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ZERO-INDUCING FUNCTIONS ON FINITE
ABELIAN GROUPS

G. L. O'BRIEN

Let G be a finite abelian group and let f:G->G be any
function. Let rx: G->G be the function rx(y) — x + y, xeG.
A study is made of conditions on / such that the semi-group
of functions generated by / and all rx under composition
contains the zero function. If G is cyclic, it is necessary
and sufficient that / not be one-to-one. In general some
necessary conditions are given and a partial converse is
given for these conditions, which involve the behaviour of
/ on subgroups and cosets of G.

1* Introduction* Let G be any finite set and let J/~~ be a
collection of functions from G into G. Let *s>f be the semigroup of
functions A: G —>G which is generated by j^~; that is, Aejsfi&A
can be expressed as a composition A = hλh2 hk where each hi e J^7
The question we examine is the following: does *$>/ contain any
constant functions? Let V = F(.^~) = min{| A(G)\: A e s/} where | |
denotes cardinality. Obviously, S/ contains a constant function if
and only if V = 1. A more general problem is to evaluate V.

We mainly consider a very special case of the situation described
above. Except in §2, we assume throughout that G is a finite
abelian group (with additive notation and identity 0) and that J7r

consists of all the functions rx:G-*G given by rx(y) — x + y (trans-
lation by x) and one other function f:G—>G. We do not assume /
is a homomorphism. In this situation, we write V(f) for F(J^). If
,..sy contains any constant function, it clearly contains them all. We
say / is zero-inducing if j y contains the zero function.

In §2, we give two simple lemmas for the general (non-group)
case. In §3, we apply these to the group case. An obvious necessary
condition for / to be zero-inducing is that / not be one-to-one.
Corollary 1 states that this is sufficient if \G\ is prime. If |G| is
not prime, it is not sufficient, as is easily seen from some of the
examples in §3. That section also contains a lower bound for V
which involves the behaviour of / on subgroups of G and their cosets.
In §4, the adequacy of this lower bound is discussed.

The problem of whether / is zero-inducing arose as a result of
an attempt to solve the "road-coloring conjecture" of Adler, Goodwyn,
and Weiss [1]. This graph-theoretic conjecture, which reduces in
some case to the present problem (see [2]), arose in turn from their
study of ergodic theory. Our zero-inducing question is also related
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to some questions in computer science which deal with resetting the
state of a computer to zero before beginning a new program. The
problem has independent interest, whatever the original motivation.
The road-colouring conjecture only involves the case when G is cyclic,
but the results we present here apply equally well to other finite
abelian groups. Some of the theorems are a little more complicated
in the general case.

It is clear that V(f) = V(rxf) for any xeG. Taking x = -/(0),
we observe in particular that rβ/(0) = /(0) — /(0) = 0. We may
therefore assume without loss of generality that /(0) — 0. Similarly
we note that the set

(1) j^o = {Aej^:\A(G)\=V and A(0) = 0}

is non-empty.
We use the following notation. If X, Y C G, then X + Y =

{x + y:xeX,yeY} If g e G, we write g + Y f or {g} + Y. We let
I φ 7 denote X + Y only if the sums x + y for x e X and I / G 7 are
distinct. If H and K are groups, we let Hζ&K be the group
{(ft, k):heHf ke K} with componentwise addition. Finally, Zn denotes
the cyclic group {0, 1, , n — 1} with addition performed modulo n.

2. The general case. In this section, we obtain two simple
equivalent formulations of V{^) under the general conditions de-
scribed in the first paragraph of Section 1. For k ^ 1, a k-collection
is a non-empty set & of subsets of G such that each 7 e ^ has
exactly k elements and such that for any {yί9 , yk} e <& and any
fte_^ the set {ftd/J, , h(yk)} e^. In particular, for Ye^, the
restriction of h to Y is one-to-one. The set of singleton sets of
elements of G is evidently a 1-collection.

LEMMA 1. V(^~) is the largest value of k for which there exists
a k-collection.

Proof. Suppose ^ is a fc-collection and {yu , yk} 6 ̂ . By
induction on the number of composing factors making up A (the non-
uniqueness of this number does not matter), the set {A(yύ, ,A(yk)} e
<tf for any Ae <s/. Thus \A(G)\ ^ \A({ylf , yfc})| = k so that

(2) V{^) ^ fc .

