so (3.6) follows by Lemma 2
and induction.

Let (.|.) denote the Jacobi symbol and define Δ by (2.5). We
present first a sufficient condition for primality, namely.

THEOREM 1. Let N = Ab2n + Bbn - 1 > 0 be odd where A,b,n>
0, 6 = ar with r prime and B2 + 4A Φ • (here and in the sequel).
Define Tk (modN) by (3.5). Assume that rn > Aa2n + Ban and find
P such that (A\N) = - 1 with Q = 1. //

Jr =: Jr(F.A{T2n_x) , F2B(Tn_λ)) = 0

where Jr is given by (2.3), £/&βw JV ΐs prime. (Recall that F0(x) = 2.)

if

then N is composite. (All congruences hold (mod N) in the rest of
this section.)

REMARK. We have F2C = Ft - 2 and F r c = Fr(Fc) by Lemma 2.

REMARK. We prove in Proposition 3 below that the required P
always exists when N is a non-square, and likewise for P and Q in
the following Theorem 2.
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Proof. By (3.6) we get Jr = Wr for Wr as in Lemma 3 with
Uk=Uk(P,l), m^Aab271-1 and s=Bάbn-\ so if N\Jr, any prime
factor of JV is Ξ ± 1 (modrw) by Lemma 7. Hence N is prime by
Lemma 8. (We note that m > \/\ by the inequality for r\)

If N is prime we have Vrm Ξ= F ^ by by (2.6) so that FrA(T2n^) =

REMARK. It is easy to see by Proposition 1 that if Wr = 0, then
N < C as we would expect, where C is a universal constant. Thus
the above test when applied to a sequence {Nn: n > n0} satisfying
(3.1), and with P so chosen that Wr = 0, yields no information in
this trivial case, a fact which may be considered as a partial check
on the above proof.

We now employ Lemma 5 and the argument used to derive the
first part of Theorem 1 to obtain a necessary and sufficient condition
for the primality of N when b = r = 2 which includes the Lucas-
Lehmer test.

THEOREM 2. Let N = A 22n + B 2n - 1 where T > A + \B\.
Determine P and Q such that (Q\N) — (Λ\N) = —1 and set QT0=Ξ

P2 - 2Q so that To = F(P') = P' for Pr as in Lemma 1. If we define
Tk by (3.4) with a = 1, & = 2 αwd P' /or P so

Γy+1 s T| - 2 (i ^ 0) ,

iV is prime if and only if

J =: ̂ ( Ϊ V r ) + i^(?Vi) = 0(mod iV) ,

where Fc(x) — F_c(x) by (i) of Lemma 2.

REMARK. The Lucas-Lehmer test (see §1) is obtained by taking
A — 2,1? = 0, Q = — 2, P = 2 and observing that (iV prime if and only
if N\ Tln^) implies that (N prime if and only if N\ Γ2n^). (We must
assume N ^ 31; the case N = 7 is not covered.)

Proo/. Write L^ and Ffc for F^P', 1) and Vk(P, Q) respectively.
By (3.6) with P ' for P we have Fc(Tk) s L[c 2fc]. Set m = A ̂ - 1 ,
/ ^ β ^ 7 1 " " 1 . By Lemma 3 and (2.1) it follows that J Ξ L W + L ^ =

J2(Lm, Ls) = Q-mVm^Vm+;, since (Q, iSΓ) = 1. Thus if iV|J then J\Γ
is prime as in Theorem 1. (We have 21 (m, /) since n — 1 gives 2 >
A + \B\ so A = 1, B = 0, and J32 + 4A is a square.)

If iV is prime then V™̂  Ξ 0 by Lemma 5 so N\J.

REMARK. In §5 we use Theorem 2 to construct further LL-type
tests.
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We now show the case Uh(P, Q) or Uh(P\ 1) = 0 for some h never
occurs in the above proof if n ^ 3 so that the problem of zero
denominators does not occur. By Proposition 1 it suffices to verify.

