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OPERATOR-VALUED PICK'S CONDITIONS
AND HOLOMORPHICITY

JACOB BURBEA

The classical Pick's conditions on disks or half-planes
are extended in several directions. Specifically, these condi-
tions are shown to be valid in any domain (or a complex
manifold) in Cn, for operator-valued functions in the domain
from a Hubert space into another and for any holomorphic
reproducing kernel in the domain. An interesting related
result of Hindmarsh is also extended.

1* Introduction* The main purpose of this paper is to extend,
in a variety of ways, a body of theorems, classically known as the
Pick's conditions and holomorphicity, detailed below. We shall state
these conditions in terms of the right half-plane <% and note that,
in view of their conformal invariance, they may be stated in terms
of any simply-connected domain which is properly contained in the
plane. Let K&(z, ζ) = (z + ζ)"1 be the Szego reproducing kernel of
& and let S be a complex-valued function on ^ . Define

, ζ) = (z + ζΓ[S(z) + S(ζ)]; z,

Clearly, £fs(z, z) ^ 0, ze&, if and only if S ( ^ ) c ^ # , & being
the closure of ^? . Moreover,

THEOREM A. If S(&) c & and S is holomorphic in &, then

s(
φ, *) is positive definite on &x&.

THEOREM B. If J2fs( , •) is positive definite of order 2 on &x
, then S{&)CL3$ and S is continuous on &.

THEOREM C. If ^ ( , •) is positive definite in &x&, then S
is holomorphic in & and

THEOREM D. If £fs( 9 •) is positive definite of order 3 on
then S is holomorphic in & and

Theorem A is known as Pick's theorem [9] (see also [7, p. 34]
and [8]). Theorem B is rather trivial in this setting and may be
also formulated in terms of the distance-decreasing property of S
with respect to the Poincare metric of . ^ . Theorem C [9] is known
as the converse of Pick's theorem. Theorem D is, of course,
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stronger than Theorem C; this remarkable fact was first observed
by Hindmarsh [8] (see also [7, pp. 36-38]).

Sometimes it is more convenient to deal with the disk version
of these theorems. This may be expressed with the aid of the
Szego reproducing kernel KΔ(z, ζ) = (1 — ζz)~ι of the unit disk Λ.
The disk version of J2fs(z, ζ) is then

J ^ ( s , ζ) = (1 - ζzΓ[l - f(ζ)T(z)]; z, ζ e A ,

where T is a complex-valued function on A (see [1, pp. 3-4]).
In this paper we shall extend the above theorems in the follow-

ing directions: Instead of & or A we take any domain (or a
complex manifold) D in Cn. Instead of K&(z, ζ) or KΔ(z, ζ) we take
any positive-definite (reproducing) kernel K(z, ζ) which is holomorphic
in (z, ζ) for (z, ζ)eD x D. Finally, instead of S or T we take an
accretive or contractive, respectfully, operator-valued function in D
from a Hubert space into another. The proofs we use seem to be
even simpler than the classical ones. The contractive version of
Theorem A was proved by us in [5, 6]. A more special case of
this version, where D = A, K(z, ζ) = KΔ(z, ζ) and thus ^Γτ{z, ζ) =
[I-T(ζ)*T(z)]/(l-ζz), with T( ) being a contractive operator-valued
holomorphic function in A from a Hubert space U into a Hubert
space W, T( )* is its adjoint and / is the identity operator of U,
was first proved by Rovnyak [10] (see also [13, p. 231]).

As expected the transition from a contractive version to an
accretive one, and visa versa, is not particularly difficult for, we
have the Cayley transforms at our disposal. Evidently, this also
shows that we may adopt other versions as the dissipative version
and so on. We shall not pursue these points here.

Section 2 is devoted to preliminaries and notation, which will
be used in this paper. In § 3 we state the contractive version of
Theorem A, proved in [5], and, establish its accretive version
(Theorems 1 and 1'). We also prove the contractive and accretive
versions of Theorem B (Theorems 2 and 2'). The generalizations of
Theorem C are proved in § 4 (Theorems 3 and 3'). In § 5 we esta-
blish some auxilary facts on smooth kernels. This is done by,
essentially, following the analysis of Hindemarsh [8], but the
present set up is slightly more general. In § 6 we give the gener-
alizations of Theorem D (Theorems 4, 4', 5 and 5').

