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DERIVATIONS OF HIGHER ORDER AND
COMMUTATIVITY OF RINGS

L. 0 . CHUNG AND JIANG L U H

Let R be an associative ring with center C, and d be a
derivation on R. The authors consider the commutativity
of R which satisfies the property that dnx — dmx 6 C, where
n > m are fixed nonnegative integers. An example is given
to show that if m ̂  2, R may not be commutative. For
0 ^ m ̂  2, suppose R is either r-torsion free with large r
or torsion free. It is shown that (i) if dnx ± xeC for all
x e R then all commutators of R are central; (ii) if dnx ±
dxeC for all x e R and n is even then dxdy — dydx € C for
all x,yeR; (iii) if dnx ±d2xeC for all x e R and if n is odd
then d2xd2y — d2yd2x e G for all x,yeR. In all these cases,
if one assumes further that R is prime, then d must be
trivial. Examples are also given to illustrate that some of
these assumptions on evenness of n, and that r being large
are essential. Finally, those integral domains which have
dnx central for all x are also studied. They are shown to
be commutative.

Wedderburn's theorem, asserting that a finite division ring is
necessarily commutative, has been generalized in several directions
[2]. A well-known theorem of Jacobson states that if, for each x
in a ring R, there exists an integer n > 1, depending upon x, such
that xn — x, then R is commutative. Her stein generalizes this result
further. He proves that, if for each x in a ring R there exists an
integer n > 1, depending upon x, such that xn — x is central, then R
is commutative. Let us now examine some aspects of finite division
rings. Let R be a finite division ring of order pk, where p is a
prime. For aeR, let 3: x \-^ ax — xa for all xeR. It can be easily
seen that dpkx = dx for all xeR. From this observation, a natural
question arises: Let R be a ring and 3 be a nontrivial derivation
on R. If, for all xeR, dnx — dmx is central, where n > m are fixed
nonnegative integers, does this force R to be commutative or almost
so? An example is given to show that the answer to the question
is negative if m > 2. For 0 ̂  m ^ 2, we shall show: Suppose R is
a ring with center C which is either r-torsion free with large r or
torsion free, (i) If dnx ± xe C for all xeR then xy — yxeC for
all x, y eR; (ii) if dnx ± dxeC for all xeR and if n is even then
dxdy - dydxeC f o r a l l x,yeR; ( i i i ) i f dnx ±d2xeC f o r a l l xeR a n d
if n is odd then d2xd2y — d2yd2x e C for all x, y e R. In all these cases,
if we assume R is prime then 3 must be trivial. Examples are also
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given to illustrate that some of these assumptions on evenness of
n, and that r being large are essential. Finally those integral
domains which have dnx central for all x are also studied. They
are shown to be commutative.

In the proofs of these main results, we use certain circulant
determinants of binomial coefficients which have been recognized to
have close connections with Fermat's Last Theorem. Many problems
concerning these determinants are still open. Without answers to
these problems, it does not seem to be easy to improve our main
results by weakening the hypothesis on the characteristic of rings
without a completely different approach.

1- Preliminaries* Throughout this paper R denotes an associa-
tive ring with center C, Z denotes the ring of integers and Z+ the
set of positive integers. A derivation 3 on R is a mapping of R
into itself such that d(x + y) = dx + dy and d(xy) = xdy + dxy for all
x, y eR. For x, y eR, [x, y] denotes the commutator xy — yx. For
neZ+, we denote by Dn the following matrix of binomial coefficients:
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and by Δn the determinant of Dn. It is well-known that Δn = 0 if
and only if 6|w. Moreover, Δn = Πi=i((l + ίθ n — 1), where ξ is an
wth primitive root of unity. Little is known about the prime
factors of Δn. Some close connections between Δn and Fermat's Last
Theorem have been cited in several papers [1, 4].

The following proposition will be useful in the sequel.

PROPOSITION 1.1. Let
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Then Δ'n = 0 if n is odd and Δ'n = 2Δn_1 if n is even.
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Proof. Replacing ( ^ ) b y ( ^ _ J ) + ( ^ ^ 1 ) i n each entry of

the determinant Δ'nf we can easily see that Δ'n = Δn_λ + ( — l)n~2Δn_1 =
(1 + ( - l ) - 8 ) ^ .

2* General rings* We begin with

THEOREM 2.1. // dnx — 32xeC for all xeR, where n is an odd
integer >2 and if R is 2Δn_2-torsion free, then [32x, d2y]eC.

Proof. Let x,yeR. dn[x, y] - 32[x, y]eC yields

(2.1) Σ (n)[d»-% Vy] - 2[dx, dy]eC.

