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THE THEORY OF AD-ASSOCIATIVE LIE ALGEBRAS

RicHARD C. PENNEY

A Lie algebra .& is said to be ad-associative if the image
of the adjoint representation of <~ on & is an associative
algebra under composition. We show that every ad-as-
sociative Lie algebra is a quotient of a left commutative
(xyw = yaw) associative algebra by a Lie ideal. We conclude
that every ad-associative Lie algebra is solvable and every
irreducible representation of a nilpotent, ad-associative Lie
group is sguare integrable modulo its kernel. We also
characterize the HAT algebras of Howe [2] in terms of
associative algebra.

Let ¥ be a finite dimensional Lie algebra over R and let ad
denote the adjoint representation of &¥ on & Let ad & be the
image of ad. & is said to be ad-associative if ad &~ is closed under
composition. In this case ad &~ is an associative algebra. Let us
denote this algebra by .o It is the purpose of this paper to give
a structure theory for the ad-associative Lie algebras.

Our interest in the subject of ad-associative algebras stems from
several different sources. The HAT algebras introduced by Howe
in [2] in connection with the study of ocillatory integrals can be
shown to be ad-associative. In fact, we prove what we feel to be
a very pretty characterization of the HAT algebras. Ad-associative
algebras also occur naturally in algebraic topology as a way of
combining the information contained in the homology and co-homology
groups of compact manifolds together. Here they give rise to some
new topological invariants which are functions of the joint homology
and cohomology groups (see Example II below). In another direction,
there is a natural way of associating with any multi-linear form <%
on a vector space 7 an ad-associative Lie algebra <2,. Whether or
not this association has any real significance remains to be seen. At
the very least, the study of ad-associative algebras provides an
interesting source of examples.

To begin our discussion, recall that any associative algebra .o
gives rise to a Lie algebra by setting [z, y] =2y — yx. If & is
ad-associative, the Lie algebra corresponding to .& = ad &% is just
|2 where 2 is the center of &¥, Hence .o fits into the exact
sequence of Lie algebras 0 - 2 —» & — & — 0. As a vector space
¥ = & X 2. In fact, there is an alternating, bi-linear mapping
$: % X & — % such that

[(x, 8), (3, O] = ([x, ¥], 8(=, ¥))
459
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for z, ye .o and s, te 2"
LEMMA. ¢ is nondegerate and satisfies ¢([x, y], w) = —g(x, wy).

Proof. The nondegeneracy is obvious. The identity follows from
the statement [[z, y], w]=adwad y(x). Hence, if x=(x, s), ¥y = (¥, t)
and w= (w,, r) then ad w ad y(x)=ad(w,y,, 0)(@)=w.y,, 2.}, $(w.y,, x.)).
On the other hand [[z, y], w] = (=, ¥.], w.], (), ¥.], w)). O

DEFINITION. A twine algebra is a triple (% &7 ¢) consisting of
a finite dimensional associative algebra .o a finite dimensional vector
space 2  and an alternating, nondegenerate, bi-linear mapping
¢: . X & — 2 which satisfies

523([93, y]y w) = —¢(m’ wy)

for all z, y, we .o, The above identity is called the twine identity.

In the above discussion, we defined a mapping of the category of
ad-associative Lie algebras into the category of twine algebras. In
the next lemma, we note that this mapping is surjective. If we
wished to define morphisms of twine algebras, we could also prove
functorality.

PROPOSITION. Let (.7, &4, ¢) be a twine algebra. Let & =
7 X % with the Lie algebra structure given by

[(x, 5), (y, D] = ([=, ¥], ¢(, ¥)) -
Then ¥ is an ad-associative Lie algebra and ad & ~ .

Proof. The ad-associativity is obvious once one knows that &
is a Lie algebra. To show that < is a Lie algebra, one must show
the Jacobi identity which amounts to showing that

¢, [y, w]) = ¢([z, ¥], w) + ¢(y, [z, w)) .
This follows trivially from the twine identity. 1

REMARK. Note that the above proof that & is a Lie algebra
did not use the associativity of .97 Nonassociative twine algebras
will be called quasi-twine algebras. The class of Lie algebras pro-
duced from quasi-twine algebras is interesting as in the nilpotent
case it is precisely the class of Lie algebras with square integrable
representations.