P R O P O S I T I O N 2 . L e t N , P , Q be g i v e n b y T h e o r e m 2 w i t h n ^ Z
or N = - 1 (mod 8). Then P2 =£ cQ (mod N) for 0 ̂  c ̂  3.

Proof. Since (Q, N) = 1 we can find c such that P 2 = cQ. Then
(c|iV) = - l , and (c - 4 | 2V) = 1 by (2.5). Since (2 | ΛΓ) = 1, the
assertion follows.

REMARK. Suppose now that n = 2 so that JV = 16A + 45 — 1 <;
12A + 12 - 1 ̂  47. Since 47 = - 1 (mod 8) and N = - 1 (mod 4) we
have P2

 Ξ£CQ iί N> 43.
We close this section by showing that Theorems 1 and 2 are

"effective" in that the required P or P and Q can always be found
if a nonsquare. Note that in Theorem 2 it suffices to find P such
that (P2 + 4| JV) = - 1 , since we can then take Q = - 1 . We will
actually prove the following more general.

PROPOSITION 3. Let m be odd, >0 and a nonsquare and take
d =έ O(modm). Then there exists k such that (k2 — d \ m) = — 1.

Proof. Set Cd(m) = # {k(mod m): (k2-d \ m)= -1}. We prove that
Crf(m) > 0 and begin with the case m = p, a prime. In GF(p) we
have k2 — d = j2 for some ^ if and only if 2fc = e + d/e for some e, so
that min(Cd(p), p - Gd(p)) = (p - l)/2 > 0. Next let m = h2 Π?=i P<,
where the pt are distinct primes and s ^ 1. By the Chinese Remainder
Theorem we can thus determine k such that (k2 — d \ pt) = — 1 or 1
according as i = 1 or 2 ̂  i ^ s, which completes the proof.

4* LL-type tests when b — ar, r an odd prime, and the theory
of cyclotomy* There is, unfortunately, no simple analogue of Lemma
5 which holds for Urk/Uk with rk = p + 1 where p and r are odd
primes. However, we can use the theory of cyclotomy to obtain an
analogue of Theorem 2 that will be useful when r = 3 or 5. We
employ here the method of Williams [15].

Let p, q, r( = 2s + 1) be odd primes such that p= —l,q = l (mod r)
and let K = GFip^1). As is customary write t — indm = : ind^m
where m = g\ 0 <L t <^ q — 2 and g is a fixed primitive root of q.
(Herein equality holds in K and Roman letters denote elements of Z
or GF(p) unless stated otherwise.) We use the well-known Gauss
sum (or Lagrange resolvent)
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(4.1) (f,fli) = Σ W ,

where ζ, ω are primitive rth and qth roots of 1 in K respectively.
We require the following three lemmas.

LEMMA 12 [8, p. 278]. We have

(4.2) (ξ,ωm) = (ξ,(θ)Γinάm (m,ϊ) = l

and

(4.3) (f, ω)(r\ α>) = ? .

Proof. We use the fact that r \ (q - l)/2 which gives (4.2) at
once since ind&m = indik + indm (moάq — 1). Next write the left
member of (4.3) as a double summation whose general term is
înd α-isd bωa+b for 1 <; α, 6 ̂  g - 1. Set a = 6c (modtf) and then sum

first on 6, then c to complete the proof.

LEMMA 13. Set ψ^ξ) = 2Γ2f lndi"(<+1)lndCi+1). Then we have

(4.4) (f, ω)r
 =

so ί/iαί α = α(|) is independent of p and the at are uniquely determined.
If β = aiζ"1) we have

(4.5) aβ = qr'2 .

Proof. For the proof of (4.4) see [8, p. 279] or [6, Chap. 8].
We get (4.5) at once form (4.3).

REMARK. In [8], (4.1)-(4.4) are presented as formulas in C,
however they clearly remain valid in K. (These functions ψt are
often called the Jacobi Functions.)