^ \ o
In (2.1), replacing x by dx and y by dy and using [dnxy d2y] —

[d% d2y] = [3% dny], we obtain (2n - 2)[d% d2y] + Σ ( )

dj+1y]eC, or

(2.2) Σ
i

a5[dn-*+ιx, dj+1y] e C ,

where α2 = 2(n - 1), α, = (nΛ for i ^ 2.

In (2.2), we replace x by 3n~2"X 2/ by 3V> i — 0, 1, 2, , w — 3.
We obtain n — 2 forms of central elements which can be expressed
by the following matrix form:

(2.3)

where all
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n — 1\ In — 1

1 j I 2
n — 1\ In — 1

n-2 [ 1
Λ - 1

w - 3

% - 1

2

by Proposition 1.1. Now, premultiplication of the adjoint of the
"circulant" matrix in both sides of (2.3) yields

22An__2

l[d2x, d2y]

l[dn-%d3y]

\[d% dn~λy]

eί

where all cj e C. Consequently, 22Jn_2[d2x, d2y] — c[eC. Since R is
2Λ-2-torsion free, it follows that [d2x, d2y] e C as desired.

COROLLARY. // R is also (n — 2)-torsion free then [dx, dy] e C
for all x,y eR.

Proof. According to Theorem 2.1, [dhx, dky]eC for all x,yeR
if h, k^ 2. Now, in (2.1), we replace x by dx. I t follows t h a t
(n — 2)[d2x, dy] e C. Since R is (n — 2)-torsion free, [d2x, dy] e C.
Likewise [dx, d2y] e C. Thus, from (2.1), [dx, dy] e C.

We should note that although the condition, "2(n — 2) Jn_2-torsion
free" could be weakened in the corollary, the condition that R being
2-torsion free is essential. This can be seen from the following.

EXAMPLE. Let A be the 3 x 3 matrix ring over GF(2), the
Galois field of order 2, and d be the inner derivation:

dx = 0 0 0 , x

L\o o o/
for x e A.

Then d2 = 0 and dnx — d2x e C, the center of A for n > 2. However
[dx, dy] need not be in the center of A.

THEOREM 2.2. If dnx — dxeC for all xeR, where n is an even
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integer >1 and if R is 2Δn_Γtorsion free, then [dx, dy]eC for all
x,yeR.

Proof. Noting that 3 maps C into itself, dnx — dxeC implies
dn+1x - d2x e C which by Theorem 2.1 implies [d2x, d2y] e C for all x,
yeR. Thus, [dx, d2y] = [dnx, d2y] e C. Since [dnx - 3a?, dny - dy] = 0,
it follows that [dx, dy] = [dx, dny] + [dnx, dy] - [dnx, dny] e C as we
desired.

The assumption in Theorem 2.2 that n is even is essential.

EXAMPLE. Let A be the 2 x 2 matrix ring over a field F of
characteristic Φ 2 and d be the inner derivation:

J* v
\Z U

1 0\ Ix iΛΊ / 0 y

0 Or [z u \-z 0

Then, for any odd integer n, dn(^ J[) - d(£ fy = (J J). However

[3X, 3F] need not be central.
Now we consider those rings having derivation 3 which satisfy

dnx - x6C for all xeR. Clearly, in this case, dn+1x - dxeC for all
xeR. Thus, if R is 2^-torsion free and if n is odd, by Theorem
2.2 [dx, dy] e C for all x,yeR. In fact we are able to show that
[x, y]eC for all x, y eR even without assuming that n is odd.

THEOREM 2.3. //3nx — a?eC for all xeR and if R is Jn-torsion
free, then [x, y]eC for all x, y eR.

Proof. For x,yeR, dn[x, y] - [x, y]eC yields

» In\
(2.4) Σ . [ 3 n - % 3ty] e C .

' =1 \ 3 I

We replace a? by 3 ^ and y by dn~ιy, where i — 1, 2, , w. We
obtain

w / W \

(2.5) Σ [3n"y+<a?, 3 n " ί + ^ ] € C .
^ \ 3 I

By noting that dmz — d*zeC for all zeR provided m Ξ ί(mod w),
we can see easily that, for each ieZ+ with i <; n, the set {w — 1 + i,
n — 2 + i, - - -, n — n + i) is a complete residue system modulo n.
Thus, after rearranging the terms in the left hand side of (2.5) for
i = 0, n — 1, n — 2, , 1, we can express the n forms of central
elements by the following matrix form:
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(2.6) Dr

[x, dny]

[dn~ιx, dy]

\[dx, dn~ιy] \c

where cl9 c2, , cneC and Dn is the matrix defined in §1.
Premultiplying by the adjoint of Dn, we get

j[x, dny]

)n~% dy]

\dx, dn'ιy]

where c[, c'2, , c'neC and Δn is the determinant of Dn. Particularly,
ΛIX V] — Λn[x, dny] = c'neC. Since, by our assumption, R is An-
torsion free, we obtain [x, y] e C as desired.