Now suppose A 6 j ^ and let A(G) = {yu y2, , j/7}. Define F ΰ =
, B(yr)} for Be , j ^ and let i f = {7, :B6J/} . If J?(jfc) =

for any B and any i, j, then |BA(G)| = I-BQ ,̂ •• ,»F})| < F
unless i = i. Thus each F 5 6 ^ has F elements. It follows that
& is a F-collection. This and (2) together prove Lemma 1.
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It is all too clear that Lemma 1 is not much direct help in finding
V. The next lemma shows that the F-collection 'produced in the
above proof has associated with it some further structure which
is useful for finding V, especially, as we will see in §3, in the case
of groups.

A k-partitίon (&*, &) of G is a partition & = {Plf , Pk) of
the set G together with a ά-collection cέ? such that for each
{Vu '' '> Vk) 6 ^ , there is a permutation π on {1, 2, , k] such that
y,{ί)ePif i = 1, 2, •••,&.

LEMMA 2. V(^~) is the largest value of k for which there exists
a k-partition.

Proof. If G has a ^-partition, V(J^~) ̂  k by Lemma 1. Let
A e j*ζ with A(G) = {̂ , •..jΓ} and let ^ - {A-\Vι), , A" 1 ^)}.
By Lemma 1,

is a F-collection. If for any Be,_$sζ B(yz) and JS(^ ) are both in the
same set A~\yk), then \ABA(G)\ = lABd^, , i/F})| < V unless ΐ = j .
Thus (^, ^ ) is a F-partition of G.

3* The case when G is a group* We assume henceforth that
G is a finite abelian group and that ^ contains rx for all x e G and
exactly one other function /. It is equivalent, of course, for ά^ to
contain / and rx for all x in a set which generates G. We begin by
establishing a stock of examples. These examples kindled most of
the results of this paper.

EXAMPLE 1. Let G = ZQ and let /(0) = 0, /(I) = 4, /(2) = 1, /(3) =

4, /(4) - 2 and /(5) - 3. Then V{f) = 1 since A - rjrjfrjf is
the zero function.

EXAMPLE 2. Let G = Z2@Z2. Let /(0, 0) = /(0, 1) = (0, 0),
/(I, 1) - (1, 1) and /(I, 0) - (1, 0). Since / is not one-to-one, V < 4.
It is easily seen (and it follows from Theorem 2) that V = 2.

EXAMPLE 3. Again take Z2 0 Z2 but now take /(0, 0) = /(0, 1) =
(0, 0) and /(I, 0) = /(I, 1) = (1, 1). Once more, F = 2.

EXAMPLE 4. Let G = Z8 and let /(#) = f(g + 2) = g for 0 = 0,

1, 4, 5. Then 7 = 4 .

EXAMPLE 5. Let G - Z12 and let /(0) - /(2) - /(4) - 0, /(6) =
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/(8) = /(10) = 1, /(I) - /(5) = /(9) - 6, and /(3) = /(7) - /(ll) - 7.
Then V - 4.

EXAMPLE 6. Let G = 2 3 0 2 3 ® 2 2 and let /(a?, y, 0) = (?/, #, 0)
and f(x, y, 1) = (x, 2x, 0) for all x, y e Zz. Then F = 3.

EXAMPLE 7. Let G = Zn for some w and let / be any homomor-
phism. It is easily seen that in this case, V — min{|/m(G)|: m ~
1, 2, •}. Also, V = 1 if and only if every prime factor of n divides

/(!)•

An inspection of Example 1 and other examples leads to the
following condition for V = 1.

THEOREM 1. Let Xo = {0} and, for k > 0, let

Xk ^= {xeG:xe Xfc_x or f(x + y) — f(y) e Xk_x for some yeG}.

Then V ~ 1 if and only if

G = \JXk.

Proof. Since {Xk} is a nondecreasing sequence of sets, it is
equivalent to show V = 1 if and only iΐ G = Xk for some k. Suppose
first that G = X,. Let A e J>/ be such that A(0) = 0 and A(x) Φ 0
for some xeG. Then a? 6 X^ but x & Xβ_λ for some j > 0. Thus,
there exists yeG such that

s Ξ r-fiv)frv(n) = f(χ + V) — f(v) e -X̂  -i .

Also,

0 .