2* Preliminaries and notation* Throughout this paper we
shall adhere to the following notation: D is a domain (or a complex
manifold) in Cn and Cm(D), 0 ^ m <; co, is the class of continuously
m-differentiable functions (or forms) in D. The class of holomorphic
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functions (or forms) in D is denoted by H{D). We write D = {z e
Cn: zeD} and thus H{D) is the family of anti-holomorphic functions
(or forms) in D. By H(D x D) we mean the family of functions
(or forms) F(z, ζ) so that F(-,ζ)eH{D) and F(z, -)eH(D) for any
z,ζeD.

The sets U and W stand for any two Hubert spaces over C
with inner products ( , )σ and ( , ) w , respectively. The Banach space
of bounded linear operators from U into W is denoted by &{U\ W).
By a contraction from U to If we mean a Te^?(U: W) with
|| Tu\\w <̂  \\u\\u for every ueU. The family of all such contractions
is denoted by &(U: W). Evidently, if Γ e ΐ f (Ϊ7: W) then its adjoint
T* is in <tf(W:U) and, in fact, | |Γ | | = || Γ* || £ 1. We denote by
^(U .U) the family of all Te%?(U:U) with Γ not having the
eigenvalue 1. One shows that Te<gΊ(U:U) if and only if T*e
^(UiU). An operator Se^(UιU) is said to be accretive if
Re (Su, n)u ^ 0 for every ue U. The family of all accretive opera-
tors in &(U: U) is denoted by jy(Z7:17). Clearly, Se^f(U: U) if
and only if S* 6 JT(U: U).

A function A(z), zeD, with values in the space &(U:W) will
be called an operator-valued function in Dy or in short -A( ) s
&(U:W)[D]. In a similar fashion one introduces the classes
<έ?(U:W)[D], <&Ί(U:U)[D] and *s*(U:U)[D]. The concepts of con-
tinuity, differentiability and holomorphicity extend to operator-
valued functions. Thus, ^(U:W)[C?(D)]f ^(U:W)[C?(D)] and
&(U: W)[C?(D)] denote the classes of weakly, strongly and normly,
respectively, continuously m-differentiable operator-valued functions
in &(U:W)[D]. The corresponding classes where &(U:W) is
replaced by <lf(U:W), ^(U'.U), and Jϊf(U:U) are defined in an
analogous way. In the case of operator-valued holomorphic (or
anti-holomorphic) functions the weakly, strongly and normly notions
of holomorphicity coincide. Thus, A(-) e^(U:W)[H(D)], if for
every (u, w)e U x W, (A(-)u, w)w belongs to H(D). When U = W,
this definition of holomorphicity reduces in only requiring that
(A(-)u,u)σ belongs to H(D) for every ueU. Evidently, A( )e
^(U: W)[H(D)] if and only if A( )* e^(W: U)[H(D)]. The families
i f (Ϊ7, W)[H(D)], Λ/{JJ\ U)[H(D)] and so on are defined in a similar
way.

By an operator-valued kernel, or in short a kernel, J^~ = J^T( , •)
we mean any function 3ίΓ{ , -)e&(U:U)(D x D). The kernel is
said to be hermίtian if Sf\z9 ζ)* = ^T(ζ, z) for all z, ζeZλ The
notions of continuity, differentiability and holomorphicity extend to
operator valued kernels. For example, if J%Γ is hermitian and for
each ζ e D, 3T{ 9Qe&(U: U)[H(D)] then ST( , •) 6 ̂ (U: U)[H(Dx
D)]. We may emphasize the last fact in writing J%Γ(zt ζ) instead
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of J%Γ(z9 ζ), z,ζeD. An hermitian <5t~e^(U: U){D x D) is said to
be positive-definite of order N, in short p.d. (N), if

for every finite system {zm}%=1 of points of D and every correspond-
ing vectors {um}%=1 of Ϊ7, where M = 1, - --, N. The kernel is said
to be positive-definite (p.d.), in short 2̂f" > 0, if it is p.d. (N) for
all N = 1, 2, . . . .

Let i£(2, ζ) be a positive-definite (scalar) kernel so that K(«, ) e
H(D x D). As is well-known [2], the kernel ϋΓ(2, ζ) determines a
uniquely defined Hubert space έ%f(Ό) of elements in H(D) with an
inner product ( , ) and for which &ζ( ) = K(-, ζ) is its reproducing
kernel. Thus, for any z,ζeD

/(C) = (/,**), fe

and

, ζ) - fcc(s) = (Λc, fcβ) - WJ); K{z, z) = (A;,, fc.) ̂  0 .