Define Gs(x) by setting

ysG(y + y1) = (y* - l)/(y - 1)

so that Gs(x) = 1 + Σ^l Fn(x) e Z[x] (or K[x]), where Fn(α?) is defined
as in Lemma 2. On setting G^(x) = — 1, Go(^) = 1, it follows easily
that

(4.6) Gn(x) = xGn_x(x) - Gn_2(x) for n ^ 1 .

We temporarily let p be an arbitrary odd prime and prove

LEMMA 14. (i) p is a prime divisor of Gs(x) if and only if p =
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0, ±l(modr) [7, p. 199]. (ii) Ifp= ±l(modr) we have Gs(x) =
Πί (% — ft) in GF(p) where ft = ξι + ξ~\ and ξ is a fixed primitive
rth root of 1 m K, i.e. in GίXp2). [2]

Proof, lί p = r we have p = Gs(2). Suppose now that p Φ r
and let ξ be a primitive rth root of 1 in H = : GF{pr~ι). Then we
have dr - l)/(i/ - 1) - ΠΓ 1 (V - £') = Πί (V2 - piV +1) = 2ΓS Πί (a-ft) =
y~sGx(x) over 2ϊ where ft = £ * + £-'. Next, if p = ft 6 GUFXp) then
2/2 — ί>2/ + 1 splits over GF(p2) so that r | p 2 — 1. Conversely if this
condition holds we have ρ*~x = 1 in GJ^(p2) and peGF(p).

We have ft = J?7^ )̂ for p = ft and 1 <; i ^ s by Lemma 2. Set
ct = at — ar_i. Then by Lemmas 13 and 14 we get

(4.7) 7 - : a + β = Σ ^ft = Σ c ^ ^ ) = Σ C(i# r,

where JB = {βt} is any (integral) basis of Z(p), i runs from 1 to s,
and the C(i, r, q) = C(i, r, g | -B) (which we regard as lying in GF{p))
are independent of p. It seems most convenient simply to take
βt = ft for all i so that

(4.8) 7 = Σ βift i «i = W, r, g) = a, + αr_x , ft - F,(p) = £< + ξ-*

When r = 3 or 5, expressions for the C(ΐ, r, g) in (4.8) in terms of the
representations of q by certain quadratic forms will be given in §5.

We use the preceding Lemmas to prove.

THEOREM 3. [15] Let p, q, r ( = 28 + 1) be odd primes such that
-p = q=El (modr) and p{q~1)/r^l (modg), and put P=ΣίC(i , r, q)Fi(R)9

Q = qr-\ where G8(R) = 0 (modp). Consider Un=Un(P,Q) as an
element of GF(p) and set p + 1 = r&.

t^+ 1/ϋ* = 0, i e. ϋ, + 1 = 0 , UkΦ0.

(Our two assertions are equivalent by Lemma 6.)

Proof For some ξ we have R = £ + f1 by Lemma 14. Thus by
(4.5) and (4.8) we have P = a + /3 and Q = aβ. We now work with
(4.1)-(4.4) as follows and recall that β = α(Γx). Set j = indp. We
have (qaf = (f, α))p+1 = (£, α))^"1, α)p) = qξ*f so that (g/3)fc = qξ~3'. Hence
αp+i = ^P+i a n ( j αfc _t f̂c S i n c e p«r-ur ^ i ( m o ( j g)# The Theorem follows

at once by the definition of Un, i.e. (2.1).

REMARK. Let J? be a zero of G8(x) = 0 (modiV) for any N> 0.
Since the zeros of Gs(x) = 0 over C are Ft(ρ) for 1 ^ i ^ 8 where |O
is a given zero, it follows that Gs(x) has the s zeros 2̂ (22) (modiV).
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Moreover if we replace R = Rx by Rt —: FJJΪ) for any i, we permute
the Ci in P = Px to give s formally different choices of P = : Pi above
and in Theorem 4 below. (See (4.8).) We will not be concerned,
here or later, with determining when the Rt and Pt are all distinct
(modiSΓ) and do not claim that the Rt are all the zeros in question,
since N may be composite.