The following lemma is basic to the study of twine algebras.
If _# is a subset of a twine algebra .o/ #*¢ will denote its
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orthogonal space relative to ¢ — i.e.,
A ={we | oA x) ={0}} .

LEMMA A. Let (%7 2, ¢) be a twine algebra. Then

(@) g(xy, w) = ¢(y, xw) for all x,y, we .o

() zyw = yzw for x,y, we ..

(e) A subspace - of & is a left ideal of &7 iff ~°isa left
ideal of 7. 7 is a right ideal iff #* is a Lie ideal. 7 is a
two sided ideal iff #* is a two sided ideal.

(d) A mapping T:.& — . which s a Lie algebra homomor-
phism and which preserves ¢ is an algebra isomorphism.

Proof. (a) follows by applying the twine identity to both sides
of the equality

¢(x, [y, w]) = — o, [w, y]) .

(b) follows from (a) and associativity since

s((xy)w, 2) = ¢(w, (xy)2) = ¢(y(aw), 2) .

(e) is clear.
(d) is seen as follows. T is invertible since it leaves ¢ invariant

$(T(xy), w) = ¢(xy, T7'w) = ¢(x, [T 'w, y])
= ¢(x, T7'[w, Ty]) = ¢(TxTy, w) . O

COROLLARY. Let & be an ad-associative Lie algebra. Then
[ ] is abelian, so & is solvable.

Proof. Let &7 = ad & and let & = &7 X £ as above. [ <]
will be abelian if [.97 .o7] is abelian and ¢ is trivial on [.9F .o7] X
[ 7]. But from (b) above [.%7 .%¥]* = 0 and from (b) and the
twine identity

¢, v, [, v]) = 6(y, [, v]e) = 0. O

Property (b) above is referred to as left commutativity. Now,
let <& be any left commutative, associative algebra. It is easily
seen that as a Lie algebra, < is ad-associative. In fact, for
x, ye B, [z, [y, w]] = [y, w]. More generally, if _# is any Lie
ideal of <7, then the Lie algebra & = <%/ 7 is ad-associative. Our
first main result is the following.

THEOREM I. Suppose & is an ad-associative Lie algebra. Then
there is a left commutative algebra <& and a Lie ideal 7 of <&
such that & ~ F| 7 as a Lie algebra.
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We prove this theorem by first constructing a class of “free”
left commutative algebras for which the set of twine forms is
explicitly describable. We then show that .o = <©/2 is the image
of one of these free twine algebras.

Suppose we are given a family _#7, ---, 4, of abelian associative
algebras. Our first step is to construct a left commutative algebra
&7 which contains the _#; as subalgebras and which is “freely”
generated by the _#;. The most natural construction of such an
algebra would be to form all possible tensor products of all lengths
of the _#;, take a direct sum, define a multiplication and then
quotient out by an ideal. Unfortunately this obvious approach is
very complicated notationally. It turns out to be much simpler if
one first adjoins units onto each of the spaces _7; for then we can
work with only n-fold tensor produects.

Specifically, let .97 be the algebras defined on R X _#; by

(s, a)(t, b) = (st, sb + ta) .

Let o, be the set of permutations of the set {1, ---, n}. For
T EO,, let N = Lg/n(l) ® ct ® L%r(n)-
Let
P=P(A, -, ) =3 @A (tea,).

If a is a sequence indexed by {1, ---, »} such that a(?) e .97 for all
i we set ar = a(@Q) Q) - - R a(w(n)) € % for all zeo,. We define
an algebra structure on P by setting a.b. = a(z())b(z) R -+ R
a(z(n))b(z(n)) for all sequences ¢ and b as above. We extend this
multiplication by distributivity to all of P. It is easily seen that
under this multiplication P becomes an associative, noncommutative
algebra (But note that P is always left commutative). We shall refer
to P as the n-pole algebra of .o, ---, .%7,. The elements of set .o
are called = oriented. If @ is a sequence such that a(s) e %7 for all
1, then a. is the 7 orientation of . The reason for this terminology
is that the way one multiplies a. and b. is to change the orientation
of a. so that it agrees with that of b. and then take a standard
product. This seems analogous to magnetic dipoles lining up to form
a new dipole.