The reproducing kernel JSL(«, ζ) is said to be of class ,yK9 if K(z9 z)>
0 for every zeD. Clearly, K(z, ζ) is of class ^K if and only if
for each zeD, there exists an f e£ίf(D) with f(z) Φ 0.

3* The Pick kernels* Let K(z, ζ) be the reproducing kernel
of ^T(D), Γ( )e^(Z7:TΓ)[-D] and S( ) 6^(17: f/)[£)]. For z, ζeD,
we define the operator-valued Pick kernels

(3.1) 3Tτ{z, ζ) - #(3, Q[J -

and

(3.2) ^ ( « , ζ) - ίΓ(2, ζ)[S(z) + S(ζ)*]

where I = Iπ stands for the identity operator of U. These kernels
belong to &{JJ\ U)(D x D) and they are hermitian.

In many instances the space <βέf(D) may be realized as the
space of all feH(D) so that

ll/l!2 = ( \f{z)fdμ{z) <

Here μ is positive measure acting on DQ, where DQ is either D or
any part of the boundary 3D which determines the holomorphic
functions in D as, for example, the Silov boundary of D. In the
case that Do is not D, f in the last integral stands for the non-
tangential boundary values of the holomorphic function f(z), zeD.
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In this way we may regard Sίf{Ό) = H2(D: μ) as a closed subspace
of L2(D0: μ) in a natural manner. The corresponding reproducing
kernel K(z, ζ) of such a space Sίf{Ό) — H2(D: μ) will be called a
μ-measure reproducing kernel. The class of all such /^-measure
reproducing kernels and their limits, via a cannonical exhaustion of
the domain D, is denoted by ^£. This class includes the familiar
weighted Bergman and Szego kernels, the Rudin kernels and the so
called "generalized Szego kernels" (see [3, 4, 11, 12] for details).

The following generalization of Pick's theorem is proved in [5]
(see also [6, 10]):

THEOREM 1. Let K(z, ζ) be a reproducing kernel of class
in the domain D and assume that Γ( ) e^(U:W)[H(D)]. Then

: U)[H(D x D)] and STT>0.

A similar statement holds for the kernel Jέfs when S( ) 6
,5>f(U: U)[H(D)]. This will be done by relating the accretive and
contractive operators via the Cayley transforms. More specifically,
let Δ = {z e C: \ z | < 1} be the unit disk and .$? = {z e C; Rez > 0} be
the right half-plane. We write

(3.3) g(z) = (1 + z)(X - z)-1; h(z) = {z - l)(s + I) " 1

where, of course, g is a univalent holomorphic function of Δ onto
έ% with h as its inverse. With these pair of functions one is able
to establish the following relationship between the families ^(U: U)
and ,S^(U:U) (see, for example, [13, p. 168]):

PROPOSITION 1. The Cayley transform relations

S = g{T) - (/ + T)(I - T)-1; T = h(S) = (S - I)(S + I)" 1

establish a bijection between the operators T in ^Ί( U: U) and the
operators S in j^(U: U). Moreover, this bijection preserves the
adjoint operation.

As a result of this we obtain:

COROLLARY 1. The Cayley relations g( ) = g[T(>)]; T(-) = h[S(-)],
where S(-)e,.s^(U: U)[D] and Ti^e^U: U)[D], establish a bijection
between the corresponding kernels J^s and ^Γτ by the formulae-.

ζ) - 2[J -

and

3Tτ{z, ζ) = 2[S(ζ)
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for any z, ζeD.

This corollary, coupled with Theorem 1, leads to the accretive
version of Pick's theorem:

THEOREM 1'. Let K(z, ζ) be a reproducing kernel of class ^//
in the domain D and assume that S(-) e S/{U:U)[H(D)\. Then
J2?,( , ')eέ?(U: U)[H(D x D)] and &>s » 0.

In order to deal with the converse of these two theorems, we
let u be any unit vector of U ond consider the scalar kernels

kτ{z, ζ: u) = (Sf~τ(z, ζ)u, u)Γ

and

/s(z, ζ: u) - (£?s(z, Qu, u)c ,

where K(z,ζ), z,ζeD, is any holomorphic reproducing kernel and
3ίTτ, ^ s are as in (S.l)-(3.2). Recall that K(z, ζ) is of class ,yΓ if
K(z, z) > 0 for every zeD. The following proposition is trivial:

PROPOSITION 2. Let K(z, ζ) be of class ^//\ // for any unit
vector ueU, kτ(z, z:u)^0 for every zeD, then T( )e^(U: W)[D].
Similarly, if for any unit vector ueU, 4(2, z: u) ^ 0 for every ze
D, then S( )e<s^(U:U)[D].

