EVENLY DISTRIBUTED SUBSETS OF Sⁿ AND A COMBINATORIAL APPLICATION

Ky Fan

A family \mathscr{T} of nonempty subsets of the *n*-sphere S^n is said to be evenly distributed if every open hemisphere contains at least one set of \mathscr{T} . This paper first proves an antipodal theorem for evenly distributed families of nonempty closed subsets of S^n , and then applies it to improve a recent combinatorial result of Kneser-Lovász-Bárány.

For a positive integer n, let S^n denote the *n*-sphere $\{x \in \mathbb{R}^{n+1}: \|x\| = 1\}$ in the Euclidean (n + 1)-space \mathbb{R}^{n+1} . For a subset A of S^n , -A denotes the antipodal set of $A: -A = \{-x: x \in A\}$. For each $x \in S^n$, let H(x) be the open hemisphere $H(x) = \{y \in S^n: (x, y) > 0\}$, where (x, y) is the inner product of x and y. Following Gale [5], we say that a family \mathscr{F} of nonempty subsets of S^n is evenly distributed, if for every $x \in S^n$, the open hemisphere H(x) contains at least one set of \mathscr{F} .

THEOREM 1. Let n, m be two positive integers. Let \mathscr{F} be an evenly distributed family of nonempty closed subsets of S^n . Let \mathscr{F} be partitioned into m subfamilies $\mathscr{F} = \bigcup_{i=1}^m \mathscr{F}_i$ such that for each i and for any two subsets A', A'' in the same subfamily \mathscr{F}_i , $A' \cup (-A'')$ is not contained in any open hemisphere. Then m is necessarily $\geq n+2$. Furthermore, there exist n+2 indices $1 \leq \nu_1 < \nu_2 < \cdots < \nu_{n+2} \leq m$ and n+2 sets $A_j \in \mathscr{F}_{\nu_j}$ $(1 \leq j \leq n+2)$ such that the union $\bigcup_{i=1}^{n+2} (-1)^j A_j$ is contained in an open hemisphere.

Proof. For each $i = 1, 2, \dots, m$, let G_i be the set of those points $x \in S^n$ for which the open hemisphere H(x) contains at least one set of \mathscr{F}_i . Clearly G_i is open in S^n . As $\mathscr{F} = \bigcup_{i=1}^m \mathscr{F}_i$ is evenly distributed, we have $S^n = \bigcup_{i=1}^m G_i$. Furthermore, G_i contains no pair of antipodal points. In fact, $x \in G_i$ and $-x \in G_i$ would mean the existence of $A' \in \mathscr{F}_i$ and $A'' \in \mathscr{F}_i$ such that $A' \subset H(x)$ and $A'' \subset H(-x)$. Then we would have $A' \cup (-A'') \subset H(x)$, against our hypothesis.

The open covering $S^n = \bigcup_{i=1}^m G_i$ can be shrunken to a closed covering, i.e., we can find closed sets $F_i \subset G_i$ $(1 \leq i \leq m)$ such that $S^n = \bigcup_{i=1}^m F_i$. Then none of the F_i 's contains a pair of antipodal points. By the classical antipodal theorem of Lusternik-Schnirelmann-Borsuk [2], [3], [8], m is necessarily $\geq n + 2$. Moreover, by a result in our paper [4], which asserts slightly more than the

KY FAN

Lusternik-Schnirelmann-Borsuk theorem, there exist n + 2 indices $1 \leq \nu_1 < \nu_2 < \cdots < \nu_{n+2} \leq m$ such that $\bigcap_{j=1}^{n+2} (-1)^j F_{\nu_j} \neq \emptyset$. Then for any point z in this intersection, we have $-z \in \bigcap_{j \text{ odd}} F_{\nu_j} \subset \bigcap_{j \text{ odd}} G_{\nu_j}$ and $z \in \bigcap_{j \text{ even}} F_{\nu_j} \subset \bigcap_{j \text{ even}} G_{\nu_j}$. Hence there exist n+2 sets $A_j \in \mathscr{F}_{\nu_j}$ $(1 \leq j \leq n+2)$ such that $A_j \subset H(-z)$ for odd j, and $A_j \subset H(z)$ for even j. In other words, the union $\bigcup_{j=1}^{n+2} (-1)^j A_j$ is contained in the open hemisphere H(z). This completes the proof.