Applying the same argument to z and continuing the process, we
may construct B e J>f such that B{x) = B(0) = 0. Thus V ̂  | BA{G) \ <
\A(G)\. By the arbitrary nature of A, it follows that V = 1.

Now suppose V = 1. Then A(G) — {0} for some A e ,j>X Clearly,
A may be written in the form

A = rxjr^_j frXlfrX0

for some n Ξ> 1 and #0, ̂ i, , xn e G. Let ^x = x0 and for i = 2, 3,
- ", n, let ^ = a?ί_1 + / ( ^ - i ) . Let ^ = r_f{Vi)frv%1 i = 1, 2, , %.
Then ^ (̂0) = 0 for each ΐ and
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The last step follows from the fact that both sides map 0 into 0.
We will show by induction that

This is true for i = — 1 (where the compostion of no functions is
taken to be the identity function). Assume (3) holds for ί — 1 and
let x 6 (gngn^ gn^)"\0). Then f(x + vn_,) - /(ιv_,) = gn-t(x) e (gngn-,
• * gn-i+i)'1^) Q Xt. Therefore x e Xi+1, so (3) holds for all i. Taking
i = n — 1, (3) gives G = A~\0) Q Xn, which proves Theorem 1.

The sequence {Xk} of sets in the above theorem is eventually
constant. Moreover, if Xk — Xk-ι, then all subsequent terms are
identical, so it is clear when a maximal term has been reached. The
main shortcoming of Theorem 1 is that it does not avoid an iterative
procedure. In an attempt to avoid an iterative method, we apply
the notions of §2 to the case of groups. We first demonstrate that
the number of partitions which are eligible to be fe-partitions is
limited.

^) be a k-partition of G, let & = {Ply , Pk}
and

for

LEMMA

let Ye

i = 1, 2,

3. Let (6
Then

k.

Proof. Let u, v e Plf x, y e Y and suppose x + u — y + v. Setting
w = x — v — y — u, we obtain r_w(x) = x — (x — v) = v and r__w(y) =
u. By the definition of A -partition, it follows that x ~ y and hence
that u = v. The \Pt\k sums x + u where xeY and ueP^ are
distinct. Thus \G\ S |PJfc. Also, |G| = Σ t i 1^1 so that in fact
\Pt\ = \G\k~1 for each i. Thus G - P , 0 Γ for each i.

Combining Lemmas 2 and 3 immediately gives

COROLLARY 1. V divides \G\. In particular, if G = Zp for p
prime, V — 1 if f is not one-to-one.

To find V, one need only examine partitions & — {Ply — ,Pk}
such that each Pi has IGlfc"1 elements and such that there exists a
set Y for which G - 7 ® ^ for each i. An obvious candidate for
a A -partition is the collection of cosets of a subgroup of G. This
leads us to the next theorem, which gives a lower bound for V, and
thereby gives a necessary condition for V = 1. We need the follow-
ing definitions.

A subgroup H of G is called f-regular if for each aeGf f(a + H) £
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f(a) + H, i.e., if / maps cosets into cosets. Since /(0) = 0 by as-
sumption, this implies in particular that f(H) £ H. A pair (L, K)
of subgroups of G is noncombinative of order a = a(L, K) if L and
K are /-regular, and there exist subgroups Hl9 , Hm of index a
in i£ and elements xl9 , xa of i£ such that xά — x/c £ (JΠ=I H% for
distinct i and k, ΠΓ=i J?t = I/, and if x, y eG are such that x — y eK
but x - y e UΓU fl*, then /(&) - /(#) £ JjΓ=i #*•

It is clear that the above condition are unaffected if xά is replaced
by Xj — xλ for each j, so we may assume that x1 — 0. Suppose (L, if)
is noncombinative of order a and suppose the quantity m equals one.
This is necessarily the case if K (or G) is cyclic, since the subgroups
Hu H2, , iϊm are all of the same order. Then Hx — L, [K\ L] = a
and one of xl9 - - -, xa is in each coset of L. Conversely, if L and
iΓ are /-regular subgroups with L £ K and if x — y e K but x — y £
L imply /(#) — f(y) £ L, then (L, K) is non-combinative of order
a (with m = 1).

THEOREM 2. Suppose G has subgroups L1aK1 Q L2(zK2ζZ £
L r c Kr where each pair (Lj9 K5) is noncombinative of order a5. Then

( 4 ) V{f) ^ Π as .