We also have:

THEOREM 2. Let K(z, ζ) be of class f̂" such that for any unit
vector ueU, kτ( , :u) is p.d. (2) on D x D. Then

\\(T(z) - T(Q)u\\l- - \\T(z)u\\l-\\T(ζ)u\\ϊ. + \(T(z)u, T(ζ)u)w

for any z, ζeD and any unit vector ue U. Moreover, T{ ) e
^(U:W)[C!(D)]9 i.e., Γ( ) is a contraction from U to W which is
also strongly continuous on D.

Proof. Proposition 2 shows that T( ) e <af(Σ7: W)[D]. Since
fcΓ( , :u) is p.d. (2) we have

z, ζ)u, u)Lr\2 ^ (SΓτ(z, z)u, u)σ(3Γτ(ζ, Qu, u)σ

for z, ζeD, and, a unit vector ue U. Hence
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— L S ^ J l — |1 - (T(z)u, T(Qu)w\
2

K(z, z)K(ζ, ζ)

and the inequality of the theorem follows. To prove the continuity
assertion, we argue as follows: Let ζ 6 U be fixed. We write
w(ζ) — T(ζ)u and w{z) = T(z)u, zeD, and observe that ||
\\w(z)\\w <; 1. We have

|| w{z) - w(ζ) Hi, - || w(s) Hi, || w(ζ) \\2

W + | (w(s), w(ζ))w |2 ^ 4α(«, ζ)

where

, ζ)

and thus Iim2^c α(«, ζ) = 0. We must show that lim^ ζ \\w{z)—w{ζ) \\w =
0. We may assume that w(ζ) Φ 0 for otherwise the result is im-
mediate. In this case the left-hand side of (3.4) is precisely

„ ίr,Uΐ\(Mz)w(Q, w(Q)w\ + ^
\\w(Q 111- \\w(Q\\w

Therefore, in view of (3.3) and the Cauchy-Schwarz inequality,

(3.5) ! (w(z) - w{ζ), w(ζ))w |2 ^ 4α(ϋ, ζ)

and

(3.6) [1 - \\w(ζ)\\mw(z)\\U\w(ζ)\\*v - \(w(z), M O V I2} ^ 4α(2, ζ) .

We distinguish two cases: (i) ||w(ζ) | | w = 1 and (ii) 0 < ||w(ζ)||TF < 1.
In case (i), by (3.5), we have limz_ζ (w(z), w(ζ))w — 1. But,

and, therefore, lim^ζ || w{z) \\2

W — 1. It follows that \imz^ζ\\w(z)—
w(Qfw =-0. In the case of (ii), we have, by (3.5)-(3.6), that

lim I (w(z) - w(ζ),

and

\im{\\w(z)\\l\\w(ζ)\\l - \(w(z), w(ζ)V|2} = 0 .

Since

- w ( ζ ) | | V = 7 Γ
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we deduce that lim^r \\w(z) — w(ζ)||V — 0. This concludes the proof.
The accretive version of this theorem is:

THEOREM 2'. Let K(z, ζ) be of class Λ" such that for any unit
vector ue U, 4( , •: u) is p.d. (2) on D x D. Then, for any z,ζeD
and any unit vector u e U,

_ s(z) S

ζ), ζ)

Moreover, S(-) e <s$f(U: U)[Ci(D)], i.e., S( ) is accretive in U and
is weakly continuous on D.

Proof. The distortion inequality is straightforward and Pro-
position 2 shows that S{ ) is accretive. The weak continuity follows
from the above inequality. In fact, since s{z) e έk for every zeD,
writing t(z) = h[s(z)]f where h is given in (3.3), we obtain that
t(z) e Δ and

[2 - K(z, z)K(ζ, ζ)

Therefore,

and thus lim^ζ t(z) = t(ζ). Consequently, limz_ζ (S(z)u, u)u = (S(ζ)u, u)σ

and the proof is complete.
The following example (see also [7, p. 36]) shows that in

Theorems 2 and 2', one cannot expect that Γ( ) or £(•) to be holo-
morphic:

EXAMPLE. Let D = z/ be the unit disk, C7 = W = C and let
K(z, ζ) = (1 — ̂  ζ)"1 be the Szegδ kernel of Δ. We choose T(z)~\z\
and observe that

\κ(z, l γ _ ( l - M 2 ) ( i - ici 2 ) < ( i - 1^12)(1 - |C12)

This shows that J^J is p.d. (2) on Δ x J but 5P( ) is not holomor-
phic in Δ.

