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REALIZING AUTOMORPHISMS OF QUOTIENTS
OF PRODUCT ¢-FIELDS

SIEGFRIED GRAF

Let (X,),c; be a family of Polish spaces, X = I1,.; X,

and ‘B the product of the Borel fields of the spaces X,. For
KcIlet Xz = Ilsex X, and let nx: X — X be the canonical
projection. Moreover, let 1 be a os-ideal in B satisfying
the following Fubini type condition:
Nen if and only if 7;'({ze X, |anb({ye Xoul (R, y) e N} ¢nh)en
for every nonempty JcI. Then, given an automorphism @
from B/n onto itself, there exists a bijection f: X — X such
that f and f~! are measurable and

[f~«(B)]=9(B], [f(B)]= @ «[B))
for all Be®.

1. Imtroduction. Let (X,)..; be an arbitrary family of Polish
spaces and, for every ael, p, a Borel measure on X,. Let X =
II.e; X, be equipped with the Baire o-field B(X) which is equal to
the product of the Borel fields of the spaces X,. Moreover, let y
be the product measure on B(X) and n the o-ideal of g-nullsets. D.
Maharam [5] showed that every automorphism of B(X)/n onto itself
is induced by an invertible B(X)-measurable point mapping of X.
In [6] D. Maharam proved the same result in the case that nis the
o-ideal of first category sets in B(X). It is the purpose of this note
to give a common generalization of these two results: We shall
show that for c-ideals n in B(X) which satisfy a certain Fubini
type condition the conclusions of Maharam’s theorems still hold.

Choksi [1], [2] generalized Maharam’s first result to arbitrary
Baire measures on X = [ X,. Our methods of proof consist in a
slight modification of those used by Choksi [2] (cf. also Choksi [3]).
We shall formulate our lemmas in such a way that we can also
reprove Choksi’s theorem.

Our basic tool in the proofs of the results stated above consists
in the following generalization of a theorem due to Sikorski (cf. [8],
p- 139, 32.5): Each o-homomorphism from B(I] X,) to an arbitrary
quotient of a o-field on any set Y (w.r.t. a o-ideal) is induced by a
measurable map from Y to X = [] X..

This last result is also used to deduce a characterization of in-
jective measurable spaces first given by Falkner [4] (cf. §3).

2. Notation. In what follows (X,)..; is always a family of
Polish spaces. For a subset J of I let X, stand for [[,., X, and X
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for X;. For KcJcC I let m,, denote the canonical projection from
X, onto X;. If J =1 we write 7, instead of 7,z. For an arbitrary
completely regular Hausdorff space Y let B(Y) denote the o-field
of Baire sets in Y. We will write B for B(X). B is equal to the
product o-field of the Borel fields B(X,). A map f: X — X is called
measurable if it is B-B-measurable.

3. Realizing 0-homomorphisms. The following theorem is a
generalization of a result due to Sikorski (cf. [8], p. 139, 32.5)
and provides the basic tool for deriving the results in the later
sections.

THEOREM 3.1. Let X =11 X,, B =B(X). Moreover let (Y, A) be
a measurable space, n a o-ideal in A, and O:B — A/n a oc-homomor-
phism. Then there exists an A-B-measurable map f: Y — X with
fY(B)e ®(B) for all Be®B, i.e. @ is induced by f.

Proof. For every acl define 0, B(X,) —AUn by o (B) =
O(x; (B)). Then @, is obviously a ¢g-homomorphism. It follows from
Sikorski [8], p. 139, 32.5 that there exists an U-B(X,)-measurable
map f,: Y — X, with f;'(B) e @,B) for all Be8(X,). Define f: Y — X
by f(¥) = (fi(¥)aer- Then f is A-B-measurable and for every Be®B
with B= i, 7;(B.,), Bs, € B(X,,) one has f~(B)= i, fa}(B,,). Since

«/(B.,) € D, (B,,) = ¢(n.(B,,)) we deduce

) f:X(B.) e o(( m(B.)) = 0(B) ,

hence
fY(B)e®(B) .

