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MAXIMAL GROUPS IN SANDWICH SEMIGROUPS
OF BINARY RELATIONS

KAREN CHASE

A sandwich semigroup is given as follows. Let R be an
arbitrary but fixed binary relation on a finite set X. For
relations A and B on X we say (a, b)€ A * B (the product of
A and B) if there are ¢ and d in X such that (a,c)e A4,
(e,d)e R and (d,b)e B. This semigroup is denoted Bx(R).
In this paper we study maximal groups in B;(R) for various
classes of E.

Sandwich semigroups of binary relations were introduced in [2].
These semigroups arise naturally in automata theory, and their role
in automata theory is studied in [3]. Montague and Plemmons [5]
have shown that given a finite group G there is some set X such
that G is a maximal group in By, the usual semigroup of binary
relations. We show there are classes of R for which this result
holds and others for which it does not hold.

If R is a relation and E is a nonzero idempotent in B,(R), then
we write Gz(R) for the maximal group determined by E and call £
an R-idempotent. In §1 we give a class of relations for which G(R)
is trivial for any relation R in this class and any R-idempotent E.
In §2 we produce a class of relations for which the Montague-
Plemmons result holds. That is, any finite group G arises as a maxi-
mal group for some X and some relation R in this class. Finally,
in §3 we show there is a class of relations for which some but not
all finite groups arise.

Throughout we use Boolean matrix representation for relations.
That is, if R is a relation over X where | X| = », then R is represented
by an % x n matrix where the (7, j) entry is a 1 if (x, x;) is in R
and 0 otherwise. These matrices are multiplied using Boolean
arithmetiec.

This paper is part of a Ph. D. thesis prepared under the direc-
tion of C. J. Maxson whom I wish to thank for his guidance and
many helpful suggestions.

1. By(R) containing only trivial groups. Let I" be the collec-
tion of (nonzero) matrices with the property that all nonzero columns
are the same. For R in I' it is easy to see that if the (4, j) entry
of R is zero then either row 4 or column j of R is zero. The fol-
lowing theorem characterizes R-idempotents for any R in I" and shows
that G.(R) is trivial for any R in I' and any R-idempotent E.
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THEOREM 1. Let R be in I'. Then

(i) A s an R-idempotent if and only if all monzero rows of
A are the same and for some i and j such that the (i, j) entry of
R is nonzero we have the (j, 1) entry of A is monzero.

(ii) If E is an R-idempotent, then Gyz(R) is trivial.

Proof. Throughout the proof let a;; (»;;) denote the (7, j) entry
of the matrix A(R).

(i) Assume A is an R-idempotent. AR has zero columns where
R does and since all nonzero columns of R are alike, all nonzero
columns of AR are alike. Let

b,

b,

b,
denote the nonzero columns of AR. Writing out the product ARA
we see that for each 7 such that b, = 1 we have a nonzero row of
A and each nonzero row is identical.

Assume for each k£ and m such that 7., =1 we have a,, = 0.
Clearly, if column j of R is zero, then column j of AR is zero. We
show if column j of R is nonzero, then row j of A is zero. These
two statements imply (AR)A = 0, a contradiction. Let column j of

R be nonzero and denote by b;, the (4, ¢) entry of AR. Then for
any ¢

. ki:‘,la,-kfr,,j if column ¢ of R is nonzero
bj; = ]Z_:‘l QT = (hence 7, = ;)
0 otherwise
=0 1in either case by the assumption.

Thus row j of AR is zero which implies row j of (AR)A = A is
Zero.

Conversely, assume 7;; =1 and a;; = 1. If row & of A is non-
zero, then a,;, = 1. From a,;, = 7;; = a;;, = 1 we have the (k, 7) entry
of ARA is 1 and so row k£ of ARA is nonzero. Since a, = 1, row
k of AR is row 72 of R and so the (k, j) entry of AR is nonzero.
Furthermore, since a;; =1 we have row k of ARA is row j of A.
But all rows of A are the same so row k& of ARA is row k of A.
If row k of A is zero, then row k& of ARA is zero. Hence we have
ARA = A and A is an R-idempotent.

(ii) Let E be an R-idempotent and A be in Gz(R). Throughout
the remainder of the proof we use the following:
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e;; denotes the (¢, j) entry of E,

b;; denotes the (¢, j) entry of AR,

¢;; denotes the (¢, j) entry of ARE.

We show a,;; = ¢;; for any ¢ and j.