Proo/. Let ^Λ = Π?=i «y a n ( i ^ = Π i ^ «i for ifc = 1, , r and
let β0 = τ r + 1 = 1. We show F Ξ> /3r by constructing a /5r-collection
and by applying Lemma 1. For j = 1, 2, , r, let iϊ^, i = 1, 2, ,
m i f and ^ , £ = 1,2, ---,as be the subgroups and elements of K,-
with the properties indicated in the definition of non-combinative.
As noted above, we may assume xάι — 0 for j = 1, 2, , r.

Let <& be the collection of all subsets of G with βr elements
such that for 7 e ^

( i ) for j = 1, 2, , r, exactly γ i + 1 of the cosets of Kό each
contain exactly /Ŝ  elements of Y.

(ii) for j = 1, 2, , r and i = 1, 2, , mi9 exactly 73- of the
cosets of Hji each contain exactly βό_λ elements of Y.

Note that ^ is nonempty since the set {xlh + + xrir: 1 ^ id ^
aj9 1 <: i ^ r} is in <if. If Γ e <if, it follows from (i) and (ii) that

(iii) the distinct cosets of Kβ which intersect Y are contained
in distinct cosets of Hj+1>i for j — 1, 2, , r — 1 and i — 1, 2, , m^ .

Let Γ e ^ . It is obvious that for any xeG the set rx(Y) —
{x + y:y eY} is also in <g7. We will show that f{Y) is also in ^ .
First, suppose there exist y, zeY such that y — ze \JT=iHάi but
/(?/) + ^ ^ = f(z) + jffyt for some j and i. Since {Lh Kό) is non-
combinative, y + K3 Φ z + K5. By (iii), y — z e UΓ=i H5+1Λ while, on
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the other hand, it is clear that f(y) + Hj+ltl — f(z) + Hj+1>i. Pro-
ceeding by induction, we conclude that y + Kr Φ z + Kr, which
contradicts (i) for j = r. Thus

( 5 ) y-z$uHόi=* f(y) - f{z) ί ΌHόi

for all yf z e Y and all i, j. Now let y, z e Y be such that y + Kά Φ
z + Ks for some j. By (i), j < r. Then y + Hj+1Λ Φ z + i?i+i,i by
(iii). By (5), f(y) + i ϊ i + M ^ f{z) + i ϊ i + M . Since JKΓy Q Hi+lll, we
conclude that

(6) y + if, ^ z + K,- = - /(i/) + #,• ̂  /(s) + Kό

for /̂, is e Y and any j . It follows from (5) with j = 1 that / is
one-to-one on F and then from (5) and (6) that f(Y)e^. We have
proved ^ is a ^-collection. By Lemma 1, V ^ /9r, which proves
Theorem 2.

REMARKS. It is easy to construct a /3r-partition ( ^ r<^) under
the hypotheses of Theorem 2, by taking ^ to be as in the proof
and ^ to be constructed from unions of cosets of the subgroups.

Let 3 — δ(f) denote the maximum value that can be attained by
a product of the type given in (4). Since the pair (G, G) is always
noncombinative of order 1, we set δ = 1 if there are no noncombina-
tive pairs (L, K) of subgroups with L aK. Finding δ(f) for a given
/ is generally not too difficult since attention may be restricted to
/-regular subgroups.

4* How good is the bound V ^ δ? To answer this, we first
look at the examples discussed earlier.

In Example 1, it is obvious that δ — V = 1. In Example 2, the
value δ = 2 = V is obtained by taking r = 1, K± = G, and Lx = {(0, 0),
(0, 1)}. In Example 3, the value δ = 2 = V can be obtained in two
ways. Either take r = 1, K, = G and Lγ = {(0, 0), (0, 1)} or take r =
1, Kx - {(0, 0), (1, 1)} and Lx = {(0, 0)}. In Example 4, the value δ = 4
is achieved by taking r = 2, Lλ = {0}, K, = {0, 4}, L2 = {0, 2, 4, 6} and
K2 — G. The value S = 4 cannot be attained if only one noncombina-
tive pair is used. In Example 5, δ — 1 Φ V. In Example 6, δ = 3 =
V is attained by taking r = 1, i^ = {x, #, a;) 6 G: « = 0} and Lx =
{(0, 0, 0)}. The pair {Lu Kt) is noncombinative with Hn = {0, 0, 0),
(1, 0, 0), (2, 0, 0)}, H12 = {(0, 0, 0), (0, 1, 0), (0, 2, 0)}, Xl = (0, 0, 0), x2 =
(1, 1, 0), and #3 = (2, 2, 0). Finally, in Example 7, let α = /(I) and
let m be sufficiently large that F = |/ m (G)| The value S = F is
attained by taking r = 1, Lλ = {0}, and K, = {0, αm, 2αw, , ( F - l)<xm}.