Since the sets of the above form generate B as a o-field and since
@ is a o-homomorphism it follows that f~(B)ec @(B) for all Be®B.

Before we shall go on with our main subject let us use the
above theorem to derive a characterization of injective measurable
spaces. Essentially the same characterization has been given first
by Falkner [4]. It is also possible to deduce Theorem 3.1 from
Falkner’s results.

DEFINITION 3.2.

(a) A measurable space (Z,€) is called separated iff for all
2,2 € Z with z # 2z’ there exists a set Ce€ with zeC and 2'¢C.

(b) Two measurable spaces (Y, ) and (Z, €) are called point-
isomorphic iff there exists a bijection g from Y onto Z such that
g and g are measurable. g is called a point-isomorphism.
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(¢) A measurable space (Y, %) is called a retract of a measurable
space (Z,€) iff there exists a subset Z, of Z and an A-€N Z,-
measurable map h: Z — Z, with h , = id,, such that (Y, ) is point-
isomorphic to (Z, € N Z,), where €N Z, = {CN Z,|CeE}.

(d) A measurable space (Z, €) is called injective iff for every
measurable space (Y, %), for every subset Y, CY, for every A NY, —
C-measurable map f:Y,— Z there exists an 2A-E-measurable map
F1Y — Z with fiy, = f.

LeEmMMA 3.3. Let (Z, €) be a separated measurable space and let
€ be a subset of € generating € as a o-field. Then there exists a
set BC|[0, 11° such that (Z, €) is point-isomorphic to (B, B(0, 1]°)N B).

Proof. Define g¢g: Z—[0,1]° by ¢(z) = 13(2)zce- Then g is
€ — B(]0, 1]°)-measurable and one-to-one. Let B = ¢g(Z). For E,c@
we have g(E,) = {(Sp)pes € 9(Z) |85, = 1}, hence g(E,)e%B([0, 11°) N B,
which proves g to be a point-isomorphism of (Z,€) and
(B, B([0, 1] N B).

REMARK 3.4. Let I be an index set and @ # BeB([0, 1]).
Then (B, B([0, 1]) N B) is a retract of ({0, 1]%, B(]0, 1]9)).

Proof. Let xz,€ B be given. Define 4: [0, 1]' — B by

h(z) = x,x€B
X, € B .

Then & is measurable and h; = id,.

It remains an open question whether every retract of ([0, 1},
B([0, 1]9)) is point-isomorphic to a Baire subset of some generalized
cube [0, 1]%. (For K = I this is not true in general.)

COROLLARY 3.5. (cf. Falkner [4], Theorem 3.2.) For a separated
measurable space (Z, €) the following conditions are equivalent:

(1) (4, €) is injective.

(ii) There exists an index set I such that (Z, €) is a retract
of ([0, 1]", B([0, 1])).

(iiil) For every measurable space (Y, A) and every o-ideal n of
U each o-homomorphism @: € — A/n is induced by an A-E-measurable
map 1Y —Z.
If (Z, Q) is countably generated, in addition, then the conditions
(i) to (iii) are also equivalent to

(iv) (Z,©€) is point-isomorphic to (B, B(0, 11M) N B) for some
Bes(o, 11M.
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Proof. (i) = (ii): According to Lemma 3.3 we may assume ZC
[0,1] and € = B([0,1]) N Z for some I. Let f=1id,. Since (Z, €)
is injective there exists a B([0, 1]’) — E-measurable map f: [0, 1)) — Z
with f,, = id,. Hence (Z, &) satisfies condition (ii).

(ii) = (iii): Without loss of generality we may assume that ZcC
[0, 1], € = B([0, 1]) N Z, and that there is a B([0, 1}") — €-measurable
map h:[0,1) — Z with h, =id,. Let (Y, %) be any measurable
space, nCUA a o-ideal, @:€ - Y/ a o-homomorphism. Define
?,: B([0, 1]) — AY/n by (BN Z). Then @, is a o-homomorphism and
according to Theorem 3.1 there exists an %A — B([0, 1]7)-measurable
map f;: ¥ — [0, 1]* which induces @. Let f=hof,. Then fis A — G-
measurable and obviously induces @.