Let ¢;; = 0. Then, by the remark preceding the theorem, either
row % or column j of K is zero. If row ¢ is zero, then row 7 of
ERA = A is zero and so a;; = 0. If column j is zero, then column
j of ARE = A is zero and so a;; = 0.

Let e;; =1. We show a;; =1. Assume not, that is assume
a;; = 0. We first show row ¢ and column j of A are zero. We have

»
02’_7' = kz—l‘lbikek‘i .

Since all nonzero columns of FE are alike, then for any nonzero
columns n and j of E it follows that ¢;; = ¢;,,- But ARE = A im-
plies ¢;; = a;; = 0 and so row 7 of A is zero. Similarly column j of
A is zero.

We now show A = 0, a contradiction. If row k of E is zero,
then FRA — A implies row k of A is zero. If row &k of E is non-
zero, then ¢,; = 1 since ¢;; = 1. By the above we know column j of
A is zero, so a,; = 0. Thus we have ¢,; =1 and a,; = 0. Using the
above arguments, this implies row %k of A is zero.

2. B;(R) containing all finite groups. Let I be any class of
matrices such that for every positive integer » the matrix

5 o
B C
is in I' where I, is the n X n identity matrix, A is an arbitrary

n X k matrix, B is an arbitrary £ X n matrix and C is an arbitrary
k x k matrix.

THEOREM 2. If G 15 a finite group, then G is a maximal group
in By(R) for some nonidentity matrix R in I’ and some X.

Proof. From Montague and Plemmons [5] we know there is an
X' such that G is isomorphic to Gz (I) where E’ is an idempotent
in By/(I) (I is the identity relation). Let X’ have n elements and

R_(I,, A)
“\B C

where R is k X k with k greater than n and A, B and C are arbi-
trary. The matrix E where
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‘E" 0
=l o
0 0

is an R-idempotent. Let A be in G(R) where

P Q
A= .
= s)
Then, A«E =A =FExA gives Q = R=8S=0 and PE' = E'P = P.
Let B be the R-inverse of A in Gz(R). Then

P 0
B ( )
0 0
and BxA = E = A«B give PP’ = K = P'Pand so P is in G,.. Thus
the map 4 from G, (I) to G,(R) given by
P O)

o) = (0 0

is an isomorphism.

We remark here that the R and X of the theorem are not unique.
In fact G is in By(R) for all X containing at least n elements. Also,
if R is as in the theorem and R’ = PRQ where P and @ are inver-
tible, then the map # from B,(R) onto B,(R') given by 0(A) = QAP
is an isomorphism.

The following theorem shows the symmetric groups arise in B,(R)
where R is a permutation.

THEOREM 3. Let R be a permutation in B;(I) for some arbitrary
but fixred X where X has n elements. Then R', the tnverse of R in
By(I), is an R-idempotent and G (R) is isomorphic to S,, the sym-
metric group on m elements.

Proof. It is clear that R’ is an R-idempotent, and for all A in
B,(R) we have AxR' = R'xA = A. It remains to be shown that
only permutations have an R-inverse with respect to R'. If A is a
permutation, then AR and RA are permutations and (R'A’R")(RA) =
(AR)(R'A’R") = R’ where A’ is the I-inverse of A. Thus, R'A'R’ is
the R-inverse of A’

Conversely, assume for some A we have a B such that A+ B =
BxA =R'. If A is not a permutation, then either xA = & for some
2 in X or for some z and y in X with x #* y we have z4A = yA. In
the former case we have ¢ = x(A+B) = xR'. In the latter case
since R is a permutation, we have z(A*B) = y(A*B) and so z(R’) =
y(R") for x =+ y. Neither case is tenable and so A must be a
permutation.



MAXIMAL GROUPS IN SANDWICH SEMIGROUPS OF BINARY RELATIONS 47

We show in the next section that there is a class of matrices
such that some groups are not in By(R) for any R in this class.

The question now arises, “Do we always have either all groups
or only trivial groups?” This is answered negatively in the next
section.

3. By(R) containing only some groups. In this section we
look at a class of matrices for which some, but not all, groups ap-
pear in B,(R) for R in this class. We show that for any R in this
class the maximal groups in B;(R) are a special type.

Consider the class I of matrices having the block form

o 9

where I, is the k& X k identity matrix and 4 is a & X » matrix whose
(1,1) entry is a 1 and all other entries are 0. We will establish our
results for matrices in this class and show the results also hold for
matrices of the forms
<Ik A) d (I A 0>
an
0 0 A 0

where A has exactly one nonzero entry. Throughout this section
all sandwich matrices R will be in I'.