We note that the F^R) are easily computable by means of the
recurrence in Lemma 2 and that P can be written as ̂ ΣJΓ1 dάR

j for
suitable dd.

We are now ready to prove the following analogue of Theorem 2.

THEOREM 4. Let N = Ab2n + Bbn - 1 where A, b, n are all > 0,
2)( N,b — ar with r an odd prime, and set e, C, D — rn, Aa2n, Ban

respectively as in Lemma 9. Suppose that
(i) β^(C-3)/2+|Z)|

or
(ii) 2|α, e> (C + 2|JD|)/8# n^2.
Let q be a prime such that q = l (mod r) and Niq~1)/r φ. 0, 1 (mod q).

Define R, P, Q as in Theorem 3 with p replaced by N. Set

To - FJ(P') or Fa/ι(P'), Tb+1 = Fb(Th) (modiV) /or Λ ̂  0

according as (i) or (ii) holds, where QP' == P 2 — 2Q (modiV). T/̂ ê  iV
is prime if

J - : JΛFMn-J, ί^CΓ-i)) = 0 (mod JV) .

(Recall that Fm(x) has the same value for m = ± j 6τ/ Lemma 2.)

Proof. Assume that (i) holds. By Lemma 3 and (3.6) we get
j Ξ Q α-r)^r(p f Q) W i th m = SLAαδ2"-1, •= 2Babn-\ Hence if ΛΓ| /,
then N is prime by Lemmas 7 and 9.

If iV is prime, then N\(UN+1/Uk) by Theorem 3 so that
N\(U2{N+1)/U2k). Since 2(N + 1) = m + / we have JV| J.

The discussion in case (ii) goes in the same way so we omit the
details.

REMARK. We can improve this Theorem in case (ii) when r = 1
(mod 4) by using Lemma 10.

5* Construction of LL-type tests by means of Theorems 2
and 4, and some numerical examples* We deal here with examples
only of the many possible different tests of LL-type which can now
be derived from the preceding theorems.

We set
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(5.1) t = T,n_x , U = Tn_, .

and define / as in Theorems 2 and 4. It is convenient to list here
the values of FJx) to be used in this section, namely

(5.2) F2{x) = x*-2, Fs(x) = x8 - Zx, Fs(x) = x* - 5x3 + 5x

r = 2. Let N = 22n+1 ± 3 2B - 1(Λ ̂  3), then A = 2, B = ± 3 .
PuttingP = - Q = 2, we get J = P 2 - 4Q = 12, and (Q|iV) =
- 1 . Also To = 4 and J = F2(ί) + Fg(ΐt) = ί2 + u? - 3« - 2.

Thus, if

i V = 2 2 n + 1 ± 3 - 2 " - 1 ( Λ ^ 3 )

and

To = 4

then iV is a prime if and only if

TL-x + Γ.^ - 8Γ,.! - 2 E O (mod iSΓ) .

Before presenting further LL-type tests we give here a general
formula for P ' (modiV). Let N=h (modtf) where q is defined in
Theorem 4 and (h, q) = 1. Suppose that jft = —1 (modg).

Then we have

(5.3) P' = P2(0W + l)/(?)r-2 - 2 (mod 2V) .

r = 3. In this case we have a in Theorem 3 equal to ψx{ξ) and
PΞΞ — C(l, 3, g) (modJV). It is well known (see, for example, [4]) that
we have C(l, 3, q) = — α, where α is determined uniquely from the
congruence x = 1 (mod 3) and the quadratic partition

(5.4) Aq = a2 + 27/ .