We may consider _#; as the subalgebra 0x._47 of .%7. For each
7 let 1, = (1, 0) considered as an element of .o (0 is the zero of _¢7).
We embed _#7 into P(.o7, ---, .o7,) as the subalgebral, Q 1, ® --- ®
1®---®1,8.7;. Let LC(_¢7, ---, +4,) be the subalgebra of P(.5,
-+, .57, generated by {_7;} embedded as above. LC is by definition
the left commutative algebra freely generated by .77, ---, 7.

Our main theorem concerning freely generated left commutative
algebras is the following.
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Let 2 be a finite dimensional vector space.

PROPOSITION. Let {_#7;} be a finite family of abelian associative
algebras and let ¢ be a 2 wvalued twine form on LC(_175, ---, A7)
which 1s zero on each _4; X 4;. Then there is a linear mapping
a of LC into 2 such that é(x, ¥) = a(x, y]) for all x, y € LC.

Proof. We begin with notation. Let 7z, denote the embedding
of _#; in LC(473 ---, 4,) used in defining LC-i.e., 7(a) =1, &
LR RL®a.

Let S be an arbitrary nonempty subset of {1, -.-,n} and let
a € [Is #7(the product set). Let » = (3, ---, 7,) be an enumeration
of the elements of S. We shall define a(S, n) = ¢, (a(3,) - - - 7, (a(9)) €
LC(_47%, -+, 47). By left commutativity a(S, ) depends only on 1,
and not on the specific enumeration 2. Hence we may write a(S, n) =
a(S, i;). By definition, LC is the span of the a(S, j) with S, j and
a varying. Note that for aeJ[s.#; and be[l, #; where S, TC
{1, ---, n}, we have the identity a(S, 9)b(T, 5) = ¢(SU T, j) where ¢
is the sequence on SU T given by c¢(k) = a(k) for ke S ~ T, c(k) =
bk) for ke T ~ S and ¢(k) = a(k)b(k) for ke SN T. For each Sc
{1, ---, »n} and each j€ S, let _#7(S, j) be the span of the elements
a(S, ©) as above. Then

LC(M,"',J/,;):Z@W(S,]) (SC{I,!%}’JGS)

Now let ¢ be a twine form on LC(_+7, ---, #;). We shall define
mappings a(S, ) on _#7(S, 7) such that 4(x, y) = a([x, y]) where a =
s a(S, ). First, however let Sc{l, ---,n} and let ae][[; +:
Suppose that there are two elements 7 and 5 in S with 7 5. Let
S = S, US; be a partitioning of S with ¢S, and j¢8,. Let

B(’Ly j, Sy CL) = ¢(a’(Sl, 'L) ’ a’(S2, .7)) .

In principle 5 depends also on the partitioning S, S, of S.
However, the left commutativity of LC and the left self-adjointness
of twine forms imply that g is in fact independent of the partition-
ing of S. We extend the definition of g to the cases where S is a
singleton set or 7 = j by setting g(J, 7, S, a) = 0.

LEMMA. S is skew-symmetric in i and j and satisfies the co-
cycle identity:

BG, 4, S, @) + 84, k, S, @) = B(, k, S, a)
for all 1,35,keS.

Proof. The skew symmetry is obvious.
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The co-cycle identity is trivial if any of the elements {i, j, k}
are equal so we will assume that 4, 5 and k are distinect. In this
case there is a partitioning S=S, US,US;, with 7e8S,, ¢S, and
keS,. From the identity

[a'(SZ, .7), a’(Sly 7’)] = a’(Sl U SZ) 7’) - a(Sl U S2y .7)
we conclude

B3, k, S, @) — B3, k, S, @) = ¢([a(S,, ), a(S,, )], a(S,, k)
= ¢(a(S,, 1), a(S;, k)a(S;, 7))
= ¢(a(S,, 1), a(S: U Sy, 7))
= B, J, S, a) . O

Now the lemma implies that there are multi-linear mappings
a(S, k): Tls +;— 2 such that g3, 7, S, a) = @S, i)(a) — aS, j)(a).
To see this let k, €S be fixed and let &(S, i)(a) = B(4, ky, S, @). Since
A7(8S, 1) is isomorphic with @ .77, we may define linear mappings
a(S, 1) on _+7(S, 1) by setting

a(8, 1)(a(S, 1)) = a(S, i)(a)

for all ae[[s.#;. We then extend a(S, ) linearly to all of _#7(S, 7).
Let a: LC(_+3, -+, A7) — 2 be defined by a|_+7(S, i) = a(S, ).