Example 5 shows that it is not always true that δ — F, and in
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fact it is possible that V > 1 when δ — 1. Consider the simple upper
bound for V, namely

V(f)£\f(G)\.

Note that in Examples 3, 4 and 5, V attains this upper bound. We
were unable to construct any example for which

S< V<\f(G)\.

(Furthermore, in every example we have studied for which V<\f(G)\,
the value of δ is attainable by using one noncombinative pair of
order 3 in Theorem 2.) On the other hand, we have not been able
to prove that no such examples exist. The difficulty in proving such
a result is underlined by the length of the proof of the following
very special result.

THEOREM 3. Suppose V <; 3. Then G has a non-combinative
pair of subgroups of order a = V.

Proof, The case V = 1 is obvious. Assume V = 2 or 3. Define

(7) Y = {yeG:lAe.$/Ό such that y e A{G)}

and let K be the subgroup generated by Y. Define

2ί? = {H: H = A~\0) Γ) K for some A e,s>/0}

and let L — f]He, H. We will show that (L, K) is noncombinative
of order V. We break the proof into several lemmas.

LEMMA 4. Let Be ,$f and zeG. Then B(z + K) £ B(z) + K.
In particular {taking B — /), K is f-regular.

Proof, Let u — B{z) and observe that

r_uBrz(0) - r_uB(z) = 0 .

For any yeY9

B(z + y)-u = r_uBrz(y) eYQK .

Thus B(z + y)eu + K. Now, every element of K is a sum of elements
of Y, The lemma follows by induction on the number of terms in
the sum.

The next step is to show each He/sf is a subgroup of K. Fix
A e.j>4 for now and let H = A'^O) Π if. Denote the elements of A(G)
by {x0 — 0, a?!, #2, , %v-i}, First, let fκ be the restriction of / to K
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and let ,s/κ be the semi-group of functions on K generated by fκ and
rx, xeK. The collection φ = {A~\xτ) Π K: xt e A(G)} is a partition of
K. Let <gf = {{B(x0), , ^ J J B e j ^ } . It is clear that (φ, <af)
is a y-partition of if.

By Lemma 3,

( 8 ) \H\ = \A~\0)nK\ - IJBΓIF- 1 .

LEMMA 5. Let aeG and let Be,JV0- Let B{G) = {u0, uu , wΓ-i}

For i, j — 0, 1, , F — 1, exactly one of the expressions

( 9 ) a + % - uk9 k - 0, 1, - , V - 1

crnd o^e o/ ίfeβ expressions

(10) α + u 4 - uy, fc = 0, 1, , V - 1

is in each set A~ι{x%) Π (α + K).

Proof. Obviously, each element of (9) is in a + K. Suppose
a + u3 — uk and a + uβ — ut are both in A~\xt). Then

(11) ^ n + uy-ufc-uj^ί) = ^ + ̂ - ^ - 4 % ) = ^ .

By the definition of V,

\Ara+uj_Uk_UίB(G)\ =V

so (11) implies that k = ί. This proves the first statement. The
second is proved similarly.

We now assume V = 3. A similar proof will show the result in
the case V = 2. Lemma 5 has particularly strong implications for
these two values of V. Denote the elements of Y by yQ ~ 0, yl9 y2,
• , yx and let

(12) I^tiiVseA-Kxt)}, i = 0 , 1 , 2 .

In particular, Jo = {0}. No /̂  is empty since for any JSej^J, i?(G)
has 3 elements, one in each A~\Xi).

LEMMA 6. Let beA~\xio), Be,j>4, B(G) = {u0, ux, u2). Let j l f j ,
and i 3 be distinct elements of {0, 1, 2}. Suppose b + (%χ — %2) e
A~ι(Xi^) and b + 2(uiχ — uJ2) eA^ix^). Then i0, ix and i2 are distinct
and b + r(% x — Uy2) e A~~1{xi) where i' — i0, ix or i2 according as r ~
0, 1 or 2 (mod 3).