THEOREM 4. The following are mnecessary and sufficient for E
to be an R-idempotent.

(i) Assume row j has a 1 in the (4, 1) position. If row j also
has @ 1 in positions P, ---, P,, then row j is the sum of rows 1,
k+1and rows P, ---, P,. Otherwise it is just the sum of rows 1
and k + 1.

(ii) Assume row j has a 0 in the (4, 1) position. If row j also
has a 1 in positions P, ---, P,, then row j 1s the sum of rows
P, --- P, If there are no such rows p;, them row j s zero.

Proof. Let ERE = E. Since rows k + 1 through n of R are
zero, then columns % + 1 through n of E do not affect the product
ER. Thus, we consider entries in columns 1 through %k of E.

(i) If row j has a 1 in the (j, 1) position, then {x,, x,,,} is in
xz,ER. Thus {z, %,.,}F is in ;ERE = x;F and rows 1 nad k¥ + 1 are
in row 5. That is, row 7 has 1’s at least where rows 1 and % + 1
have 1’s. If row j hasa 1 in the (4, p,) position for p; in {2, ---, k},
then z, is in #;ER and «E, is in z;ERE = «;E and row p, is con-
tained in row j. Clearly if the (j, p;) entry is 0, then x,, is not in
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2,ER and hence row p, is not in «;ERE = x;E. Thus, z;K = «;ERE =
{#y, @, -, %, , T}l where the (j, p;) entries are nonzero, and the
result follows.

(ii) From the proof of (i) we see x,F = x,ERE = {x,, -+, %, }E
where the (7, p;) entry is a 1, and the result follows.

Conversely, consider row j of E. We show «;F = z;ERE. If

row j has a 1 in the (j,1) position and in the (4, »,), ---, (J, Dw)
positions for p, in {2, - - -, k}, then «;,ERE = {x,, x,, - -, 2, , 2, }RE =
{x, ©,, -, p,, Trr}E. By hypothesis, row j is the sum of rows 1,

D,y Pmy B+ 1 and x,E = {w, x,, -+, @, , 2. }E. If row j has a
0 in the (4, 1) position, then the proof is similar except we exclude
2, and %,,,.

EXAMPLE 1. If n =7 and k = 4, then the matrix

110 01 0 0
0100 000
0 110 0 0 O
E=11 111111
110 0100
1111111
00 0 0 0 0O
is an R-idempotent, but the matrix
110 0100
110 0 0 0 0
0110000
F=|110110 0
1111100
0000 OO0OTU O
0 000 0 0O

is not an R-idempotent.
We now look at elements in G.(R).

THEOREM 5. Let A be in GL(R).

(i) Row m of A is zero if and only if row m of E is zero.

(ii) Rows j and m of A are equal if and only if rows j and
m of E are equal.

(iii) Row m of A is the sum of a subset of the rows 1 through
k+1of E.

(iv) Row j of A is the sum of rows p,, ---, ., of A if and only
if row j of K is the sum of rows p,, ---, p, of H.
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Proof. (i) and (ii) follow directly from ARA’' = EFand ERA = A
where A’ denotes the R-inverse of A.
(ili) From ARE = A we have row m of A is

Opmilyy T Cpplor + o+ Cpplrs T CpiCirr,n
OmiCro T Qpslor T+ + + Cpplre T CpiCio,e
Qp1€1n + QA p2€2n + e+ @y irn + Q1 €rt1,n

where a,;(e;;) is the (i, j) entry of A(E). If au,, ***, @w; =0 and
Qmojip ***» Qmp, = 1 Where p, is in {1, ---, k}, then row m of A4 is

(epj+1,1 R 27 TR uEL R i ZUL T ol P epq,n)

which is the sum of rows p;,, ---, p, of E. If a,, =1, then we also
have e¢,,,, in each entry where ¢ runs from 1 to =.

(iv) If row j of A is the sum of rows p,, ---,p, of A and if
A’ denotes the R-inverse of A we have

;B = x;ARA" = {x,, -+, 0, }ARA" = {x,, - -+, 2, } .

The converse is similar.

Thus, for example, if X has 7 elements and k¥ =4 and row m
of Ais (101100 1), then this row is the sum of rows 1, 3, 4
and 5 of E.

We remark here that this theorem is also valid if B has the form

o 9

where A has exactly one nonzero entry, say the (i, j) entry where
j=k -+ 1 is nonzero. For in the above proof we use row ¢ where
we previously used row 1 and column j where we used column % + 1.
Similarly, by using the word “column” where we used “row” the
result also holds for any R of the form

4 o
A 0
where A has exactly one nonzero entry.