To finish our theorem we need to show that ¢(x, ¥) = a((z, ¥])-
To prove this it suffices to consider z = a(S, ¢) and y = b(T, 5) for
some S, Tc{l,---,n} and 1€8S,jeT. Let ¢ be the element of
Usozr A2 bye=a on S~T,¢c=b on T~ S and ¢(j) = a())b(j) =
b(5)a(g) on SN T. From the left self-adjointness of ¢ and let com-
mutativity we see easily, for ¢ # 7,

#(a(S, ), (T, 3)) = B, j, SUT, ¢)

=at, SUT,e) — a3, SUT,ec)
a(e(SU T, i) — aeSUT, )
= a(la(S, 9), (T, 7)) -

If 7 =34, ¢(a(S, 1), (T, 1)) = 0 since in this case a(S, 1) and b(T, )
both belong either to (LC)_#; or to _#7, and, for example ¢(xa, yb) =
#(yx, [a, d]) = 0 for all ¢ and b in ;- 45 - 47 + (LC)_+; is abelian
S0 ¢, is zero on _¢; + (LC)_¢7 also. O

1l

Our theorem follows from the above proposition as follows. Let
& =% and let ¢: & X & — 2 be the twine form. Let
A7, -+, A7 be a family of abelian subalgebras of .o such that ¢ is
trivial on _#; x _#; and _4; generate .o/, Such _7s; exist. For
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example, if e, ---, e, generate .7 as a left .o module, let _7; =
Ye,.

It is easily verified that there is an algebra homomorphism 7'
of LC(_45, ++-, 45) onto .o7. Let ¢ be the pull back of ¢ by T to
LC x LC. From the proposition there is a mapping a: LC — £ such
that a([z, y]) = 4, ¥).

We define an algebra structure on <& = LC x 2 by setting

(@, v)-(y, w) = (xy, a(zy)) .

Under this structure, <& becomes a left commutative algebra. We
extend the mapping T: LC — .& to a mapping T: F — & = & X
2 by setting T(x, v) = (Tx, v). T is easily seen to be a surjective
Lie algebra homomorphism. 0

The proof of the above theorem also provides us with a general
construction capable of producing all twine algebras. To see this,
let .47, -+, 4% be any family of abelian algebras. Let 2 be a
vector space and let a: LC(_+7, - -+, 47) — 2 be any linear mapping.
Then the form ¢,(z, v) = a((z, y]) is a twine form on LC. It follows
from Lemma A that the radical <2, of ¢, is an algebra ideal in
LC.

Let

TW(‘/j/:l‘, o ., %7 a) = LC(M’ o .! J/I;)/‘%LI b

and let ¢ be the projection of ¢, to TW. Then the pair (TW, ¢) is
a twine algebra and every twine algebra is isomorphic with such a
pair. Note that « is uniquely determined by its restriction to .#7(S, 1)
(see the above proof for notation) for Sc{l, ---,n} and7eS. Also
(S, 1) ~ Qies A5 80 a| (S, i) = a(S, i) may be thought of as a
multi-linear functional on [],.s.#;. Hence a twine algebra is deter-
mined by giving for each subset S of {1, ---, n}, a family {a,} of
multi-linear functionals on [J;.s.#; indexed by S. A particularly
interesting case arises when a(S,7) =0 if S=={1, ---,n}. In this
case the necessary data is simply a family «,, ---, a, of », multi-
linear functionals on [[?.,.7#;. We consider several examples of this
construction below.

ExAMPLE I. Let & be an abelian, nilpotent associative algebra
and let .&“* be its linear dual. Let a,;: & x .&“* be the functional.

a(x, y) = {x, ¥)

and let o, = 0. Let $“* be considered as an algebra with trivial
multiplication. Then
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LA L) =LRINDLIANDISR ISP IR &

The space “* R .S is central in LC(S, S7*) so it belongs to
the radical R, of ¢,.

Let ye 7% and x €.&2 Define -y € &* to be (w, z-y)> = {aw, ¥).
It is easily seen that 2 ® ¥y — 1, X 2y € R, for all xe€. &2 ye F*.

