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EQUIVALENT NILPOTENCIES IN CERTAIN GENERALIZED
RIGHT ALTERNATIVE RINGS

HARRY F. SMITH

A nonassociative ring is called generalized right alterna-
tive if it satisfies the identity (wx, y, z) + (w, x, [y, z]) =
w(x, y, z) + (w, y, z)x. Generalized right alternative rings
which also satisfy ([w, x\ y, z) + (w, x, yz) = y(w, x, z) +
(w, x, y)z or (x, y, z) + (y, z, x) + (z, x,y) = 0 are known as
generalized alternative or generalized (—1, 1) rings, respec-
tively. For both these varieties it is proved that either
left or right nilpotence implies nilpotence. However, char-
acteristic Φ 2 is required for generalized (—1, 1) rings in the
case of right nilpotence.

1* Introduction* Using the standard notation (x, yf z) = (xy)z —
x(yz) for the associator and [x, y] = xy — yx for the commutator, a
nonassociative ring which satisfies the identity

(1) (wx, y, z) + (w, x, [y, z\) = w(x, y, z) + (w, y, z)x

is called generalized right alternative. Such rings which also satisfy

(2) ([w, x], y, z) + (w, x, yz) = y(w, x, z) + (w, x, y)z

are known as generalized alternative, and those that satisfy (1) and

(3) (x, y, z) + (y, z, x) + (z, x, y) = 0

are called generalized ( — 1, 1). The studies of these three varieties
were each initiated by E. Kleinfeld [2-4], with the strongest result
on the structure of generalized right alternative rings per se due
to Hentzel and Cattaneo [1],

Let A be any nonassociative ring. If for some positive integer
n every product of n elements from A is zero, no matter how the
elements are associated, then A is said to be nilpotent. In this case
the least such integer n is referred to as the index of nilpotency of
A. Setting A[0] = A and defining inductively Aw = AAC*-1], then less
restrictively A is called left nilpotent of index n if Aw = (0) and n
is the least such integer. Right nilpotence is defined analogously.
In addition, if we let A(0) = A and define inductively A(&) = (A{k~1])\
then A is called solvable of index n if A{n) =~(0) and A{n~1] Φ (0).
It is immediate that nilpotency implies left and right nilpotency,
and that left or right nilpotency implies solvability.

As the name generalized alternative suggests, identities (1) and
(2) are both satisfied by any alternative ring. In [10] Zhevlakov
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proved that a left or right nilpotent alternative ring must be
nilpotent. In this paper we shall extend his result to the variety
of generalized alternative rings.

By definition any ( —1, 1) ring satisfies (3), and provided character-
istic Φ 2 such rings likewise satisfy (1). (That this restriction on
characteristic is necessary can be seen using example 2 from [5].)
Thus a ( — 1,1) ring with characteristic Φ 2 is generalized ( — 1, 1).
In [8] there is a proof due to Slin'ko that for ( — 1, 1) rings left
nilpotency implies nilpotency. We shall extend this result to gener-
alized ( — 1, 1) rings. Also, Pchelincev [6] and Dorofeev each proved
that a right nilpotent ( — 1, 1) ring with characteristic Φ 2 is nilpotent.
This result extends as well to the variety of generalized ( — 1, 1)
rings. However, as demonstrated by an example, characteristic Φ 2
is required there too.

In [7] Pokrass proved that for flexible generalized right alterna-
tive rings left or right nilpotency is equivalent to nilpotency. Our
approach parallels that used by Pokrass, but the argument applied
here is more general in that it does not utilize any sort of result
concerning the product of ideals in either of the varieties considered.

2* Main section* Let A be a nonassociative ring. For a e A,
La and Ra denote the operators of left and right multiplication by
α, respectively. The notation Sa is used when the operator S can
be either L or R.

We begin by writing (1) in expanded form. After some cancel-
ling of terms, we have

0 = [(wx)y]z — (wx)(zy) + w[x(zy)]

— w[(xy)z] — [(wy)z]x + [w(yz)]x .