As an application of Theorem 1, we have the following combinatorial result.

THEOREM 2. Let k, n, m be three positive integers. Let E be a finite set with at least 2k + n elements, and let \mathscr{F} denote the family of those subsets of E which have exactly k elements. If \mathscr{F} is partitioned into m subfamilies $\mathscr{F} = \bigcup_{i=1}^{m} \mathscr{F}_{i}$ such that for each i, no two subsets in the same subfamily \mathscr{F}_{i} are disjoint, then $m \ge$ n+2. Furthermore, there exist n+2 indices $1 \le \nu_{1} < \nu_{2} < \cdots < \nu_{n+2} \le m$ and n+2 sets $A_{j} \in \mathscr{F}_{\nu_{j}}$ $(1 \le j \le n+2)$ such that the union $\bigcup_{j \text{ odd}} A_{j}$ is disjoint from the union $\bigcup_{j \text{ even }} A_{j}$.

Proof. According to a theorem of Gale [5], there exist 2k + n points on S^n such that every open hemisphere contains at least k of these points. As E has at least 2k + n elements, E can be regarded as a subset of S^n such that the family \mathscr{F} (of all subsets of E with k elements) is evenly distributed. For each i and for any two subsets A', A'' in the same subfamily \mathscr{F}_i , we have $A' \cap A'' \neq \emptyset$ and therefore $A' \cup (-A'')$ is not contained in any open hemisphere. By Theorem 1, m is necessarily $\geq n + 2$. Furthermore, there exist n + 2 indices $1 \leq \nu_1 < \nu_2 < \cdots < \nu_{n+2} \leq m$ and n + 2 sets $A_j \in \mathscr{F}_{\nu_j}$ $(1 \leq j \leq n + 2)$ such that $\bigcup_{j=1}^{n+2} (-1)^j A_j$ is contained in an open hemisphere H(z). Then $\bigcup_{j \text{ odd}} A_j$ and $\bigcup_{j \text{ even}} A_j$ are contained in H(-z) and H(z) respectively, and therefore are disjoint.

Obviously Theorem 2 can be interpreted as a result on coloring (with m colors) of the (k-1)-dimensional faces of a simplex of dimension $\geq 2k + n - 1$ such that no two (k-1)-dimensional faces of the same color are disjoint.

The partial conclusion $m \ge n+2$ in Theorem 2 was conjectured by Kneser [6] in 1955, and proved recently by Lovász [7] and Bárány [1]. In proving $m \ge n+2$, both these authors use the Lusternik-Schnirelmann-Borsuk theorem. Bárány's proof depends also on Gale's theorem.

References

[1] I. Bárány, A short proof of Kneser's conjecture, J. Combinatorial Theory, Ser. A, 25 (1978), 325-326.

[2] K. Borsuk, Drei Sätze über die n-dimensionale Euklidische Sphäre, Fund. Math., **20** (1933), 177-190.

[3] J. Dugundji and A. Granas, Fixed Point Theory I, Warszawa, 1981.

[4] K. Fan, A generalization of Tucker's combinatorial lemma with topological applications, Ann. of Math., 56 (1952), 431-437.

[5] D. Gale, Neighboring vertices on a convex polyhedron, in: H. W. Kuhn and A. W. Tucker (Editors), Linear inequalities and related systems, Annals of Math. Studies, 38, Princeton Univ. Press, Princeton, 1956, 255-263.

[6] M. Kneser, Aufgabe 300, Jahresber. Deutsch. Math.-Verein., 58 (1955).

[7] L. Lovász, Kneser's conjecture, chromatic number, and homotopy, J. Combinatorial Theory, Ser. A, 25 (1978), 319-324.

[8] L. Lusternik and L. Schnirelmann, *Topological methods in variational problems* (in Russian), Moscow, 1930.

Received April 15, 1981. Work supported in part by the National Science Foundation.

UNIVERSITY OF CALIFORNIA SANTA BARBARA, CA 93106