(iii) = (i): Let (Y, A) be any measurable space, Y,CY, and
JY,—Z an AN Y,—C-measurable map. Let n={AcU:ANY,=0}.
Then n is a g-ideal in . Define @(C) to be the residual class in /n
of any AeY withANY,= f%C). Then @: € — A/n is a -homomor-
phism. According to (iii) there exists an % — €-measurable map
f* Y — Z which induces #. From the definition of @ it follows im-
mediately that fi,, = f.

Now let (Z, €) be countably generated.

(ii) = (iv): Without loss of generality we may assume that
Zc[0,1]Y, € =9([0,11M N Z, and that there is a B([0, 1]") — €-
measurable map k: [0, 1] — Z with &, = i¢d, (cf. Lemma 3.3 and the
proof of (i)= (ii)). B([0, 1]") has a countable subset €& such that for
all x, 2’ [0, 1]¥ there exists an Ee@ with xe€ E and z'¢ E. For
xz €[0, 1]"\Z there, therefore, exists an Ec € with x € E and h(x) ¢ E.
Since h, = id, we deduce xe E\h™Y(E)C[0, 1]"Z, hence [0, 1]"\Z =
Uzec E\L'(E) belongs to B([0, 11").

(iv) = (ii) follows immediately from Remark 3.4.

4. Realizing automorphisms. In this section n is always a o-
ideal in B(X), X =[] X,. For BeB(X) the symbol [B] stands for
the residual class of B in B(X)n. We say that a subset B of X
depends only on JcI if B =zn;Y(x,(B)). It is a well-known fact
that every Be®B(X) depends only on a countable subset of I.

DEFINITION 4.1.
(a) mnis said to satisfy condition (F') iff a set NeB(X) belongs
to n if and only if for every nonempty JcC I

m'({ze X, |nry(ly € Xpy (2, y) eNY) €np)en.

(b) n is said to satisfy condition (D) iff for all countable non-
empty J,, J,C I with J,NJ, = @ there exists an Nen such that N
depends only on J, U J, and, for all ze X, n7ls,,(2) N7, u(N) is
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uncountable and of second category in 77}y, ,,(2).

REMARK 4.2.

(1) For every acl let p, be a finite measure on B(X,). Let
2 be the product measure on B(X) obtained from the pg,’s and let
n be the o-ideal of g-nullsets. Then it follows from Fubini’s theorem
that n satisfies condition (F).

(2) Let n be the o-ideal of all sets of first category in B(X).
Then n satisfies condition (F'). This is a consequence of Theorem 1
in [6].

(8) If there exists a o-ideal n in B satisfying condition (D)
then each of the X,’s has to be uncountable.

(4) Let ¢ be a o-finite measure on B(X) and n the o-ideal of
p-nullsets. If each X, is uncountable then n satisfies condition (D).
This follows from Lemma B (and proof) in [2].

Let us now state our main theorem.

THEOREM 4.3. Let 1t be a o-ideal in B(X) = B([[ X.) satisfying
conditon (F) or (D). Let @ be an automorphism of B(X)/n onto
itself. Then there exists a bijection f: X — X such that f and f*
are measurable and [ f~(B)] = O([B]), [ f(B)] = @ [B]) for all BeB(X).

The ingredients of the proof will be provided by a series of
lemmas. Let us first make the following definition:

Given a measurable map g: X — X a subset J of I is called
g-invariant iff, for all z, y e X, the identity z,(x) = 7,(y) implies
A 9(®) = 7w, (9(y))-

LEMMA 4.4. Let g, h: X — X be measurable mappings. Then,
for every countable J,C I, there exists a countable set JC I which
contains J, and is h- and g-invariant.

