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EVENLY DISTRIBUTED SUBSETS OF Sn AND
A COMBINATORIAL APPLICATION

KY FAN

A family • ϊr of nonempty subsets of the w-sphere Sn is
said to be evenly distributed if every open hemisphere con-
tains at least one set of i^. This paper first proves an
antipodal theorem for evenly distributed families of non-
empty closed subsets of Sn, and then applies it to improve
a recent combinatorial result of Kneser-Lov&sz-Bar&ny.

For a positive integer n, let Sn denote the ^-sphere {xeRnbl:
x\\ — 1} in the Euclidean (n + l)-space Rn+1. For a subset A of

Sn, —A denotes the antipodal set of A: — A = { — x: x e A}. For
each xeSn, let H(x) be the open hemisphere H(x) = {yeSn: (x, y)>
0}, where {x, y) is the inner product of x and y. Following Gale
[5], we say that a family ^ of nonempty subsets of Sn is evenly
distributed, if for every xeSn, the open hemisphere H(x) contains
at least one set of

THEOREM 1. Let n, m he two positive integers. Let S^ he an
evenly distributed family of nonempty closed subsets of Sn. Let
J^ be partitioned into m subfamilies J^ — \JT=.i ^K such that for
each i and for any two subsets A', A" in the same subfamily j ^ ,
A! U ( — A") is not contained in any open hemisphere. Then m is
necessarily ^ n + 2. Furthermore, there exist n + 2 indices 1 <S
^i < 2̂ < < yΛ+2 = m and n + 2 sets A3- e ^vj (1 <; j ^ n + 2)
such that the union U?i2 ( — 1 ) ^ ^ contained in an open hemisphere.

Proof. For each i = 1, 2, , m, let Ĝ  be the set of those
points xeSn for which the open hemisphere H(x) contains at least
one set of J^%. Clearly Gi is open in Sn. As ^ = UΓ=i ̂  is
evenly distributed, we have Sn — \JT=ιG%. Furthermore, Gi contains
no pair of antipodal points. In fact, xeGt and —xeGi would mean
the existence of Ar e ^ and A" e ^ such that A! aH(x) and A" a
H( — x). Then we would have A! U ( — A") czH(x), against our hypo-
thesis.

The open covering Sn = \J?=1Gi can be shrunken to a closed
covering, i.e., we can find closed sets FiCiGt (1 <; i <; m) such that
Sn = \JT=i Fi. Then none of the i*Vs contains a pair of antipodal
points. By the classical antipodal theorem of Lusternik-Schnirel-
mann-Borsuk [2], [3], [8], m is necessarily ^ n + 2. Moreover, by
a result in our paper [4], which asserts slightly more than the
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Lusternik-Schnirelmann-Borsuk theorem, there exist n + 2 indices
1 ^ vx < v2 < < vn+2 ^ m such that ΓilS ( - 1 ) ^ ^ 0 . Then for
any point 2 in this intersection, we have — ze Γ\jOάa Fuj c Γ\ion&Gvi

and ^eflieven ^ c Π i e v e n ^ . Hence there exist w + 2 sets A y β ^ ^
(I <, j <>n + 2) such that AsczH( — z) for odd i, and A. ciϊOz) for
even j . In other words, the union \J]S ( — lyAj is contained in the
open hemisphere H(z). This completes the proof.

As an application of Theorem 1, we have the following combi-
natorial result.

THEOREM 2. Let k, n, m be three positive integers. Let E be a
finite set with at least 2k + n elements, and let Jf denote the
family of those subsets of E which have exactly k elements. If ^
is partitioned into m subfamilies J^ = \Jf=1 ά?\ such that for each
i, no two subsets in the same subfamily ^ are disjoint, then m ^
n + 2. Furthermore, there exist n + 2 indices 1 ^ vx < v2 < <
vn+2 ^ w& and n + 2 s#£s A, e ^r

vύ (1 ^ j <^ n + 2) such that the union
Uύodd Aj is disjoint from the union Uneven Aά.

Proof. According to a theorem of Gale [5], there exist 2k + n
points on Sn such that every open hemisphere contains at least k
of these points. As E has at least 2k + n elements, E can be
regarded as a subset of Sn such that the family J^ (of all subsets
of E with k elements) is evenly distributed. For each i and for
any two subsets A', A" in the same subfamily ^~if we have A' Π
A" Φ 0 and therefore A! U ( — A") is not contained in any open
hemisphere. By Theorem 1, m is necessarily ^ n + 2. Furthermore,
there exist n + 2 indices 1 <Ξ vx < u, < < vΛ+2 ^ m and % + 2 sets
A y 6 ^ y (1 ^ j <: n + 2) such that U ; i 2 ( - 1 ) Ά i s contained in an
open hemisphere H(z). Then {JjodaAj and Uieven A,- are contained
in H( — z) and H(z) respectively, and therefore are disjoint.

Obviously Theorem 2 can be interpreted as a result on coloring
(with m colors) of the (k — l)-dimensional faces of a simplex of
dimension ^ 2k + n — 1 such that no two (k — l)-dimensional faces
of the same color are disjoint.

The partial conclusion m ^ n + 2 in Theorem 2 was conjectured
by Kneser [6] in 1955, and proved recently by Lovasz [7] and Barany
[1]. In proving m ^ n + 2, both these authors use the Lusternik-
Schnirelmann-Borsuk theorem. Barany's proof depends also on
Gale's theorem.
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