Then taking in turn w, x, y, and z as the argument, (1') in operator
form gives

0 = RxRyRz — RχRZy + Rχ(zy)

— R{xy)z ~ RyRzRx + Ryz^x j

, r x 0 — LwRyRz — LwRzy + RzyLw

O )

, n , 0 — LWXRZ — LZLWX + L Z L X L W
y Ό )

— LXRZLW — LWRZRX + RZLWRX ,

, „ v 0 — L { w x ) y — RyLwx + RyLxLw

— JuχyL/w — JUwy£iχ + JUyljwliχ

Also, expanding (3) and taking x as the argument gives



EQUIVALENT NILPOTENCIES 461

(8) 0 = RyRz - Ryz + Lyz - LzLy + LzRy - RyLz .

Since identities (4)-(7) hold in any generalized right alternative ring,
they are valid for both generalized alternative and generalized
( — 1, 1) rings. Identity (8), of course, is only valid for generalized
( — 1,1) rings.

We note, too, that if the ring A is generalized alternative,
then due to the symmetry between identities (1) and (2) the opposite
ring of A is likewise generalized alternative. In particular, this
means if such an A satisfies some relation involving multiplication
operators, then A also satisfies the opposite relation where Us and
R's are interchanged.

Letting B denote the ideal A2, we first prove

LEMMA 1. If A is a generalized right alternative ring, then
(BkA)B £ Bk+1 for k^l.

Proof. To show (BkA)B £ Bk+1 we induct on k. For k = 1,
(JSA)JBSJB2 since B is an ideal. Now assume {BlA)B £ Bί+1 for
1 ^ i < k and consider (BkA)B where k ̂  2. Let 1 ̂  i ^ k - 1.
Then from (1) we obtain [{BiBk-i)A}B^{BiBk~i){AB) + (B'B*-*, A, B) £
(B'B^χAB) + (β\ Bk~\ [A, B]) + B\Bk-\ A, B) + (B\ A, B)Bk~i £ Bk+\
using B is an ideal and the induction assumption. Since Bk =
Σ?=ί BlBk-\ this proves (BkA)B £ Bk+1 and completes our induction.

In Lemmas 2-7 the ring A can be either generalized alternative
or generalized ( — 1, 1).

LEMMA 2. Let T = SxβxβxβXi where for each 1 ̂  i < 4 eΐίfeer
x,eB or xi+1 e B. Then (Bk)T £ (Efc+1) Σ-S S.

Proof. If a?i 6 J5 the result is obvious. Thus we assume xx =
α g β , so that by assumption #2 = 6 6 B. Depending on the R's and
Us in SxβX2 there are now four possible cases. First suppose SxβX2 =
RaRh. Then by Lemma 1 (Bk)T = (Bk)RaRbSaβXiQ (Bk+1)SxβXi as
required.

We next suppose that SxβX2 = LaRb, and begin by assuming
xz = δ' e 5. In this case, using (6) with a? = α, z = 6, w = b' we
have

LaRbLb> = Lb'aRb -— LbLb>a + LbLaLb> — hb>RbRa + RbLb>Ra

or using (6) with w = α, 2 — 6, a; = 6' we have

LaRbRy — Lab>Rb — LbLabf + LbLbLa — Lb>RbLa

Hence in either situation CB*)T = (Bk)LaRbSb'SX4 £ (£



462 HARRY F. SMITH

required. On the other hand, if x3 = af £B then x± = b' eB by
assumption. In this case we first use (5) with w = α, y = b, z — af

to obtain

LaRbRa

f = LaRa'b — RaΊ}La + RbRa,La + L{ab)a> — La{baΊ .

Thus if SX3 = Ra,, then (Bk)T = (Bk)LaRbRa,Sb> Q (Bk+1)Σ*S S
utilizing our previous calculations for LaRbSh>. Next we use (6) with
x = a, z = b, w — af to obtain

L/aRbLa' = La'aRb — LbLa'a + LbLaLa> — La>RbRa -f- RbLa>Ra .

Then for S.3 = Lβ, we have (B*)Γ = (Bk)LaRbLa,Sy Q ( ΰ H 1 ) Σ S S
using our preceding calculation for LaRhRarSh>. Hence we now have
shown that if T=LaRbSxβX4, then (Bk)TQ(Bk+i)^S S as required.