The goal now is to show how to construct an arbitrary A in
G(R) and thereby show only certain groups arise in By(R). From
Theorems 4 and 5 (iv) we see that we need only show the construction
of the first £ + 1 rows of A. The remaining rows are determined
by their pattern in E. That is, if row m of E, for m > k + 1, is the
of rows p, ---, p, or E where p, is between ¢ and % + 1 inclusive,

then row m of A is the sum of rows p,, ---, », of A. We make the
following definitions which are illustrated in Example 2.
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DEFINITION 1. Let S be a sum of a subset of the first £ + 1
rows of A, but S is not one of the first £ + 1 rows of A (and may
not even be any row of A). Then S is called a row associated with
A. If any row of A or row associated with A is the sum of rows
P, + -, Ds, then each p, is called a summand. S is the maximal sum
of rows p,, ---, . if every one of the first ¥ + 1 rows contained in
Aisa p,. We also refer to S as a maximal row associated with A.

DEFINITION 2. Each row m of A is the sum of a subset of the
first £ + 1 rows of A and some of the associated rows of A. Let
row m be listed as a summand only if it is not the sum of rows
distinet (not necessarily different) from itself. Then we say the
sum is maxzimal if all rows contained in row m and all maximal
rows associated with A contained in row m are listed as summands.
If row m is the maximal sum of N rows we write S,(4) = N and
say row m has order N.

When we say row m of A is a sum of N rows of A, we mean
each summand is either one of the first k¥ + 1 rows of A or a row
associated with A.

We now make the following classification of the nonzero rows
of A and the rows associated with A.

DEFINITION 3. If every summand of row m is identical to row
m, then row m is called an independent row. If at least one sum-
mand of row m is proper and if row m is not the sum of its proper
summands, then it is called fized. If at least one summand of row
m is proper and if row m is the sum of its proper summands, then
it is called dependent.

By this definition rows associated with A are dependent. Thus,
when we refer to a dependent row, it may or may not be in A.

ExampLE 2. Let A be given below where £ = 8
1,1111000°O0O0O0

2{(0 01 1.0 0 0 0 0O

3]0 0 1 0 0 0 0 0 0 O

410 0 01 0 0 0 0 0O

A= 510 0 0 01 00 00 O
610 0 0 0 011100

710 0 0 0 0 01 0 0 O

8/0 0 000001 0O
91111110 0 0 0 O
100 0 01 1000 0O
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Si(A) =1 for i = 3,4,5,7 and 8 and S,(4) =4 (sum of rows 1, 2, 8
and 4), S;,(A) = 2 (sum of rows 3 and 4) and S,;(4) = 2 (sum of rows
4 and 5). We also have row 6 is the sum of rows 6, 7 and 8 and
S where S is the sum of rows 7 and 8 and so Sy(4) = 4. Row 9 is
the sum of rows 1 through 5 and S,, S, and S, where S, is the sum
of rows 3 and 5, S, is the sum of rows 4 and 5 and S, is the sum of
rows 2, 3,4and 5. Therefore, S,(4) = 8. Notethat 1111100000)
congsidered as the sum of rows 1 and 5 of A is associated with A,
but would not be a maximal row associated with A unless we con-
sidered it as the sum of rows 1, 2, 3, 4, 5 and 9 of A. Rows 3, 4,
5, 7 and 8 are independent, rows 1, 6 and 9 are fixed, and rows 2
and 10 are dependent.

The following sequence of propositions will enable us to construct
an arbitrary element in G.(R) for an R-idempotent E. Throughout
we let A be in Gx(R).

PROPOSITION 1.

(1) Row m of E is independent if and only if row m of A is
independent.

(ii) Row m of E is fixed if and only if row m of A is fixed.

(iii) Row m of E is dependent if and only if row m of A is
dependent.

Proof. We prove the “if” part of (i), (ii) and (iii) and the “only
if” parts must follow.

(i) Let row m of E be the maximal sum of rows p, ---, p,
of E. Each of these rows will be identical to row m. Thus, by
Theorem 6 (ii) and (iv) row m of A is the maximal sum of rows
Py, -+, 0, all just like row m of A and row m of A is independent.

(ii) Let row m of E be the maximal sum of rows p, ---, »,
where either m is a p, or some row p, is identical to row m. Apply
Theorem 6 (ii) and (iv) to show row m of A is the maximal sum of
rows P, ---, p, of A where either m is a p, or some row p, is iden-
tical to row m. Thus, row m of A is fixed.