It follows that
WS, ")~ S P F*
with the product

(x, y)- (@, ¥') = (@', 2y") .
In this case ¢, projects to the form
¢((xy y), (x’) y,)) = <xs y,> - <x" y> .

Let & denote the ad-associative Lie algebra corresponding to the
pair (TW(S”.57*), ¢). Such Lie algebras are known in the literature.
They have been extensively studied by Howe in [2]. They are
precisely the split HAT algebras. Let us observe that in this
case, the Lie algebra & itself comes from a left commutative

algebra. In fact, we define a product structure on (& QR &*) X R
by setting

(@1, Y0), 8)((@, Ua), B) = (@10, £:Ys), {Tsy Y2)) -
Then (& @ .*) x R becomes a left commutative algebra which
defines &~

ExampLE II. This example is essentially an example of Example
I. Let M be a compact, orientable, » dimensional manifold. Let
H,(M, R) and HM, R) denote respectively the ith homology and
co-homology groups of M over R. Let

H*(M, R) = 3. H'(M, R)
H*(M, R) is an algebra under the cup product. There is a pairing
{, > between H{(M, R) and H,(M, R) which makes H,(M, R)isomorphic
with the dual space of HM, R). Hence H,.(M, R) is cannonically

isomorphic with the dual of H*(M, R). Let {,) denote the pairing.
There is also a cup product operation

Nn: H*(M, R) x H.(M, R) — H.(M, R)

characterized by
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(@, bng =<auUb, &

for a,be H*(M, R) and ¢ € H,(M, R). Let & = H*(M, R)x H,(M, R).
We make <7 into an algebra by setting

(@, m)d,n) =(@Ub,anmn).

“# is referred to as the full co-homology algebra of M. It is
obviously similar to the algebra considered in Example I, the main
dissimularity being that H*(M, R) is nonabelian. This dissimularity
can be eliminated by using

H(M, R) = 3, H*(M, R)
and
He(M’ R) = Z @ HZP(My R)

in place of H*(M, R) and H,(M, R) in the definition of &£ This is
called the half full co-homology algebra. This replacement is especially
pertinent if #» = dim M is odd for in this case each H?(X, R) and
each Hp(X, R) appears once in &% as H?(X, R)~ H, (X, R) by
Pontriagin duality. One can also use the integral homology to
define discrete, co-compact subgroups of (< *). One can then
associate with M a compact nilmanifold. Hence we have a functorial
mapping of the category of compact orientable manifolds to the class
of compact nilmanifolds. It seems that it might be quite interesting
to study this functor.

ExampLE III. The algebra associated with a family of multi-
linear forms.

Let V be a finite dimensional vector space over R and let
{a,, -+, a,} be a set of n, n-linear forms mapping V* - R. We
consider V as an algebra with trivial multiplication. As discussed
above Example I, we may use the forms «,; to define a funectional «
on LC(V, ---, V) and hence construct TW(V, ---, V, a). If we are
given fewer than » forms (say one) we may form an algebra by
declaring the rest of the a; to be zero. It is clear that re-indexing
the forms a; does not change the isomorphism class of the algebra.
To get specific, let a, be the determinant function on R® X R® X R?
and let @, and a, be zero. We shall compute the corresponding
twine algebra.

Let V,=V,=V,= R°’. The order-3 tensor products in LC(V,, V,, V)
are just the sets

ViQV;QV.
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with 7 < 7 and k¢ {i, j}. Each such set is central in LC so they go
to zero. The order two tensor products are spanned by the 1, ®
V,®V, LIV, ®V, LIV.®V, VNR®LKV, VLKV, V.®Q
L,LRV,.

The first of these sets goes to zero in TW as the only tensor
products which it doesn’t centralize in LC are those in 1,1, KV,
and [LLEV, LIV, QV]CV,. QV.QV. + V., R®V: ®V,Ckera.
Similarly for the second set. To study the third set, we note the
identity.

Det(u, v, w) = u-(v X w) = (u X v)-w on R* X R* x R*. It follow
that

a1, ®v.Q v, LRIL KR = —v- (v, X v,) .