3* Prime rings* In this section we shall study prime ring R
with nontrivial derivation d which satisfies dnx — dmx e C.

LEMMA 3.1. Let R be a prime ring with nontrivial derivation
d. If dx eC for all xeR then R is commutative.

Proof. For x, y eR, [d{xy), y] = 0 yields 0 = [dxy, y] + [xdy, y] =
dy[x, y]. So either dy = 0 or [xf y] = 0. Let K — {y eR\dy = 0}.
Then K is an additive proper subgroup of R and K U C = R. A
well-known theorem in group theory states that a group cannot be a
union of two proper subgroups. Thus C = R and R is commutative.

In [3], Herstein proves that, for a prime ring R of characteristic
Φ2 with nontrivial derivation 3, if [dx, 3?/] = 0 for all x,yeR then
R is necessarily commutative. Here we shall show that [dx, dy] = 0
for all x} y eR is equivalent to the condition that d2x e C for all
xeR. Using this fact we shall show that R is commutative. Thus,
this will provide another proof of the result of Herstein.

THEOREM 3.2. If R is prime of characteristic Φ 2 and d is a
nontrivial derivation on R, then the following are equivalent:

( i ) d2x e C for all x e R;
(ii) [dx, dy] = 0 for all x,yeR;
(iii) R is commutative.

Proof. We should note that d2R = 0 forces dR = 0.

(i) ==> (ii): Commute d2(xdy) e C with x to obtain 0 = d2x[dy, x] +



DERIVATIONS OF HIGHER ORDER AND COMMUTATIVITY OF RINGS 323

2dy[d2x, x]. Replace x with dx and use the subgroup argument of
Lemma 3.1 to get either (ii) or dzR = 0. If δ*R = 0, commuting
d\xdy) 6 C with dx gives d2x[dy, dx] = 0. Again (ii) holds or d2R = 0
forcing 3i2 = 0.

(ii) ==> (iii): This is a Herstein's result [3]. For easy reference,
we exhibit a proof here. Assume (ii). For x,y,zeR, 0 =
[d(dxy), dz] = [32#2/ + 3a%, 3s] = [d2xy, dz] = 32#|>, ds]. By replacing
2/ by yw, we obtain 0 = d2x[yw, dz] = d2x(ywdz — 3#2/w) = d2xy[w, dz] +
32ίc[i/, 33]w = d2xy[w, dz]. Since # is arbitrary and iϋ is prime, it
follows that either 3JR C C, SO (iii) holds by Lemma 3.1 or d2R = 0,
a contradiction.

(iii) => (i) is trivial.

THEOREM 3.3. Let R be a prime ring with derivation 3 and
n eZ+. If dnx — x e C for all xeR and if R is Δn-torsion free then
R is commutative.

Proof. Suppose to the contrary that [x} y] Φ 0 for some x, y eR.
Let d be the inner derivation δ(z) = [x, z] for zeR. Then 3 is not
trivial and, by Theorem 2.3, dz e C for all zeR. This contradicts
to Lemma 3.1.

THEOREM 3.4. Suppose R is a prime ring, 3 is a derivation on
R, and n > 1 is an even integer. If dnx — xeC for all xeR and
if R is 2Λn_1-torsion free, then d must be trivial.

Proof. Let x,yeR. [dx,dy]eC by Theorem 2.2. Suppose
dC = 0. Then 0 = d[dx9 dy] = [32#, dy] + [dx, d2y] or [32#, dy] =
— [dx, d2y]. It follows, by repeatedly using the above identity,
[dx, dy] = [ 3 χ 3y] = -[d*-% d2y] - [3W"2^, dzy] = . . . = -[3a?, 3"»] =
— [3#, 3̂ /] since ^ is even. Hence [dx, dy] = 0, and by Theorem 3.2
R is commutative. Now suppose dC Φ 0. Then for ceC, dc[dx, y] —
[dx, d(cy)] e C forces [dx, y] e C. Replacing y by dxy yields 3i? c C
Thus, iZ is commutative by Lemma 3.1.

THEOREM 3.5. Suppose R is a prime ring, 3 is a derivation on
R, and n > 2 is an odd integer. If dnx — d2xeC for all xeR and
if R is 2(n — 2)dn_2-torsion free, then d must be trivial.

