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ON THE PROXIMINALITY OF STONE-WEIERSTRASS
SUBSPACES

JAROSLAV MACH

Let S be a compact Hausdorff space, X a Banach space,
C(S, X) the Banach space of all continuous X-valued func-
tions on S equipped with the supremum norm. In this paper
a necessary and sufficient condition on X for every Stone-
Weierstrass subspace of C(S, X) to be proximinal is
established. Furthermore, it is shown that every such sub-
space is proximinal if X is a dual locally uniformly convex
space.

Introduction and notations* Let S be a compact Hausdorff
space, X a Banach space, C(S, X) the Banach space of all continuous
functions on S with values in X, equipped with the supremum norm.
The purpose of this paper is to study the proximinality of certain
subspaces, the so-called Stone-Weierstrass subspaces (SW-subspaces)
of C(Sf X). This problem has been studied by many authors: Mazur
(unpublished, cf., e.g., [11]) proved that every SW-subspace of C(S, X)
is proximinal if X is the real line R (a subspace G of a normed
linear space Y is called proximinal if every y e Y possesses an element
of best approximation x0 in G, i.e., if there is an xoeG such that
\\y — xQ\\ ^ \\y — x\\ holds for every xeG). Pelczynski [9] and Olech
[8] asked for which Banach spaces X every SW-subspace of C(S, X)
is proximinal. Olech [8] and Blatter [2] showed that this is true if
X is a uniformly convex Banach space and an Z^-predual space,
respectively. It has been shown in [6] that there exists a Banach
space X and a compact Hausdorff space S such that C(S, X) has a
non-proximinal SW-subspace. Thus, the above mentioned question
of characterizing those Banach spaces X for which every SW-subspace
is proximinal, arises naturally. Here we give such a characterization.
Using a modification of a method due to Olech [8], we show further
that if X is a locally uniformly convex space such that every compact
subset of X has a Chebychev center (a point x0 is called a Chebychev
center of a bounded set F if x0 is the center of a "smallest" ball
containing F) then every SW-subspace of C(S, X) is proximinal.
Every dual space, e.g., has the latter property [3].

We use the following notations. R and N will denote the set
of all real numbers and the set of all positive integers, respectively.
Let X be a Banach space, x e X, r > 0. B(x, r) will denote the closed
ball in X with center x and radius r. A set-valued function Φ from
a topological space S into 2X is said to be upper Hausdorff semicon-
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tinuous (u.H.s.c.) respectively lower Hausdorff semicontinuous (l.H.s.c.)
if for every soeS and every ε > 0 there is a neighborhood U of s0

such that for every s e U we have

sup dist(cc, Φ(s0)) ^ ε
xeΦ(s)

respectively

sup dist(&, Φ(s)) <̂  ε

(cf. [10], [12]). The function Φ is Hausdorff continuous (H.c.) if Φ
is both u.H.s.c. and l.H.s.c. Φ is l.s.c. respectively u.s.c. if Φ is
lower semicontinuous respectively upper semicontinuous in the usual
sense [7]. A Banach space X is said to be locally uniformly convex
(l.u.c.) if for every xeX with \\x\\ = 1 and every sequence {yn}aX
with lim \\yn\\ S 1, lim \\x + yn\\ = 2 implies lim \\x — yn\\ = 0. For a
Banach space X, ^ ( X ) will denote the class of all nonempty compact
subsets of X. For a compact Hausdorff space S, C(S, X) will denote
the Banach space of all continuous functions f on S with values in
X equipped with the norm | | / | | — sup s6)S \f(s)\, where | | is the norm
of X. A subspace V of C(S, X) is said to be an SW-subspace if
there is a compact Hausdorff space T and a continuous surjection
<p: S —> T such that V consists exactly of those elements / of C(S, X)
which have the form f = g°φ for some g eC(T, X). Let Φ be a
function from S into ^ ( X ) . A function feC(S, X) is said to be a
best approximation of Φ in C(S, X) if the number

dist(/, Φ) = sup sup || α; — /(s) | |
seS xeΦ(s)

is equal to inf dist(#, Φ), where the infimum is taken over all g e
C(S, X). Let F be a bounded subset of X. The number

r{F) — i n f s u p \\x — y\\
x e X y e F

is called the Chebyshev radius of F. A point x0 e X is said to be a
Chebyshev center of F if | |a0 - v\\ ^ ^(ί 7) for all ^/ei^. The set of
all Chebyshev centers of F will be denoted by c(F). For a function
Φ: S —> ^ ( X ) we denote by r φ the number sup s es r(Φ(s)). All Banach
spaces in this paper are real.