Take δ = 3 so that a = 1 and (i) of Theorem 4 holds. Set g =
Q = 7 and take w = 3m + 1. Then N=9A + (-l)m3JS - 1 (mod 7) so
that N2 m 0,1 if and only if 3A + (-l)mB φ 0, 3, 5. We now take
A = 1, B = ± 1 so that the last condition is satisfied. We can set
p = α = 1. If JS = 1, then for w = 1, 4(mod 6) we have N = 4, 2 and
j = 5, 3 (mod 7) respectively, and likewise if B = —1. Next we have
Γo = OW + l)/7 - 2 (mod iSΓ), Tk+1 = F3(Tk) and J = J3(f - 2, u2 - 2)
where Jz(x, y) = x2 + xy + yz — 3 by Lemma 3. We thus obtain a
set of 4 primality tests according as % Ξ 1 or 4(mod6) and B = ± 1 .

For example, let iV = 32n — 1, where n > 1 and w Ξ 1 (mod 6). If
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To = (4JV + l)/7 - 2 = (4 32n - 4 3n - 17)/7 ,

Γ4 + 1 = T4(TJ - 3) (modiV),

then N is a prime if and only if

Φ 4 _i_ T»4 I ΠΠ2 ΠΠ2 _ fi/T*2 _ Ωψ2 I Q —
•* 2w—1 I - 1 Λ—1 I -*• tt-1 •* 2ft-l V±ιn-ι Ό±n_ι T ί? —

r = 5. In this case, we can easily verify by using standard
results on Jacobi Functions (see, for example, [3]) that

a = ψ

in Theorem 3 can be written as

(5.5) a = f

By using results [4] connecting the values of the at in Lemma 13
with the values of x9 y, z, w in the representation

(5.6)

16g = x2 + 5Qu2 + 50v2 + 125w2

xw — v2 — u2 — Auv

x = 1 (mod 5) .

it is a routine matter to deduce that

(5.7) P = exRt + cjt^moά N) , (i = 1, 2)

where G2(R) Ξ 0 for JB = Λ, and J?3_, - ^( i? , ) = -R, - 1, c£ = : C(i, r, 9)

(5.8) 2c! = JSΓ + L , 2c2 = JSΓ - L ,

and

8ίΓ - Sqx - x3

(16/25)L = Ww(u2

It should be noted here that there are precisely four solutions
(x, u, v, w), (x, v, —u, w), (x, —vf u, —w), and (x, —u, —v, w) of (5.6).
These give us two possible solutions for (cu c2); however, since Jf28-< =
—Ri — 1, we see that we have a valid value of P for either of these
values of (cu c2). We also note that since Theorem 4 only requires a
value of P 2 (modiSΓ), we have four possible values for P:

i — c2, —LRi — elf —LRi + c2, LRt + ct .

Since the choice of formula here is arbitrary we will specify P as
follows. Set M = minded, |c2|) so that M — (ex| or \c2\ according as
sign KL < 0 or ^0. Then we may redefine P by setting

(5.10) P = M + sLRAi - 1, 2)
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where ε = sign(L — K) or sign(L + K) according as sign(KL) ^ 0 or

We give some values of M, L, and ε in Table 5.1 below

TABLE 5.1

Q

11

31

41

61

71

X

1

11

-9

1

-19

u

1

2

3

1

2

V

0

1

0

4

3

w

-1

-1

1
1

1

K

89

409

-981

1111

-101

L/25

1
-5

1

-11

41

M ε

32

142 +

478 +

418 +

462 +

When r ^ 5 we have the additional problem of finding a solution
of GS(R) = O(modiV). For some values of N and r this can be done
as in Williams [18], but this rather complicated technique does not
allow us to calculate To easily. When r = 5, however, we can compute
a value of R for certain values of N with very little difficulty.