Proof. Let <&, be a countable base for the topology of Xj,.
For Be <7, let J(B) be the smallest subset J of I such that z7)(B),
g7 (w7 (B)), and h~'(w;X(B)) depend only on J. Then J(B) is countable.
Define J, = U{J(B)|Bec <&} and let <&, be a countable base for the
topology of X;. Then one constructs J, from <& as J, has been
constructed from <%,. Continuing this process we get an increasing
sequence (J,) of subsets of I and, for each n € N, a countable base
<&, for the topology of X, . Let J = U..xJ.. Then J is at most
countable and J,cJ. We shall show that J is g- and h-invariant.
To this end let z, y € X be such that z,(x) = 7,(y). Assume 7,g(x)+#
7,9(y). Then there is a ke N with =, g(x) # 7, 9(y). Hence there
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exists a &z, with 7, g9(x)e B and x,g(y)¢ B which implies x€g™
n;A(B) and y ¢ g7 7;(B). Since, by definition, g~*(zn;;(B)) depends only
on J,,, there is a jeJ,., with 7;(x) # w,(y). But this is a contra-
diction since jeJ,,,cJ. Thus we deduce 7,9(x) = w,9(y). In the
same way one shows 7,h(x) = w,;h(y).

LEMMA 4.5. Let n be a o-ideal in B satisfying condition (F).
Let ¢ X— X be a measurable map with q*(N)en for all Nen.
Moreover, let J be a g-invariant subset of I. Define q,: X > X by
q;(®) = (7,;q(x), Tr;(x)). Then q, 1s measurable with q;*(N) € n for all
Nen.

Proof. From the definition it follows immediately that ¢, is
measurable. Now, let Nen be given. Since n satisfies condition
(F) we have

P =xi'({ee X;|zn,(lye Xpy (2, y)e N gnen.
We will show
R: =xn;'({z’ e X, |z;({y" € Xy |7, ¥) e qi'(N)}) gnp) en .
To this end let x € B be given. Then we have
S, = wr({y' € Xpy|(w,(2), ¥) e g7 (N)D ém .
Since

S, = wr({¥' € Xps]0,((ms(®), ¥)) € N})
= nro({y’ € Xpy|(m,q@), ¥') € N})

this implies q(x) € P; hence R < q ' (P). Because of Pen and, there-
fore, ¢7*(P)en, this implies R en, which, according to condition (F),
leads to ¢;'(N)en.

LEMMA 4.6. (cf. Choksi [3], p. 115.) LetY and Z be uncountable
Polish spaces, ¢:Y —Y a bijection such that g and ¢~* are B(Y)—B(Y)-
measurable, and BeB(Y X Z) such that for each yeY the set
B, = {ze Z|(y, 2) € B} is uncountable and of second category in Z.
Then there exists a bijection r:B-— B such that r and r™ are
B(Y X Z)NB—B(Y X Z)N B-measuradble and such that, for each
yeY, r(y, -) maps {y} X B, onto {q(y)} X Byy.

Proof. According to Mauldin [7], Theorem 2.7 there exists a
set Fe®B(Z) and a point-isomorphism ¢ from (¥ X E,B(Y X Z)N
Y x E) onto (B, B(Y x Z)N B) such that, for each yeY, gy, -)
maps E onto {y} x B,. Define »: B— B by r(y, z) = g(q(¥'), #'), where



REALIZING AUTOMORPHISMS OF QUOTIENTS OF PRODUCT o¢-FIELDS 25

(¥, 2") =9 y,2). Then r is a bijection and » as well as »* are
B(Y x Z)N B —B(Y x Z)N B-measurable. For each yeY, g7y, -)
is a map from B, onto {y} X E, and (y, 2)+— (q(y), #2) defines a map
from {y} X E onto {q(y)} x E. Since ¢ maps {g(¥)} X E onto
{a(y)} x B,,, we, therefore, deduce that »(y, -) is a map from B, onto

{aW)} X By

LEMMA 4.7. Let nbe a o-ideal in B satisfying condition (F) or
(D). Let g, h: X —> X be measurable maps such that g~ (N)en and
hY(N)en for all Nen and such that h™'g7*(B) A Ben as well as
97 (B) A Ben for all Be®B. Let JCI be h- and g-invariant
With wyoheg =T, = wy090h. Moreover, let a,el be given. Then
there exist measurable maps g, h: X— X and a subset KcI with the
following properties:

(1) JUfajcK

(ii) K is §- and h-invariant.