SW-subspaces of C(S, X). We first establish a simple lemma.
Since its proof is straightforward, we omit it here.

LEMMA 1. Let Φ be an u.H.s.c. function from a compact
Hausdorff space T into C^(X). Then the set \JteτΦ(t) is compact.
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We formulate now the main theorem of this paper.

THEOREM 2. The following conditions on a Banach space X are
equivalent:

( i ) For every compact Hausdorff space T and for every
u.H.s.c function Φ: T—>^(X), the function

ΨΦ(t) = Π B(x, rΦ) , teT ,
xeΦ(t)

has a continuous selection.
(ii) Every u.H.s.c. function Φ from an arbitrary compact

Hausdorff space T into &(X) has in C(T, X) a best approximation.
(iii) For any compact Hausdorff space S, every SW-subspace of

C(S, X) is proximinaL

Proof, (i) => (ii). If / is a continuous selection of Ψφf then
dist(/, Φ) — rφ. Further, we obviously have

(1) inf distfa, Φ) ̂  rΦ .
geC(T X)

It follows that / is a best approximation of Φ.
(ii) => (i). It suffices to show that

(2) inf dist(flr, Φ) = rΦ .
geC(Γ,X)

Let r > rΦ be a fixed number. Let Ψ{. T -»2X be defined by

^(ί) = {x e X; there is a neighborhood U of t such

that Φ(t') c B(x, r) for all t'eU] .

We show first that Ψx(t) Φ 0 for every t e T. Since r(Φ(t)) ̂  rφ <
r, there is an xoe X for which

so, (r + rΦ)/2)

holds. Since Φ is u.H.s.c, there is a neighborhood U of t such that

sup dist(y, Φ(t)) < (r - rΦ)/2
yeΦ(t')

for every ί' e U. It follows that Φ(ί') c JB(X0, r) for all ί' e î . Hence
XoβΨ^t). For every ί e Γ the set Ψx(t) is obviously convex. It
follows immediately from the definition of Ψx that it is l.s.c. We
put now Ψ2(t) = cl ¥1(t)f 16 T. The map F2 is still l.s.c. and therefore
it has a continuous selection [7]. Denote this continuous selection
by g. Let us show now that dist(#, Φ) <; r. To see this, let e > 0
and teT be given. There is an xe¥±(t) with \\g(t) — x\\ < ε. Con-
sequently,
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Φ(t)<zB(g(t),r + ε ) .

Since ε and t has been arbitrary, we have dist(#, Φ) <; r. Since r >
rφ has been arbitrary, it follows

inf dist(fe, Φ) <*rφ .
heC{T,X)

Thus, by (1), we have (2).
(ii) ==> (iii). This has been essentially proved in [8].
(iii) => (ii). Let Φ be an u.H.s.c. function from T into ^(X).

We show that there is a compact Hausdorff space S9 & continuous
surjection ψ\ S —> T and a function / 6 C(S, X) such that if, for some
g e C(T, X), g°φ is a best approximation of / in the corresponding
SW-subspace V, then g is a best approximation of Φ.

By Lemma 1, there is a number a > 0 such that ||cc|| < α for
all for all xeΦ(t) and all ί e Γ . Choose an arbitrary zeX such that
|| 21| > a holds. Let R be the subset of Xτ defined by

R = {se Xτ; || s(t) || < a for some ί e T and s(ί') = z

for all V Φ t] .

Let φ: R -^ T be a function which assigns to every s e R the only
teT with || s(ί) || < a. We assume iϋ to be equipped with the following
topology τ: For every seR the neighborhood base of s consists of
all subsets WStU of R which have the form

WβtU - W e R; ψ(8

f) e U and || s'(ψ (s')) - s(f (s)) | | < ε} ,

where Z7 is a neighborhood from a fixed neighborhood base of ψ(s)
and ε is a positive number. Let S be a subset of iϋ consisting of
all seR for which s(ψ(s)) eΦ(ψ(s)) holds. We show that S equipped
with the relative topology generated by r is a compact Hausdorff
space. To verify this, let {Na}aeA be a covering of S by open subsets
of R. Let teT. For every a e A with ^ "^ί) Π Na Φ 0 let Oa =
{β(ί); s eψ~\t) Π JVα}. Since {Oα} is a covering of Φ(t) by open subsets
of X, there exists a finite subcovering {Oα.(ί)}, i = 1, •• , /^(ί). We
will show now that there exists an et > 0 and neighborhood UQ of t
such that we have

{s; v<β) e Uo} n {s; dist(β(ψ(β)), Φ(ί)) < e,} c U ΛΓβ4,() .