4. The converse of Pick's theorem* We now prove the
following generalized converse of Pick's theorem. The present proof
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of this theorem (which may be regarded as a converse of Theorem
1) is even simpler than the classical proof for the less general case
embodied in Theorem C of the introduction.

THEOREM 3. Let K(z, ζ) be of class <yί^ such that for any unit
vector ueU, kτ(',-:u) is p.d. on D x D. Then, for any ζeD,
T(ζ)*T(')erέ?(U:U)[H(D)]. In particular, if for some ζ o e ΰ ,
T(ζ0)* is injective, then Γ( ) erέ?(U:W)[H(D)].

Proof, Let u e U be a unit vector and consider the scalar kernel

r τ ( z , ζ : u ) = (T(ζ)*T(z)u, u ) r : a , ζ e D .

This kernel is clearly positive definite. It therefore follows that
the kernel K{z, ζ)rτ{z, ζ: u) is positive definite on D x D as a product
of two positive kernels (cf. [2, p. 36]) or [7, p. 93]). Now,

kτ(z, ζ: u) = K(z, ζ) - K(z, ζ)rτ(z, ζ: u)

is by assumption positive definite on D x D and it is a difference
of two positive definite (or reproducing) kernels. It follows, by a
theorem of Aronszajn [2, p. 354], that the reproducing kernel space
of K(z9 Z)rτ(z, ζ: u) is contained in that of K(z, ζ). But the repro-
ducing kernel space of K(z, ζ) is the space ^f{Ό) which contains
Rφ). In particular, for any fixed ζeD, K( , ζ)rτ( , ζ: u) e H(D).
Consequently, rΓ( , ζ: u) = (T(ζ)*T(-)u, n)σ is meromorphic in D.
However, by Theorem 2, Γ( ) 6 C^{V\ W)[C°S(D)]. Therefore, (Γ(ζ)*
T( - )u, u)σ is in fact holomorphic in D. Since u e U is an arbitrary
unit vector we deduce that Γ(ζ)*Γ( ) e ̂ (f7: U)[H(D)] foranyζei) .
Assume that for some ζoeD, T(ζ0)* is injective. We have that
(T(')u, T(ζo)u)σ is holomorphic in D for any ueU. The injectivity
of T(ζ0)* implies that the range of Γ(ζ0) is dense in W. Consequ-
ently, T(-)e<Zf(U:W)[H(D)] and the proof is complete.

REMARK. When the Hubert space W is the scalar space C, the
condition of the theorem that T(ζ0)* is injective for some ζQeD
means that T(z)* is not identically zero for zeD. Here, for any
zeD, \ T(z)u\^\\u \\r for every u e U and || T(z)* \\r £ 1.

The accretive version of this theorem is:

THEOREM 3'. Let K(z, ζ) be of class ^K such that for any unit
vector ueU,ss( , •: u) is p.d. on DxD. Then S(-) e ,s>r(U: U)[H(D)].

Proof. Let u e U be a fixed unit vecter and write

4(2, ζ: u) = K(z, Q[s(z) + s"(O]; s(») Ξ (S(Z)U, u)σ
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for z, ζeD. As before, we let t(z) = h[s(z)] with t(z) e Δ and s(z) e
,^#. Then

, ζ)Ll ~ k

It follows that jδΓ(s, ζ)[l - t(ζ)t(z)\ is p.d. on ΰ x ΰ . As in Theorem
3, this implies that, for any fixed ζeD,t(ζ)t(-)eH{D). Let U, be
the set of all u e U for which (S(z)u, u)σ Ξ= 1 for all ze D, and let
U2=U~Uλ. Evidently, (S(>)u, u)υ e H(D) for all ueU2. Con-
sequently, S( ) e j ^ ( ί 7 : ί7)[fΓ(jD)]. This concludes the proof.