(ili) Zgofoh = g = Txohof

(iv) Z,0f =709 and w0k =T, 0h

(v) ' B)Ag(B)en and h™(B) Ah(B)en for all Be®B.

Proof. According to Lemma 4.4 there exists a countable g- and
h-invariant subset J, of I with a,eJ,. Define K =JUJ,, Then K
is obviously g- and h-invariant. Define

N={rxeX|mgogoh(x) # mx(x) OF Txohog(x) #* mTx(x)} .

We will show Nen.

Since w;090h =7, = w,0hog and since K is g- and h-invariant the
set N depends only on J,. Let <& be a countable base for the
topology of X,. Then we have

N ={reX|3IBe Z:r;og°h(x)e B and x,(x)¢ B}
U{re X|3Be Z: m;,chog(x) e B and =, () ¢ B}
= yeg (R w7 (B)\r7,(B)) U (g7 h™'m 7 (B )\7w7(B)

Since, according to our assumptions, h7l¢g7'z; (B)\z;{(B)en and
97 h ' (B\n;i(B) en we deduce Nen.

Case 1. Let n satisfy condition (F).
Let h, and g, be defined in the same way as ¢, has been defined in
Lemma 4.5. Define

N, = U U whingzeng=n -+ h7h~hg50g=(N)|

Vi, %y Yy gy =%y Ny Oy crty Omy Koy ~--,I£m€N} .
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From Lemma 4.5 we deduce N,en, and it follows that i;'(N,) C N,,
h™(N,) S N,, 97*(N,) © N,, and g(NN,) C N,.
Define h: X — X by
() = {h(x), x ¢ N,
h,(x), x€ N,
and §: X — X by

J(w) = 7(gr(ov), x & N,
= o@), weN, .

Then § and % are obviously measurable.

(1) We will show that K is §- and h-invariant.
To this end let z, y € X be such that zx(x) = wx(y). If xe N, then
there exist v, «+«, Vo, Ny, o) Ny 01y ** 5 Omy K1y *++, Ko € N U {0} with

g‘logplohzloh"]’lo ...og‘mogfmohzmoh;m(x)eN.

Since K is g- and h-invariant it is also g,- and h,-invariant. This
fact implies

Tgogtogfiohfiohiio .. ogmogimohimohym(x)
=Tgogiogiohfohio . -ogmogimoh’mohim(y) .
Since N depends only on K this implies
giogftehtohiio .. ogtmogimohimohim(y) e N ;

hence y € N,.
Since K is g,-invariant we deduce

Tx(§(2)) = 7x(9,(®) = 7(9,(¥)) = 7(§(¥)) -

If x¢ N, it follows by the same arguments that ¥ ¢ N,. Hence, the
g-invariance of K implies

T (§(x)) = 7 (9(x)) = 7 (9(y)) = T(§(¥)) .

In the same way one can show that K is~ﬁ-invariant. 5
(2) Next we will sLhow that wgzofoh = Tz = Tgohog.
If x € N, then we have A(x) = h;(x). Since

gsoh, (@) = (09 0h;(x), Tpyohy(®) = (T;090h(E), Ty (X)) = 2

we get h,(x) € g7(IN,)  Ny; hence §oh(x) = g,0h,(x) = x; in particular
Txod oh(w) = mx(®). .