Suppose that this is not true. Then for every neighborhood U and
every neN there exists an su>n with ψ(sUtn)e Z7and dist(su>n(ψ(su>n)),
Φ(t)) < 1/n which is not in the union of all Na.U), ί = 1, , n(t). It
follows from the compactness of Φ(t) that there is a cluster point
soeS of the net {sσ,n} with so(t)eΦ(t). The point s0 cannot be in the
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union of all Na.u), i = 1, , n(t), which implies that sQ(t) cannot be
in the union of all Oa.u), i = 1, , n(t). A contradiction.

Now, it follows from the assumption that Φ is u.H.s.c. that
there is an open neighborhood Ut of t such that for all tf e Ut and
all y e Φ(ί') we have dist(#, Φ(t)) < εt. Moreover, Ut can be chosen
such that UtdUo. It follows that

{s e S; ψ(s) eUt)a\J NaiW .

Construct such a neighborhood Ut for every teT and choose a finite
subcovering Ϊ7tl, , Utm, meN, of T. Then the sets Na.{tj), i = 1,
• , ̂ (ίί), i = 1, , m, are obviously a finite subcovering of S.

The restriction 9 of f to S is obviously a continuous surjection
from S onto Γ. Let f:S->X be defined by /(s) = s(9>(s)). The
function / is obviously continuous. Let ^ 9 be a best approximation
of / in the corresponding SW-subspace V. Then we have

distfa, Φ) - | | / - go<p\\ = inf | | / - / ^ o ^ | |
AeC(Γ,Jir)

= inf dist(Λ, Φ) .
keC(T,X)

Hence g is a best approximation of Φ in C(Γ, X). This completes
the proof of the theorem.

Let Φ be an u.H.s.c. function from S into <&(X). We establish
now a sufficient condition for the existence of a continuous selection
of Wφ.

DEFINITION. A Banach space X is said to have the property
(QUCC) if c(K) Φ 0 for every Ke<tf(X) and if the following is true:
Given a set Kc^(X), an element xeX and numbers r > 0, ε > 0s

there is a d > 0 such that for every 7/ e X there exists an element
zy G 2?(as, ε) satisfying

B(x, r + δ)Π B(y9 r) Π KaB(zy, r) Γ) K .

THEOREM 3. Let X be a Banach space with the property (QUCC),
S a compact Hausdorff space, Φ: S --><g%X') an u.H.s.c. map. Then
ΨΦ has a continuous selection.

Proof. We show that Ψφ is l.s.c. First, since for all t e T
e(Φ(jt))czWφ(Jt)t we have ΨΦ(t)Φ0 for every ί e Γ . Let teT,xeΨΦ(t)
and ε > 0 be given. For x, K = UterΦ(ί) (which is a compact set
by Lemma 1), r = rφ and s find the corresponding δ. Since Φ is
u.H.s.c, there is a neighborhood U of t with Φ(t')(zB(x, r + d) f) K
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for every ί' e U. For t' e U let y e ΨΦ(t'). Then Φ(ί') c #(#, r + S) Π
£(#, r) n KaB(zy, r) Π if. Hence s, 6 J5(α?, ε) Π WΦ(t'). The existence
of a continuous selection of y* follows then from Michael's selection
theorem [7].

The following proposition provides an example of a class of
Banach spaces with the property (QUCC). To prove it, we need the
following easy lemma which we state without proof.

LEMMA 4. Let {sn}, {tn} be two sequences in a Banach space X.
Let for some r > 0 lim || sn || ^ r, lim || tn || <* r. Let

be such that we have β0 <; λΛ ^ η0 for some 0 < β0 < 1, 0 < % < 1
every neN, and such that lim \\un\\ ̂  r. Then lim ||(sw + tn)/2\\ ̂  r
for suitable subsequences.

PROPOSITION 5. Let X be a I. u. c. space such that c(K) Φ 0 for
every Ke<tf(X). Then X has the property (QUCC).