(iii) As above, apply the definition of dependent row along with
Theorem 6 (ii) and (iv).

ProrosITION 2. S, (E) = N if and only if S,(A) = N.

Proof. Assume A # E or there is nothing to prove. Assume
S,.(E) = N and row m of E is the maximal sum of rows p,, ---, py
of E. Assume rows p, ---,p; are in E (as usual p, is between 1
and % + 1 inclusive) and rows p,.,, ---, Py are maximal associated



52 KAREN CHASE

with E. Thus, row m of E is the sum of rows p,, -+, p; of E (not
maximal unless 7 = N), and so row m of A is the sum of rows
P, ++-, p; of A.

Assume row p, is one of the dependent rows associated with E
and is the sum of rows p,, ---, »,, of E where p,, is between 1 and
J inclusive. Then the sum of rows p,, ---, », of A is associated
with A. For if it were one of the first ¥ + 1 rows of A, say row
q, then by Theorem 6 (ii) row q of E would be the sum of rows
P, **+, D, of E. But this sum is not a row of K. Similarly, for
each row p, associated with E, we get a corresponding row p, as-
sociated with A. Furthermore, each is maximal in A since it was
in E. Thus S,(A) is greater than or equal to N. If S, (A4) is strictly
greater than N, then either there is another row in A in the sum
of row m or another row associated with A in the sum. In the
former case, we contradict Theorem 5 (ii), in the latter case this
associated row of A will give rise to another associated row of E
contradicting the fact that the sum was maximal.

Conversely assume S, (4) = N and S, () = M + N. But by the
above S, (E) = M implies S, (A) = M and we have a contradiction.

PROPOSITION 3. Given the fixed and independent rows of A we
can determine the dependent rows of A.

Proof. The dependent rows of A will be in the same positions
as the dependent rows of E. Let row m of E be dependent and
the maximal sum of rows p,, ---, p, of E where rows p,, ---, p; are
dependent. By the definition of maximal sum, every summand of
any row p; for 7 between 1 and j inclusive will be one of the rows
P, -+, », and by the definition of dependent row, each summand is
proper. Thus, dependent rows are redundant in a maximal sum,
and row m of E is the sum of rows p;., ---, p, of E where each
p; is independent or fixed. By Theorem 5 (ii) and Proposition 3 row
m of A is the sum of rows p;.,, ---, p, of A which will be fixed or
independent as they are in E. :

From Theorem 5 (ii) and Propositions 1 and 2 we have the fol-
lowing proposition.

PROPOSITION 4. Row m of A has the same unmber and types of
summands as row m of E.

Proposition 4 is useful in constructing the independent and fixed
rows of A. Recall, each independent row of E is a row of E. That
is, it cannot be associated with E. By Theorem 5 (ii) and Proposi-
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tion 1 each of these rows must be an independent row of A.
Similarly, each fixed row of E must be some fixed row of A. The
following definitions help us apply Proposition 4.

DEFINITION 4. If an independent row is a summand of a fixed
row, it is called Type 1. Otherwise it is Type 2.

Propositions 1 and 4 now give the following.

PROPOSITION 5. Row m of E is independent of Type 1 (Type 2)
if and only if row m of A is independent of Type 1 (Type 2).

DEFINITION 5. A fixed row of A is called a maximal fized row
(MFR) if it is not the summand of any fixed row different from
itself. An MFR together with its summands is called a maximal
Jized block (MFB). MFRs (or MFBs) with the same number and types
of summands are said to be in the same class. We define a sub-MFR
(sub-MFB) to be any MFR (MFB) within an MFR (MFB). A fixed
row is a minimal fixzed row (mFR) if it does not contain any fixed
summands. An mFR together with its summands is called a minimal
JSixed block (mFB).

We remark that a fixed row may be both an MFR and an mFR.
Every MFB is either an mFB or contains an mFB.

ExaAMpPLE 3. Let

11111111111 7
1111000000 0| 7
00110000000, |B
0001000000 O0]|| |
00001111000 7 |H
A=[00000011000f,|D
000000O0O0TILOOO|| |
00000000110[],
0000O0GO0GOGOGOTI1 0| i
000000O0O0O0TO OO OO
000000000000

H is an MFB witn B, D and F as sub-MFBs. B and D are in the
same class. C and E are sub-MFBs of B and D respectively and are
mFBs. F' is also an mFB.