Proof. Let a — b + (uh — uh) e A~\xh). Since a = a + (uh — uh) e
^"X^i!)* it follows from Lemma 5 that a + (ujl — uJ2) ίA~~1(xί)1 and
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b = a + (%2 — u^) £ A~1(xi^). Thus i0 Φ ix and it Φ i2. Suppose iQ — i2.
Then a + (uh — uh) e A'^x^) and α + (uh — %2) 6 A~\xi(). By Lemma
5, we must have a = α + (%3 — %3) 6 A " 1 ^ ) , which is a contradiction.
Therefore ΐ0, ij, and ΐ2 are distinct. The rest of the lemma follows
easily by induction.

LEMMA 7. Let zeK. Then z e A~\xk) iff z can be expressed in
the form

(13) z^Σidyj

where the c/s are non-negative integers and

(14) Σ c,. + 2 Σ <5y Ξ & (mod 3) .

Aiso, H is a subgroup of K and [K: H] = 3.

Proof. Since any £ e if can be written in the form (13) for some
non-negative e/s it is enough to prove the sufficiency. We do this
by induction on m = Σ5=i Gό- The statement is true for m = 0. If
m = 1, then one Cy = 1 and all others are zero. Then 2 = y5 for some
y and the result is obvious for j e Ix or j e /2. Now assume the result
holds whenever m S w0, where m0 ̂  1. Let cu c2, , ct be such that
Σ cy = m0 and let a = Σ ci2/y Let i 0 € Λ U I2. It suffices to show
the result holds for a + yh. Let Z?(A?) = A - 1 ^ ) , k = 0, 1, , F — 1.
By the inductive hypothesis

(15) N aeD(k)

where k is given by (14). Suppose initially that cjo > 0. Then

(16) a-yioeD(k-io)

where % is such that j 0 e IiQ. [Here and throughout, the arguments
for D are calculated modulo 3.] It follows from Lemma 6 that

as required. Now suppose cjo= 0. Since m0 ̂  1, there is some jλ

such that ch > 0. Then

(18) a-yh

where iι is such that j \ 6 / i r We then have

(19) α - yh + yh e D(k - iλ + i0

and, by the previous case,
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(20) α + ^ e ΰ ί H i , ) .

By (15), a + yJQ $D{Jc) and by (19), a + yh £ D(k - iλ + ί0). If ix Φ ί0,
these two facts imply (17). If ix = i0, it could also happen that

(21) a + 2/i0 e D{k - i0) .

By Lemma 6, (19) and (21) together imply that

which cannot happen, by Lemma 6 and (20). Thus, (21) does not
hold, which means that (17) holds in this case also. This proves the
first statement in the Lemma. The second is an obvious corollary
of the first and of (8).

Since every He<Psf is a subgroup of K, it is clear that L is
also a subgroup. Let x, y eG be such that x — y eL. By the defini-
tion of L, A(x — y) ~ 0 for all A e j^J. Define B — r_f{y)fry and note
that B(0) = 0 and B(x - y) = f(x) - f(y). For A e j*r0, A(/(x) - /(#)) -
i 5 ( x — 2/) = 0 since AB e ,5>4. Therefore f(x) — /(#) 6 L. We conclude
that L is /-regular.

Let J S G , X and let B{G) = {xx, a;2, x3}. Suppose x, — xόeH where
ί? and i ^ i For some A e , ^ , Ar_x.(Xj) = 0 and Ar_xj(xj) =

Xj — ̂  ) = 0, which is impossible. Therefore xu x2, xz are such that
xi — Xj & \JHe v H. Similarly, if x, y eG are such that x — y 6 K but
x- y&\Jiie* H, then f(x) - /(?/) g U//β * H. This shows that (L, ΛΓ)
is noncombinative of order V and thereby completes the proof of
Theorem 3.

REMARKS. It is an easy consequence of Theorem 3 that V = d if
|G| = 4, 6 or 9. We were unable to extend Theorem 3 to any cases
with V > 3. Note that Lemmas 4 and 5 hold for any V, as does
(8). It is not true in general that H = A~\0) n K is a group for any
A e j^J. In Example 5, H = {0, 2, 4} if A = / . It may be that Theorem
3 is valid whenever F is prime. It this is the case, we could conclude
that V = d whenever | G | is the product of two primes (not necessarily
distinct).
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