Proof Assume the contrary. Then there exist positive numbers
ε and r, an element x 6 X and a compact set KaX, such that for
every neN there is & yneX and a wneK with | |x — wn|| <; r + 1/w,
ill/* - w j | ^ r, and | |sn — wΛ|| > r, where

and αn = ||cc — i/n||. One can obviously assume αw > ε for every ne
N. Without loss of generality we can further assume that wn con-
verges to some woeK. It follows that \\x — wo\\ <*r, \\yn — wo\\ ^
r + 7«> IÎ » "" WoII >r — τ]n for every ^ιeiVholds, whereΎ]n = \\wn—wQ\\.
For every neN denote ί0 = a? — w0, sn = yn — w0, un — zn — w0.
Without loss of generality one can now assume that l im| | s j | ^ r
and lim \\un\\ ̂  r. Thus, by Lemma 4, we have lim ||(ί0 + O/2|| ^ T
which, together with ||ί0 — sw|| = an > ε, neN, contradicts the local
uniform convexity of X.

The following corollary is an immediate consequence of Theorems
2 and 3 and Proposition 5.

COROLLARY 6. Let X be a dual l.u.c. space. Let S be a compact
Hausdorff space. Then every SW-subspace of C(S9 X) is proximinal.

Proof. By a result of Garkavi [3], c(F) is nonempty even for
every bounded subset of X.
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It is an easy consequence of Lindenstrauss' well-known theorem
concerning intersection properties of balls in Lrpredual spaces with
centers in a compact set that these spaces also have the property
(QUCC). So we have the following result of Blatter [2].

COROLLARY 7. Let X be an L^predual space, S a compact
Hausdorff space. Then every SW-subspace of C(S, X) is proximinal.

Ward [13] proved that c(F) Φ 0 for every bounded subset of
C(S, X) if X is a Hubert space and S is an arbitrary topological
space. Amir [1] and Lau [4], independently, improved this result
by showing that this is true for every X uniformly convex. We
show now that, for compact subsets of C(S, X) with S compact
Hausdorff, this still remains true, if X has the property (QUCC).

THEOREM 8. Let S be a compact Hausdorff space, X a Banach
space with the property (QUCC). Then c(K) Φ 0 for every compact
subset K of C(S, X).

Proof. Let

Φ(s) = {x€X; x = f(s) for some feK}9 seS .

Then Φ obviously is a H.c. map from S into &(X). Furthermore,
it is easy to show that r(K) ^ rφ. Hence every continuous selection
of Ψφ is in c{K). The assertion of the theorem follows then from
Theorem 3.

COROLLARY 9. Let X be a dual 1. u. c. space, S a compact Haus-
dorff space. Then c(K) Φ 0 for every compact subset K of C(S, X).

REFERENCES

1. D. Amir, Chebychev centers and uniform convexity, Pacific J. Math., 7 7 (1978), 1-6.
2. J. Blatter, Grothendieck spaces in approximation theory, Mem. Amer. Math. Soc,
120 (1972).
3. A. L. Garkavi, The best possible net and the best possible cross-section of a set in
a normed space, Amer. Math. Soc. TransL, 39 (1964), 111-132.
4. K. S. Lau, Approximation by continuous vector-valued functions, Studia. Math.,
68 (1980), 291-298.
5. J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc, 48 (1964).
6. J. Mach, Continuity properties of Chebychev centers, J. Approximation Theory., 29
(1980), 223-230
7. E. Michael, Continuous selections, Ann. of Math., 6 3 (1956), 361-382.
8. C. Olech, Approximation of set-valued functions by continuous functions, Colloq.
Math., 19 (1968), 285-293.
9. A. Pelczynski, Linear extensions, linear averagings and their application to linear



104 JAROSLAV MACH

topological classification of spaces of continuous functions. Dissert. Math., (Rozprawy
Math.), 58, Warszawa, 1968.
10. W. Pollul, Topologien auf Mengen von Teilmengen und Stetigkeit von mengen-
wertίgen metrischen Projektionen, Diplomarbeit, Bonn, 1967.
11. Z. Semadeni, Banach spaces of continuous functions, Monografje Matematyczne
55, Warszawa, 1971.
12. I. Singer, The theory of best approximation and functional analysis, Reg. conference
ser. appl. math., 13, SIAM, Philadelphia, 1974.
13. J. D. Ward, Chebyschev centers in spaces of continuous functions, Pacific J. Math.,
52 (1974), 283-287.

Received December 21, 1979 and in revised form January 22, 1981.

INSTITUT FUR ANGEWANDTE MATHEMATIK

DER UNIVERSITAT BONN

WEGELERSTR 6

5300 BONN

FEDERAL REPUBLIC OF GERMANY

Current address: Department of Mathematics
Texas A & M University
College Station, TX 77843