Thus far the argument applies for both generalized alternative
and generalized ( — 1, 1) rings. For generalized alternative rings the
two remaining cases, SxβX2 — RaLb and SXlSX2 = LaLh, now follow by
symmetry. Therefore at this point we can assume the ring A is
generalized (-1,1) . Let S9β9% = RaLb. Then by (8) we have (Bk)T =
(Bk)T^(Bk)RaLbSxβXi= (Bk)[RaRb-Rab + Lab-LbLa + LbRa]SxβXi. Since
we have already established (Bk)RaRbSxβXi £ (Bk+1)SxβX4, this shows
(Bk)RaLhSxβXiQ(Bk+ί)ΣS-.. S. Finally, let S.βmi = LaLh. Then
again by (8) (Bk)T = (Bk)LaLbSxβX4 = (Bk)[RbRa - Rba + Lba + LaRb -
RbLa]SxβX4. Since we have also established (Bk)LaRbSxβXi Q
(Bk+1) Σ S S, this shows (Bk)LaLbSxβX4 Q (Bh+1) Σ S S, which
completes the proof of the lemma.

LEMMA 3. Let T = SXί Sxβb where beB and n Ξ> 1.
δe expressed as a sum of terms each of the form Sb>Syι S

or SyβySy2 Sym where b' e B.

Proof. The proof is by induction on n. For n — 1 the lemma is
true immediately. Thus we assume n ^ 2 and that the lemma holds
for all values less than n. Then T = SXι Sx^_βXnSb, and depend-
ing on the R's and I/s in SXn_βxβb there are eight possible cases
to consider. Using our induction assumption, first RXn_JtXnRb follows
from (4) if we set x — δ, y — xn_u z — xn. Similarly RXn_χRXnLb

follows from (5) taking w = b, y = xn_u z = xn; and LXn_ιRXn_1Rb

follows from (5) with w — xn_u y = xn, z = b. Then letting w = xnf

x = b, z = xn_i in (6), RXn_xLXtRb reduces to Lx%RXn_ιRb which was
just established.

So far our argument applies to both generalized alternative and
generalized ( — 1, 1) rings. For generalized alternative rings the four
remaining cases, RXn^LXnLb, LXn_JRxJjh, L^L^R,, and LXn_γLxLby



EQUIVALENT NILPOTENCIES 463

now follow by symmetry. Therefore at this point we assume the
ring A is generalized ( — 1, 1). Then using (8) and the induction
assumption we see that

-ff*Λ_1£*n Σ'& = •Ra.Λ_ι[i26J?ίCH ~ Rbxn + LbXn + LXnRb — RbLxJ

reduces to RXn__1LXnRh9 and that

LXn__1RXnLh = LXn_1[Rx%Rb — RXnb + Lx%b — LbLXn + LbRxJ

reduces to LXn_^RXnRu both of which have already been established.
Similarly,

LXn_1Lxβb = [RXnRXn_x - Rx%Xn_λ + £*,*„_! + Lx%_βXn - RXnLx%_JRb

reduces to earlier cases, and then

LXn_λLxJjb = LXn_1[RbLXn — Rbx% + LbXn + LXnRb — RbLx%]

reduces to LXn_xLXnRh. This completes the proof of the lemma.

LEMMA 4. Let T = SXl SβΛ 6e sucfo ί/^αί Λ 0/ ίλβ ^ e
1 <L k ^ n. Then T can be expressed as a sum of terms each of the
form SVl - SymS S where at least k of the Vi e B, and for each
1 <; i < m either y^eB or yi+1 e B.

Proof. The proof is by induction on k with the case k = 1
implied by Lemma 3. Thus assume Γ = S S6jL SδA_1 S6jb S
where the 6* e 5 , and that the lemma holds for values less than &.
Then we apply this assumption to express S Sh 1Sδfc_1 as a sum
of terms SVl S ^ S S each having the desired property for
k — 1. This means 5Γ is now expressed as a sum of terms each of
the form SVl S ^ S Sbk S. lί ymeB, we apply Lemma 3 to
S Sbk. If ym$B9 then 2/«-ieB, and we apply Lemma 3 to
SymS - " Sbk. In either case, T is then expressed as a sum of terms
each having the desired property.