We note that if

(5.11) N = (c2 + cd - d2)¥ + (c - 2d)k - 1 , (c, dk + 1) = 1

and

(5.12) cR = (c2 + cd - d2)i - d (mod JV) ,

then

c2G2(R) = c2R2 + c2R ~ c2 = (c2 + cd- d2)N = 0 (mod iV)

Since (c, ΛΓ) = 1, we have a solution R of G2(x) = 0.
We now construct some primality tests with the aid of Theorem

4, (5.1), (5.2), (5.3), (5.10), (5.11), (5.12) and Lemma 3 in §2. In each
case below we have a companion test obtained by replacing k by — k,
and in (i) no change in the values of n involved is required.

( i ) e = 1, d = 0, k = 5% so that 6 = 5, α = 1, A = £ = 1, j? = &,
and condition (i) of Theorem 4 holds. Take q = 11, w Ξ 1 (mod 5) so
that JVΞΞ5 2 + 5 - 1 Ξ Ξ 7 and i = 3(mod 11). We have P = 32 - 25&,
Γo - P ' = P 2((3^ + 1)/11)3 - 2 (mod N), Tk+1 = Fb(Tk) and J - : J6(ί2 ~ 2,
^ 2 — 2), where (x — y)Jδ(x, y) = (xb — y5) — 5(xd — y*) + 5(x — y).

For w = 1 we have N = 29, and the reader may verify that
J = 0(mod 29) in accordance with Theorem 4, where t = Tlf u — To.

(ii) c •= 1, d = 0, k = -10% so that δ = 10, α = 2, A = JB = 1,
R = k.

Condition (ii) of Theorem 4 says that 5n > (22n + 2n+1)/8 which is
true. Take q = 41, n = 3 (mod 5) so that N = 34 and J Ξ 6 (mod 41).
We have P - 478 - 25&, Γo = P 2 ( ( 6 ^ + 1)/41)3 - 2, Tk+1 = F10(Tk) =
Ft{Tk) — 2 (see Lemma 2), and J is the same as in (i). We obtain
a companion test on taking n = 2 (mod 5).
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Thus, when N = 102n - 10n - 1, n = 3(mod 5), (n > 0), put

Γ. = (418 + 2 5 W 6 ' i r - 6 ' 1 0 ^ 5 ΐ - 2
V 41 /

Tk+1 = [Tk(Ti - 5ΓΪ + 5)]2 - 2 (mod N) .

N is a prime if and only if

2π-l I * 2 π - l - * « - l "T •*• Zn-l1 n-1 T^ •*• 2n-l * Λ - l ' •* Λ - 1

+ Tl^JU + Ti_0 - 50(T|n_t + 21.x) + 25 = 0
(mod N) .

If N = 102" + 10" — 1, w = 2 (mod 5), we can use this same test
except that

To = (478 - 25.1O")fO-19 1 Q - 1 9 1 O 7 - 2 .
\ 41 /

Primes of the form 102n ± 10n ± 1 have rather interesting digit
patterns. For 102w — 10TO + 1, we have the pattern

9 9 9 . . . 9 000 •-. 0 1 ;

n nines n—1 zeros

for 102n — 10n — 1, we have the pattern

999 . . . 9 8 999 - 9;

n—l nines n nines

and for 10271 + 10n — 1, we have the pattern

1 000 . . . 0 999 - 9 .

n zeros n nines

Lehmer [9] tabulated the four primes of the form 102n — 1071 + 1
for n <; 10. Sincfe these numbers have the form Nn = (103n + l)/(10ra + 1),
we see that if Nn is a prime, then n — 2α3iS. In fact, there are no
more primes of this type for n < 1000. Indeed, one would expect
such primes to be just about as scarce as Fermat primes. However,
primes of the form 10 2 n ±10 n —1, like the Mersenne primes, are some-
what more abundant. In Table 5.2 below, we give all those values
of n <Ξ m such that Nn = k2 ± k ± 1 is a prime with k — 10TO.

ϊ-2 λ.
n> K

1

1

m

1023

500

750

2

1

1

4

2

6

6

3

9

TABLE

values

5.2

of n

8

5 6 7

154 253

such

9

that N
n
 is

13 26 42

prime

153 188 282
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