If x ¢ N, then we have h(x) = h(x). From h7*(N,) C N, it follows
that R(x) ¢ N,; hence §oh(x) = goh(x). Since NC N, we get 2¢ N
and, therefore, mgogoh(x) = Tx(x); hence mxo§oh(x) = my().
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In the same way one can show that Tgoko§ = mx.

(8) From the definition of § and % it follows immediately that
T,00 =T,09 and w,0h = 7, 0h.

(4) Let Be® be given. Then we have §(B) A 9g7Y(B)C N,
hence §Y(B) A g7 (B)en.

In the same way one can deduce that 2%(B) A h~'(B)en.

Case 2. Let n satisfy condition (D).

If JnJ,# @ then, according to condition (D), there exists a
set N’ en such that N’ depends only on J, and such that 77}, ., (%)N
7;(N') is uncountable and of second category in =z}, .,(u) for all
w€ X; ns.

If JnJ,= @ define N’ = @&.
We will show that J,NJ is g- and h-invariant. Let z, y€ X be

such that =, () = 7;,n,(y). Then, due to the g-invariance of J,
and J, we have

7,0 9(x) = ;0 g((ﬂ'.fo(x), T n(¥)))
and
Ty 0 g((70,(%), Trs(Y))) = Ty 0 g((”JomJ(x), (), Tng(¥)))
= ;0 9(T 10 5(Y), Tsps (@), Trnsf(¥)))
= 7,0 9((w;(Y), Tsps(2), 71'1\(JOUJ)(?/)))
= T;09(Y) ;
hence Trns,°9(®) = Trna,° 9(Y)-
In the same way one can show that J N J, is h-invariant.
Define g,: Xrar, = Xsns, by g(u) = 7;0,,9(w, w), Where we Xnwnsg
is arbitrary. Since J N J, is g-invariant g, is a well-defined map.
From w;090h =7, = w,0hog it follows that g, is a bijection. It is

also easy to check that g, and g;* are B(X;,,,) — B(X;,,)-measurable.
Define

N, = mLeJN Ulgmh=m - - g h ™ S(NUN") Yy, <+ ) Yy My =+, N € NU{O}} .

From our assumptions concerning ¢ and h we deduce N,en, NU
N'cN,, g(N,)C N,, and h™*(N,)C N,. Since N and N’ depend only
on J, and since J, is g- and h-invariant the set N, also depends only
on J,. If J,NnJ = @ define §: X — X by

§(x) = {g(w); x ¢ N,
x, €N,
and : X —» X by
h(x), ¢ N,
x, t€N,.

h(x) = {
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Then § and % obviously satisfy conditions (i) to (v) in Lemma 4.7.
If J,NnJ +# @ then according to our assumptions (cf. Remark 4.2.8)
X;ns and X, are uncountable Polish spaces. In this case we have
T;(N,) €B(X,,) and, for each we X, ,;, the set xj} ;n,(w) N 7, (No) is
uncountable and of the second category in 7, .,(%). According to
Lemma 4.6 there exists a bijection 7: 7z, (N,) — 7, (N;) such that »
and 7' are measurable and such that, for each we X;, we have

Tyg.0907 © r(w) = goo T rg,rgna(W) -
Since w;o0hog = w; = w,;0g0h this implies
ﬂJO,JonJ""l(w) = ho°7fJ0,J0nJ(’w) ’
where h, is defined in an analogous way as g,.
Define §: X — X by
~ 9(x), x ¢ N,
g(zx) =
(Trgy° 9(®), 707, (®), ®EN
and 7: X —> X by
h(zx), x ¢ N,
(Tpgeo M), 7 o, (X)), €€ N, .

h(x) = {

Then § and % are measurable.

(1) We will show that K is g- and k-invariant.

Let 2, y € X be such that 7 (@) = w.(y). Since N, depends only
on J,C K either x and y are both in N, or # and y are both in
X\N,. In the first case we have mgo () = Tx(Tps, 0 9(@), 707w (X))
and, due to the g-invariance of K combined with z,(x) = 7, (¥),

Tl gy © 9(X), 7oy (8)) = Tx(Tpsy© 9(Y), 1o (Y)) = TxG(Y) -
In the second case the g-invariance of K implies
TgoJ(®) = Tgog(®) = Txog(Y) = TxoG(Y) -

In the same way one can show that K is h-invariant.