Proof. By the corollary to Theorem 2.1, for all x,yeR,
[dx, dy] e C, Suppose dC = 0. Then d[dx, dy] = 0 yields [d2x, dy] =
— [dx, d2y]. On the other hand, by repeatedly using the above
i d e n t i t y , w e o b t a i n [d2x, dy] = [ d n x , dy] = -[dn-% d2y] = ••• =
[dx, dny] = [3x, 322/] since w is odd. Hence [d2x, dy] = 0. Now,
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replacing y by dyz yields d2y[d2x, z] = 0. By replacing y by dyu and
use the fact [d2y, dw] = 0 for all w e R, we obtain d3yu[d2x, z] = 0.
It follows that either 33 = 0 or d2xeC for all xeR. If 33 = 0 then
since dnx — d2xeC, d2xeC also. Therefore, by Theorem 3.2, R is
commutative. Suppose dC Φ 0. By using the same argument in
the proof of Theorem 3.4 we obtain the commutativity of R.

Note that the condition n being odd in Theorem 3.5 is essential
and can be seen from the example immediately after Theorem 2.2.

According to Lemma 3.1 and Theorem 3.2, if R is prime of
characteristic Φ 2 then d2xeC or dxeC for all xeR implies the
commutativity of R. A natural question arises whether dnx e C for
all x e R, where neZ+ implies the commutativity of R. The answer
is no in general for n Ξ> 3. For example, let R be the 2 x 2 matrix
ring over a division ring of characteristic Φ 2 and a e R with
aΦO, a2 = 0. Let d be the inner derivation dx = [a, x] for xeR. Then

dnx = anx - {^λa^xa + + (-l)nxan = 0 for n ^ 3.

We shall show however that if R has no zero divisions Φ 0 with
certain restriction on its characteristic then dnxeC does imply the
commutativity of R.

We begin with

LEMMA 3.6. Suppose R is a ring without nilpotent elements Φ 0
and suppose R is (n + l)-torsion free. If d is a derivation on R
and neZ+ such that dn+1x = 0 for all xeR then dnx = 0 for all
xeR.

Proof. For xeR, 0 = d^ixd^x) = (n + l)(dnx)2 yields dnx = 0.

THEOREM 3.7. Suppose R is a ring without zero divisors Φ 0
and n e Z+, and d is a nontrivial derivation on R. If dnx e C for
all x eR and if the characteristic of R is not a divisor of (2n — 1)!,
then R is commutative.

Proof. We proceed by induction on n. For n = 1 or 2, the
commutativity of R follows from Theorem 3.2. Now assume n > 2.
3n(3n-1a?3n"1a?) e C gives 2d2n-1xdn~1x e C. By noting that d^x e C, the
subgroup argument of Lemma 3.1 shows that either dn~~ιR<zC or
d2n~ιR — 0. In the second case, repeated applications of Lemma 3.6
arrive a contradiction. In the first case R is commutative by
induction hypothesis.

We should note that, in Theorem 3.7, if the condition on
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characteristic of R is deleted the ring R need not be commutative.
This can be seen from the following example suggested by the
referee.

EXAMPLE. Let R be a noncommutative integral domain of
characteristic p > 2 and x e R\C with xp e C, the center of R. Set
d(r) — [r, x]. Especially, let R be the twisted polynomial ring A[x, T]
for A = F[y], F a field of characteristic p and T(f(y)) = f(y + 1) for
f(y)eA. Then dpR = 0.

4* Remarks and open problems* In §§2-3 if the conditions
dnx — dmx 6 C where m = 0, 1, 2 and m < n are replaced by dnx +
dmx e C, all results remain true. Moreover, if we relax these con-
ditions by "dnx - dmxeC or dnx + dmx e C for each x e R" all results
still hold. This can be seen by letting S = {x eR\dnx + dmx e C) and
T = {xeR\dnx — dmxeC} and by noting that S and T are additive
subgroups of R with R = S U. 2\

For the example following Theorem 3.5, for n > m ^ 3 , the
condition "3nίu ± 3wx 6 C for all x e R" cannot be expected to imply
the commutativity for a prime ring R.

We conclude with several open problems.
1. As we pointed out earlier, what are the prime factors of

2. If, in a ring R, for each x there exist positive integers m,
nf 0 ^ m < n and m ^ 2, δo£/& depend upon x9 such that 3W# — 3m# e C,
what can we say about the "commutativity" of RΊ

3. In Theorems 2.1, 2.2, 3.4 and 3.5, if we assume only that R
is 2-torsion free instead other stronger conditions on the characteristic
of R, do the results remain true?

4. Does dnx — dmx e C for all x e R, where n > m, force
[dmx, dnx] e C?

5. Suppose, for a ring i2, there exist a nontrivial derivation 3
and a polynomial /(ί) = αnί

n + an_xt
n-χ + + ajm e Z[t] where

αm ^ 0, αn ^ 0 and 0 ^ m <: 2, such that /(3)(ίc) e C for all a e R,
what can we say about the "commutativity" of RΊ
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