5* Smooth kernels* This section is devoted to some auxilary
facts on smooth kernels which are of some interest in their own
right and will be needed in this work. The present analysis is
essentially similar to that of Hindmarsh [8] but it is slightly more
general (see also [7, pp. 35-38]).

Let K(x, ξ) be a complex-valued C2-kernel defined for x9 ξ e D
where D is an open set in Rn. For ueRn, u = (u\ '- ,un), we
write

Du = ί > 7 ^ , x = (x1, •••, xn)eRn .

For v e Rn we write

F o r a fixed p o i n t (x, ξ ) e D x D , u u - - , u m e R n , v l f , v m e R n a n d
for a small ε > 0 we form the (m H- 1) x (m + 1) matrix /k = (kid)
defined by

k00 = JSΓ(α;, f), fc^ = K(x + εuiy ξ + εv,-), i, i = 1, , m .

We have

fc<y = k00 + ε(A H + A , ) ^ + ^(DUt + A J - i ί + 0(6') ,

fcOJ = Ko + εDvjK + ξ-Dvpv.K + o(r) ,
at

km = &oo + ε-D -̂S: + ^-DUiDUiK + o(ε2) ,

where i, j ^> 1 and i ί = !£(#, f). We now form the matrix fc(ε) =
(ki5) given by
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7 , TV""

, = /Coo = A

= — (A*, - &00) = JD^-JS: + o ( i ) ,
£

= —(A™ - fen) - D«JΓ + 0(1) ,

lets = -J(fc« + feoo - fc,i - A .o) = i ? . ^ . ^ + o(

Let

0 I

be an (m + 1) x (m + 1) matrix where Im is the identity matrix of
order m. Then

(5.1) k(ε) -

K DV1K . . . DVmK

In the case that the open set D is in Cn = Λ2n and ίΓ - ίΓ( ,̂ ζ)
is a C2-kernel in D x D, we shall use the following notation: The
points z and ζ will be written as z — x + ίy and ζ = f + if] with
#> l/> ζ$ ysRn We shall use vectors in R2n of the form:

u = (w1,; , ΊΓ; 0, , 0), v = (v1, , 'y71; 0, , 0) ,

/̂  = (0, .. , 0; u\ .., u*)f v = (0, - , 0; v\ , v") .

We write

fc = l

Corresponding to (5.1) we now have the (2m + 1) x (2m + 1)
matrix
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Γ K DHK ••• DVmK

DU1K DUlDnK • • • DUίDVmK

Γ) ZΓ Π Γ) ZΓ Γ) Γ) 77
~ Uμχj\. Uμ1JJVlJ\. ' * * Uμ1UVmJ\.

DUmK DUmDVlK • • • D.mD.mK

\-D,,mK DιlmDVιK • • • DμnDVmK

We consider the (2m + 1) x (2m + 1) matrix

~1 0 (Γ

o I
B =

0

where

with

Then

J2 0 0

0 J2 0

_ 0 0 J2 j

1 - ϊ]

l i |

r K dHκ

B2J(ε)B,*m =

dnιdt.mK

where

du = 2-\Da - iDμ) - Σ u"dz* ,
fc=l

8U = 2~\DU + %Dμ) = Σ u%*
Jc=l

d, = 2-\D. - iD.) = ±v%* ,

+ o(l)

dv = 2-\Dv + iDκ) = Σ vkd:k.
Jfc = l
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Finally, we shall be needing the following result:

LEMMA 1. Let D be an open set in Cn and let K(z, ζ) be a C2-
kernel which is p.d. (3) on D x D. Then, for any 1 S j ^ n, the
matrix

(5.4)

K

is p.d. (3) for every zeD. Here, z = {z\ , zn), ζ = (ζ1, , ζn) eD
and K = K(z, ζ).

Proof. We use (5.1)-(5.3) by specialising m = 1 and uά = vά =
(0, , l̂  ; 0, , 0). The result then follows in an obvious manner.

6* Positive-definitness of lower order* We now extend the
result of Hindmarsh as described in Theorem D. Let K(z, ζ) be of
class %>γ

Λ and let u e U be an arbitary unit vector. From Theorem
2' we know that if <( , :u) is p.d. (2) on D x D, then S( )e
J^(U: U)[Cl{D)]. We also noted that, in general, the p.d. (2)
property does not entail the holomorphicity of S( ). On the other
hand, Theorem 3' shows that if <( , :u) is p.d. of any order, then
S( )e J^(Z7: U)[H(D)]. It is, therefore, remarkable that under centain
mild assumptions the replacement of p.d. (2) by p.d. (3) in Theorem
2' entails the holomorphicity of S( ). For the classical case that D
is the right half-plane .^?, K&(z, ζ) = {z + ζ)"1 and S( ) maps &
into itself, this fact was first observed by Hindmarsh [8] (see also
[7, pp. 35-38]).