(2) We will show that wzo§oh = Tz = wxoho§.

Since N, depends only on J, we have A(N,) C N, and §(IN;) C N,.
Because g~*(N,)C N, and h~*N,)C N, we also have g(X\N,) C X\N,
and (X\N,) c X\N,.

We, therefore, deduce that, for each x e N,

T oo §(®) = Ty o h(Tpy,9(®), 70T ()
= (T, ° h’(n-I\Jo 0 g(x), 1o (%)), T 0T 0 77:.70(90)) .

Since 75,0507 0 T;(X) = GooTyyns(®) = Tyyn,09(x) and since J is k-
invariant we have
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Tyoh(Tp g 0 9(x), 707, (%) = Tyohog() .
Because of 7,0hog =, and K\J,C J this implies
Txoho§(®) = Tx(Tps,ohog(@), T, (%) = (Trs,0h o g(a), Ts()) = Tx(%) -

For z¢ N, it follows from N c N, that
7'CK°ﬁ°lg~(x) =Tgohog(w) = mg() .

In the same way one can show that Tgo§ok = 7g.
(3) We will show that 7,0§ = 7,09 and 7,0k = 7, 0h.
For z e X\N, these identities obviously hold.
For z e N, we deduce

Ty o g(@) = T Tng,° 9(@), 7 0 7, ()
= (Ty\sy° 9(), Tyo,00n7 © 1 © Tp (X))
= (75 9(X), Goo Tson,(2))
=m,09(®) .

In the same way one can show that 7,0k = 7, 0h.
(4) Property (v) in Lemma 4.7 follows from the fact that §
and g as well as & and h differ only in a subset of N,en.

Proof of Theorem 4.3. Let & be the collection of the triples
(J, g, ), where g, h: X— X are measurable such that [g7'(B)] =
O([B]) and [A'(B)] = @(B]) for all Be®B, and J is a g¢g- and h-
invariant subset of I with @,0hog =7, =7 ,090h.

We define the following preorder on &:

(3 91, B)=(Jy, 9y hy) iff J,CJ,, T520.=Ty°0y, and Ty 0h, = 7tJ1°h1'

According to Theorem 3.1 there are measurable maps g, and h,
from X into itself such that g, induces @ and %, induces @'. Thus
(D, 9o, hy) belongs to S and & is not empty.

We claim that the preorder < is inductive. To show this let
(3 92 B2)zes be a (nonempty) chain in & and let n €4 be fixed.
Define J = ;.1 J; and g: X — X by

Tg(®)) = {Ea(gz(x)), aed,
’ Togn(@)), e .

Let h be defined in an analogous way.
Then g and h are obviously measurable.

Next we will show that g induces @. To prove this it is enough
to prove [g7Y(nz(B))] = @(n;(B)]) for all a,eI and all BeB(X,).

For a,cJ and Be B(X,,) there exists a v e 4 with a,€J; hence
97 (7o (B)) = {w e X|m,, 0 g(x) € B}
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= o€ X|ma 0 0:(®) € B)
= gz X(B)) -

Since (J;, 9, k) € © this implies [g7(wz1(B))] = @([zz)(B)]). For a,e I\J
one has to replace A by ), in the above argument. In the same way
one can see that & induces @7,

By standard arguments it can be shown that J is g- and h-

invariant and that
Tyogoh =T; = TWyohog .

Thus (J, g, k) is an upper bound of (J;, g;, h;);cs in S.

By Zorn’s lemma there exists a maximal element (J', ¢/, 1’) in &.
Using Lemma 4.7 we conclude J' = I. Since ¢’ induces & and 7’
induces @' the equality g'oh’ = h'og’ = id, yields that f: = ¢’ is a
bijection with the desired properties.
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