LEMMA 5. Let Bk = (0). If T = SXί Sβ n wfcere 4 H 1 0/
Γ = 0.

Proof. For any α e A , (α)Te(B)Sβ 2 SXn where at least 4fc of
the Xi e B. By Lemma 4 Sβ2 Sβ n can be expressed as a sum of
terms each of the form Sn S ^ S S, where at least 4& of the
yt 6 JS and for each 1 ^ i < m either i/4 e B or i/<+1 e B. Then by
Lemma 2(α)Te (B2) Σ ^ S,yί, where in each term at least 4(fc - 1)
of the 2y e B. Again by Lemma 4 these 4(fc — 1) &'s can be brought
forward, if necessary, and again by Lemma 2 (a)T e (J33) Σ S W l S w i r ,
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where in each term at least 4(fc — 2) of the w9- e B. Repeating this
process k times, we arrive at (a)T e (Bk) Σ S S = (0). Thus T = 0,
which completes the proof of the lemma.

At this point we adopt the following notation. If for operators
T and T we have T - T = Y,Ti9 where each operator Tt has a
factor of the form Sbi with bt e B, we shall write T = T.

LEMMA 6. // T = SXl Sβ i where m ^ l o / ίfte S's are Us, then

Proof. For i = 1 or 2 the lemma is clearly true. Thus we
assume j ^ 3 and that the lemma holds for values less than j. Now
for an operator of the form LS S our induction assumption ap-
plies to the subword S - - S. Hence we can assume T = RS S
and consider the initial subword RSS of T. We shall show that in
each of four possible cases, namely RRR9 RRL, RLR, and RLL, we
can make substitutions that reduce T to the form Γ Ξ ^ LS S.
But then, as we have just indicated, the induction assumption can
be applied to complete the proof.

First from (5) we see RRL = LRR, and from (7) RLL = -LLR.
Next (6) implies

( i ) RLR = LRL + LRR - LLL .

Now if the ring A is generalized alternative, going to the opposite
ring (i) gives

(ii) RRR = RLR + RLL - LRL .

But RLR and RLL have already been reduced, so in this case the
reduction of T to the form T = Σ £ £ £ is complete. On the
other hand, if A is generalized ( — 1, 1), then using (8) we have

(iii) RRR = [LL - LR + RL]R .

This likewise completes the reduction of Γ, and thereby the proof
of the lemma.

LEMMA 7. // the ring A is left nilpotent and B is nilpotent,
then A itself is nilpotent.

Proof. Suppose A is left nilpotent, so every product of say
m ^ 1 L's is zero, and consider an operator T = SXl SX3lm+1).
Thinking of T as a product of m + 1 blocks, each of length 3, it
follows that T has an L in each block or else three consecutive iϋ's
in one or more blocks. In this latter case we can use (ii) or (iii) to
substitute for each RRRf so that in either case T = Σ Tt where
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each Ti has m + 1 blocks of length 3 and each block has at least
one L. Then by Lemma 6 each ^ Ξ Σ L ^ LyJS - S. But each
Ln Lym = 0, so T Ξ 0 if Γ is a product of 3(m + 1) S's.

Now by assumption 5 is nilpotent, so suppose Bk = (0). By the
preceding argument it follows that every product of 3(m + l)(4fc + 1)
S's is a sum of terms each containing 4& + 1 factors Sx. with OJ, 6 B.
Hence by Lemma 5 such a product is zero. This shows A*, the as-
sociative ring generated by left and right multiplications of A, is
nilpotent. Thus by Theorem 2.4 in [9] A itself is nilpotent.

THEOREM 1. If A is a left or right nilpotent generalized alterna-
tive ring, then A is nilpotent.

Proof. We assume first that A is a left nilpotent generalized
alternative ring. Then A is solvable, and to prove A is nilpotent
we induct on the index of solvability of A. To start, A is clearly
nilpotent when A2 — A(1) — 0. Then by induction we can assume
B = A2 is nilpotent, since B is a left nilpotent generalized alterna-
tive ring with solvable index less than that of A. Hence by Lemma
7 A itself is nilpotent, which completes the induction.