We begin with:

THEOREM 4. Let K(z, ζ) be of class Λr such that for any unit
vector ueU, /s( , •: u) is p.d. (3) on D x D. Assume further that

: U)[C*(D)]. Then S(-) e .s*(U: U)[H(D)].

Proof. Let u e U be a fixed unit vector. By assumption, the
kernel

ζ) = φ, ζ: u) = K(z, Q[s(z) + β(ζ)]; s(z) = (S(z)u, u)σ ,

is a C2-kernel on D x D, and, it is p.d. (3) on D x Ώ. According
to Lemma 1, for any 1 <; j <; n, the matrix (5.4), with K replaced
by L = L(z, ζ) is p.d. (3) for every zeD, DaCn. Now, in view of
the Cauchy-Riemann equations
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dZJL(z, ζ) = K{z, ζ)dZ

and so

dzjdζJL(z, ζ) - 0 .

Therefore, the element whose position is the entry (3, 3) in the
matrix (5.4) is zero. This implies, since the matrix is positive
definite, that, the elements with the positions (3, 3), (3, 2), (3, 1),
(2, 3) and (1, 3) are all zero. In particular, for the element of the
(3, Imposition, we have

3ZJL(z, ζ)\z=t = K(z, z%,s(z) = 0

Since K(z, ζ) is of class ^ , K(z, z)>0 and, therefore, dzj(S{z)u, u)r =
0. This is true for any zeD, any unit vector ueU and any
3=1, -—,n. Hence S( ) is holomorphic in D and, by Proposition
2, also S( )ejV(U: U)[H(D)]. This concludes the proof.

The contractive version of this theorem is somewhat weaker:

THEOREM 4'. Let K(z,Z) be of class Λ^ and Let T(-)e

&\U: C)[Cl(D)]. Assume that for any unit vector ueU, kτ( , -:u)

is p.d. (3) on D x D and that T{z)u Φ 1 for every zeD, then T( ) e

Proof. Let u e U be a unit vector and z, ζe D. In this case

kτ(z, ζ: u) = K(z, ζ)[l - t(z) t(ζ)] t(z) = T(z)u

is a C2-kernel on D x D and is p.d. (3) on D x D. As in Corollary
1, we write s(z) = g[t(z)]. This gives

K(z, Q[s(z) + s(ζ)] - 2[1 - ί ( ζ ) ] - 1 ^ ^ , ζ: u)Ll

and the proof proceeds as in that of Theorem 4.

In the case that K(z, ζ) is the reproducing kernel K<$(z, ζ) =
(z + ζ)" 1 of the right half-plane ,^$? and S( ) maps <̂ P into itself,
one is able, as is done in [8], to remove the assumption of S(-)e
G\&) in Theorem 4 by using a standard mollification argument. In
the present more general case the removal of the assumption S( ) e
&{JJ\ U)[Cl{D)] requires some further mild assumptions on the
kernel K(z, ζ), detailed below.

Before we proceed with the next theorem we briefly recall some
standard facts on mollifiers in Cn. We choose a C°°-non-negative
function ψ whose compact support B^ is inside the unit ball of Cn

and such that
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= 1

where dσ{z) is the Lebesgue volume element in Cn. For ε > 0 we
define

ψε{z) = ε~2>ι

Suppose that / is locally integrable in the domain D of Cn. We
may assume that / = 0 outside a compact set and thus feL^C71).
The mollification of / is

5(«)/(C ~ ez)dσ(z) .

As is well-known, fεeC°°(D). Moreover, if in addition / is continu-
ous on D, then it is uniformly continuous on compacta of A and,
limε..v0/ε = / uniformly on compacta of D.

For a fixed t eCn we define A = {zeCn:z — ί e ΰ } , and, for an
operator-valued function P( ) e&(U: W)[D], we define Pt( )e
^(17: T7)[A] by Pt(z) = P(z - t) for ^ e ΰ , Clearly, A = D and
Po( ) = P( ) We now prove:

THEOREM 5. Let K(z, ζ) 6β 0/ class ^4^ such that for any unit
vector ue U, and for any fixed teCn with D Π Dt Φ φ, sSt(-, : u) is
p.d. (3) in DΓ\Dt. Then S(>)e.sf(U: U)[H(D)].