Hence, the image of 1, ®V, &V, in TW is isomorphic with R’ under
the mapping 1, ® v, @ v, — v, X v,. Similar comments hold for the
sets VR LRV, V.R1L, KXV, and V,RX 1,®V,. However, the latter
two spaces are also identified with each other under the mapping

1, QLR —v,R®L,Qv, in TW.

The order one tensor products are all independent.
Hence

TW(R, R®, R®, det) = (R°)® x (R%?.
The product structure is:

(vly v‘.’; fU3, wl, Wa, w3)'(/01; /U;y /Uéy wi; w;y w;)
=(0,0,0, v, x v, v, X v, v, X v; — v, X v;) for v, v, w,, w;c R’ .

In [2], Howe introduced a concept of split HAT lie algebra.
Howe’s definition is:

DEFINITION. A nilpotent Lie algebra _ /" is split HAT if

(1) The dimension of the center Z°(_4") is one.

(2) There are abelian subalgebras .& and _# of _#" such that:

() SN A =24

by v =S+ #

(¢) A D[, 1]

(d) dim_# =dim.&¥

(3) _+ has square integrable representations in the sense of
Moore-Wolf.

Howe showed that _s~ is split HAT iff _s is Lie algebra iso-
morphic with an algebra of the form of Example I above. It follows
from Example I that every split HAT algebra is isomorphic with the
Lie algebra defined by a left commutative, associative algebra with
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one dimensional center. In our next theorem, we prove a converse
to this statement.

THEOREM II. A Lie algebra 4~ 1is split, HAT if 4~ is Lie
algebra isomorphic with the Lie algebra defined by a left commutative,
associative, nilpotent algebra <& with one dimensional center Z (7).

Proof. The existence of < was proven in Example I above, so
we need only show that any such <7 is split HAT.

LEMMA. 2(<F) annihilates <& on both the left and the right.

Proof. Suppose not. Then there is an % such that
B2 (B)+0=F""2(F).
But then "% (<#) is central so ZF "2 (F) = 2 (). Hence
ZF(B)F = ZF""2(F) = 0. ]

Let & = /2 (<#). As a vector space & = . X 2 ().
There is a form a: .o X .o — 2°(<#) such that

(a, $)(b, t) = (ab, a(a, b))
for a,be s, t € 2 (<#). Let ¢(a, b) = ala, b) — a(b, a) for a, be .7
It is easily verified that ¢ is a twine for the algebra .o~

LEMMA. ¢ is nondegenerate on ¥ X .7

Proof. Suppose ¢(a, ) = 0 for all x .9 Then
[, ©), (a, 0)] = (2, a}, (=, a)) = ([x, a], 0) .

It follows that [(z, t), (a, 0)]€ 2°(<#) implies that [(z, %), (a, 0)] = 0.
But if the lemma is false, there is an n such that [<Z" (a,0)] =0
and [Z"7, (a, 0)] # 0. This is impossible since, by left commutativity,
[#, [y, (@, 0)]] =[xy, (a, 0)]. Hence[=, [, (a, O]]=[ZZ", (a, 0)]=0.
Thus [Z", (e, 0)] C 2°(<Z) and so is zero. O

COROLLARY. The Lie group corresponding to <& has square
integrable representations in the semse of [4].

Proof. Let Z,e (), Z,# 0. Let ne<Z* be the functional
which maps (a, tZ,) into t. The radical of the form ¢, on & X &
defined by

¢l(xy y) = k’(['x’ y])



470 RICHARD C. PENNEY

is 2 (&) as follows from the above lemma. From Moore-Wolf [4],
this is sufficient to prove the existence of square integrable repre-
sentations. O

Now from the nondegeneracy of ¢ on % X .7 there is a
unique linear mapping 7: .9 — .97 such that a(x, y) = ¢(zx, ). The
splitting of <# will be defined from the generalized eigenspaces of
7. First we need some information concerning z.

LEMMA. 7 is a left module homomorphism of &7 into 7 which
18 trivial on [.&7, 7). The adjoint of © relative to ¢ 1s t* =1 — 7
and t° maps 7 into the left annihilator £ (&) of ..