On the other hand, if A is a right nilpotent generalized alterna-
tive ring, then the opposite ring of A is also generalized alternative
but left nilpotent. Thus by the preceding argument the opposite
ring of A must be nilpotent, which of course means A is nilpotent
as well. This completes the proof of the theorem.

Now since Lemma 7 also applies to generalized (—1, 1) rings,
the above proof actually shows a left nilpotent generalized ( — 1, 1)
ring is likewise nilpotent. However, since the opposite ring of a
generalized ( — 1, 1) ring need not be generalized (~1, 1), the above
proof for the right nilpotent case does not apply to generalized
( — 1, 1) rings. Consequently, we shall henceforth assume A is a
generalized (—1, 1) ring with characteristic Φ 2. For such an A we
shall show we can replace left by right in Lemma 7. Then replacing
left by right in the proof of Theorem 1, and again inducting on the
index of solvability of A, it follows such a right nilpotent A is
nilpotent. To make the indicated modification of Lemma 7, we first
need to modify Lemma 6.

LEMMA 6'. If T = SXl Sxj where m ^ 1 of the S's are R's,

then T ~ Σ Rn Rym~β *' s

Proof. The proof, which is by induction, is completely analogous
to that of Lemma 6. However, this time our goal is to show that
for T = LS - - S we can substitute for the subword LSS to reduce
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T to the form T == Σ RS S, whence as in Lemma 6 the induction
applied to the subwords S S completes the proof.

We first use (5) and (7) to see LRR = RRL ann LLR = -RLL.
For operators T and T we then introduce the notation T ~ T" if
Γ Ξ Γ + Σ #&S + Σ LRR + Σ J^ί'Λ Using (8) we have LzLyLx =
[#,#, + L,i?y - i^LJA*, so that

(iv) LzLyLx ~ L ^ L , .

Using (8) again LxLzLy = Lx[RyRz + Z^R,, — RyLz], so that also

(v) LxLzLy LxRyLz .

Next letting w = 7/ in (6) we obtain LzLxLy == LxRzLy + LyRzRx —
RzLyRx, which is

(vi) LzLxLy ~ LxRzLy .

Now applying (iv), (v), (vi), and (iv) in succession, we see that
LzLyLx ~ LzRyLx ~ —LJjJjy LxRzLy ~ ~LxLzLy. Thus

(vii) LzLyLx — —LxLzLy .

Then applying (vii) repeatedly we obtain LzLyLx LxLzLy ~
LyLxLz — —LJjyLx, or 2LzLyLx — 0. Since characteristic =£ 2, this
implies LLL = Σ #SS + Σ £#i2 + Σ LLR; and so by (iv) also
LRL = Σ #SS + Σ -^^^ + Σ LLR. But the cases LRR and LLi?
have been established, and consequently this completes the proof of
the lemma.

LEMMA 7'. // the ring A is right nilpotent and B is nilpotent,
then A itself is nilpotent.

This is Lemma 7 with left replaced by right. Interchanging L's
and R's, the proof of Lemma 7' is the same as Lemma 7 with the
following two adjustments. One uses (i) in order to substitute for
each LLL, and Lemma 6' is used in place of Lemma 6. As indicated
after proving Theorem 1, we can now conclude

THEOREM 2. Let A be a generalized ( —1, 1) ring. If A is either
left nilpotent, or right nilpotent with characteristic Φ 2, then A i$
nilpotent.

In [6] Pchelincev constructed the following example of a right
nilpotent but not left nilpotent ( —1, 1) algebra with characteristic = 2.
Let A be the vector space over Z2 with countable basis {ely e2, •}.
We define a multiplication on A by e^ — ei+1, elhe1 = e2k+1, and all
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other products of basis elements are zero. A straight forward
verification shows that A is also a generalized (—1,1) algebra. Con-
sequently, the restriction on characteristic in the right nilpotent
case of Theorem 2 is necessary.
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