Proof. Since So( ) = S( ), we deduce from Theorem 2' that
S( )e>.stf(U: U)[C!0(D)]. For a fixed unit vector ueU, we write

s(2) = (S(z)u, u)σ; zeD

and we consider the kernel

Lε(z, ζ) - K(z, ζ)[sε(z) + sβ(ζ)]; «, ζ 6 JD ,

where sz = s*i/rε is the mollification of s. This kernel is p.d. (3) on
D x Iλ Indeed, for any three points ^, z2, z5eD and corresponding
scalars al9 a2, α3 e C, we have

k,m = l k,m = l

j ^ - et)dσ(t)

I Σ « 4 «»^fe, 2«)[β(2t - si)

s (zk, zm:u)\dσ(t)
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which is non-negative by assumption. Since sε e C°°(D), we deduce
from Theorem 4 that sε e H(D). It follows, because of the continuity
of s and the uniform convergence of sε to s, that s e H(D) and the
proof is complete.

COROLLARY 2. Let K(z, ζ) be of class κyj/~ such that for any
fixed t eCn with D Π Dt Φ φ, the scalar kernel K(z, ζ)/K(z — t, ζ — t)
is p.d. (3) in D fϊ A If for any unit vector ueU, 4( , :u) is
p.d. (3) on D x D, then S(-)B.J^(U: U)[H(D)].

Proof. Let u e U be any unit vector and teCn with DΓ\DtΦώ.
The kernel

S8t(z, ζ: u) = K(z, ζ)[s(z - t) + s(ζ - ί)]; 8(2) = (S(»)%, u)σ ,

is p.d. (3) in D Π A Indeed, this kernel may be written as a
product of two p.d. (3) kernels namely,

K(z, I)
•K(z - t, ζ - t)[s(z -t) + s(ζ - t)] ,

K(z - ί, ζ - ί)

and therefore, in view of Schur's theorem [7, p. 9] it is p.d. (3) in
D Π Dt. The corollary now follows from Theorem 5.

The result of Hindmarsh, as stated in Theorem D of the intro-
duction, is a special case of the following corollary:

COROLLARY 3. Let K(z, Z) = [K&(z, ζ)]m, where K*(z, ζ) =
z, ζ e . ^ ? , is the Szego kernel of the right-half plane & and m ^ 1
is an integer. If for any unit vector ueU, ss(-,-:u) is p.d. (3)
on .<% x . ^ , then S(-)e

Proof. In view of Corollary 2 it is sufficient to show that for

any fixed t e C with & n ̂ t ^ Φ, [(» - ί) + (ζ - ί)]/(z + ζ) is p.d.
(3) in & Π &f However, this is a trivial consequence of Pick's
theorem as stated in Theorem A or Theorem 1'.

Finally, the contractive versions of Theorem 5 and its corollaries
are proved in a similar way to that of Theorem 4'. We have:

THEOREM 5'. Let K(z, ζ) be of class j r and let T{-)e^(U: C)[D].
Assume that for any unit vector ueU, andy for any fixed teCn

with D f) Dt Φ φ, &Γt( , : u) is p.d. (3) in D f] Dt and that T{z — t)uΦ
1 for every z e D f] Dt. Then T{-)er^{U: C)[H(D)].

COROLLARY 2'. Let K(z, ζ) be of class ,yj^ such that for any
fixed teCn with D Γ\ Dt Φ φ, the scalar kernel K{z, ζ)/K(z - t, ζ - t)
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is p.d. (3) in D Π Dt and assume that T( )e&(U:C)[D]. If for
any unit vector ueU, kTt( , •: u) p.d. (3) on D x D and T(z)u Φ 1
for every zeD, then T(.)e<έ?(U:C)[H(D)].

COLOLLARY 3'. Let K(z, ζ) - [KΔ(z, ξ)]m where KΔ(z, ζ) - (1-ζzΓ 1

is the Szego lernel of the unit disk A and m ^ 1 is an integer.
Assume also that T( ) e&(U: C)[A\. If for any unit vector ueU,
kτ{-, -'.u) is p.d. (3) on A x A and T(z)u Φ 1 for every zeA, then
T(.)e<έ?(U:C)[H(A)].
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