Proof. The equality
o(x, y) = a(z, y) — ay, ») = ¢(z2, y) — ¢(ty, ©)

implies the adjoint statement. The triviality of 7 on [.97 .97] follows
from the left commutativity of <& for in < (0, 0) = [(x, 0), (y, 0)]
(w, 0) = (0, a([z, y], w)). The left module homomorphism property
follows similarly from

w(yw) = (yx)w

in & The fact that ¥ maps into (.%7) follows from the fact
that <~(.97) is the orthogonal space to [.%7 .&7] under g. O

Now let .&7 be the complexified algebra of .9 and let &7 =
* D . be the decomposition of .&7 into generalized eigenspaces
of 7.

For each complex number «a let .o be zero if a is not an
eigenvalue and let .97, be the eigenspace corresponding to a if « is
an eigenvalue. Each .o is a left ideal since 7 is a left module
homomorphism.

Let o7 = (Za;ﬁl,aﬂ L%x) 4

& = (%% + )N .

Since 0 is not an eigenvalue of 7 = I — 7 on S# ¢¢ is invertible on
&#. Hence 57 c &¥(.57). But then

[ o7 = wor oz .

Also [.%7, 7] C .o which is disjoint from S# so &7 25F = 0 as well.
It is also true that & and &7 are orthogonal under 4. In fact, it
is easily verified that .o, and .4 are orthogonal if a#1— .
It follows that to split &, it suffices to split &# x 2(F)
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and & X 2Z°(&#) separalety: But 57 x 2 (<) is a generalized
Heisenberg algebra and so is splitable. In & X 2(&), let
S = A X Z(F) and A = o x (). Then & X 2(F)=
S+ A and PN A =2 (B D], Y] X Z(F) as desired.
S’ is abelian since .o is orthogonal to .7 under ¢ and [.94, .o4]C
S N 7 = {0).

S C L() because 74 is invertible on .%. .94 is also self-
orthogonal so .# is abelian. To finish our theorem, we must prove
that .24 and .4 have the same dimension. However, ¢ is non-
degenerate on & x & and .94 and .94 are each self-orthogonal.
Hence .7 is isomorphic with (.%4)* under the pairing defined by
$. O

REMARK. Although the above theorem proves that for each
split nilpotent Lie algebra _#; there is an associative algebra <%
which gives rise to .#; it is not true that this correspondence is
one-to-one. In fact, consider the Heisenberg Lie algebra which we
take to be R* x R with the Lie structure:

[(x, S), (y; t)] = (O, Y, — ylwz) .

There are two, nonisomorphic left commutative algebra structures
on R* X R which gives rise to this same Lie algebra. They are
defined by:

(i) (z,9)(y,t) = (0, 2.9,

(ii) (x, 8)-(y, 1) = (0, (% — ¥:%:)/2).
They are nonisomorphic since in case (i) the left annihilator is (0 x R) x
R while in case (ii) the left annihilator is (0 x 0) X R. For many
questions, one might study on the Lie group, the proper selection
of the algebra can be important. See, for example, the Fourier
transform theorems of [5].

We understand, incidentally, that L. Auslander has also observed
these two algebra structures mentioned above.

Theorem I has an interesting consequence which yields informa-
tion even in the split HAT case. Let G be a locally compact topo-
logical group and let U be an irreducible, unitary representation of
G. Let K be the kernel of U. Then U defines an injective repre-
sentation U of G/K. We shall say that U is square-integrable module
its kernel if U has square-integrable matrix elements—i.e., there
are vectors v and w such that the function g~—>(17(g)v, w) is nonzero
and square-integrable on G/K. If G is a Lie group, G is said to be
ad-associative if its Lie algebra is ad-associative.

THEOREM III. Let G be an ad-associative, milpotent Lie group.
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Then every irreducible unitary representation of G is square integrable
modulo its kermnel.

Proof. Let &~ be the Lie algebra of G. By Theorem I, & is
|7 where &7 is a left-commutative algebra and ¥ is an ideal.
By a lifting argument, we may assume that <& = & Let U be an
irreducible, unitary representation of G and let A e.<Z* define the
Kirillov orbit of U (see [3]). It follows from Moore-Wolf [4] (or,
more precisely, from [1]) that U is square-integrable modulo its
kernel iff the radical of the form

Bz, y) = Mz, y]) = ¢, v)

is a Lie ideal of <#. The form <%, is easily seen to be a twine
form for <& (perhaps degenerate). The radical .2, of <&, is {0}¢ so
2, is infact an algebra ideal from Lemma A. O
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