Proposition 4 now gives us the following:
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PROPOSITION 6. Row m of E is an MFR with an associated MFB

in class I' if and only if row m of A is an MFR with associated
MFB in class I'.

We now give the construction of the first ¥ 4+ 1 rows of A.

Step 1. If any rows of E are zero, then the corresponding rows
in A are zero.

Step 2. Distict independent rows of Type 2 in E are permuted
observing Theorem 5 (ii).

Step 3. MFBs of the same class in E are permuted to form MFBs
of this class in A. We must observe Propositions 1 and 2. That is,
subblocks may need to be permuted within an MFB.

Step 4. If within an MFB there are independent rows of Type
2 (thus, they are actually independent rows of Type 1 in E), then
they may be permuted.

Step 5. Repeat Steps 3 and 4 with sub-MFBs. That is, sub-
MFBs of the same MFB and of the same class may be permuted and
within them, independent rows of Type 2 may be permuted.

Step 6. Repeat Step 4 until mFBs have been permuted and their
independent rows of Type 2 have been permuted.

Step 7. Calculate the dependent rows by the fixed and inde-
pendent rows and the pattern of E (as in the proof of Proposition 3).

THEOREM 6. A is in Gz(R) if and only if A is constructed as
above.

Proof. If A is in Gz(R), then Propositions 1 through 6 show
that is A constructed as above. Conversely, let A be constructed as
above. We must show A+*EF = A = ExA and the existence of an
inverse. We first show A+«E = E+«A = A.

Case 1. Row m of A is independent or fixed. Then it is some
row of E, say row p. Thus, ¢,4 =«,F and 2,A+E =2, E+«E =
2, B = x,A. Assume row m of E has ones in the p, ---, p, positions
for p, between 1 and k inclusive. Row m is the sum of rows
Py, + -+, p; if the (m, 1) position is a zero and so z,E = x,ER. It is
the sum of rows p, ---, p,, k + 1 if the (m, 1) position is a 1. In
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the former case, row m of A is the sum of rows p, ---, p, of A
and z,E+A = x,EA = {x,, ---, %, }A =x,A. In the latter case row
m of A is the sum of rows p, ---, 9, k+1 of A and z,FRA =

(), ooy @y, T BA = {2, -+ -, @, X1} A = @, A.

Case 2. Row m of A is dependent. Then row m of E is
dependent. Assume row m of E is the sum of rows p,, ---, p, of £
where row p; is fixed or independent. Thus, row m of A is the
sum of rows p,, ---, p, of A where row p, is fixed or inedpendent in
A. Thus, from Case 1, for each p, we have z,, A+« E =z, A =z, E«A.
Now, v, AxE = {x,, -+, 0, }A+E = ¢, Ax B+ x, A« K+ - +x, A« E =
z, A+ 2, A+ - +2,A={2,, -, 2,}A=u0w,A. Similarly »,E+A4 =
T, A.

We now construct a B by the above rules and show B is an
R-inverse of A.

Step 1. If row m of E is zero, then row m of B is zero.

Step 2. Independent rows of Type 2. Assume rows p,, :--, ¥,
of E are distinct independent rows of Type 2. Let 6 be the permu-
tation on p,, ---, », where row p, of E is row 6(p,) of A. Let these
independent rows be permuted in B by #7'. That is, row 6(p,) of
E is row p, of B.

Step 8. MFBs of the same class. Permute these in B following
the same scheme above for independent rows of Type 2.

Step 4. Independent rows of Type 2 within an MFB. Let MFBs
B, ---, B, be of the same class and let each B, have distinct inde-
pendent rows b, b,,, - - -, b;, of Type 2. Assume 6 permutes the blocks
as they are permuted in A (similar to ¢ in Step 2). Then in A4, block
B, occupies the position 6(B;) occupies in E and in B, block 6(B),)
occupies the position block B; does in E. If rows b,, ---, b;, of block
B, have been permuted in A, then apply the same permutation to the
corresponding rows in block 6(B,) of B.

Step 5. Sub-MFRs. These are formed in B following the same
scheme as for independent rows in Step 4.

Step 6. Continue as in Steps 4 and 5 for independent rows of
Type 2 within sub-MFBs and for sub-MFBs within the sub-MFBs
until the process terminates with mFBs.

Step 7. Dependent rows. These are determined by independent
and fixed rows.
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Thus we have a B such that BxE = B = E+B. Let the inde-
pendent rows of Type 2 in A and B be as in Step 2 above. Then
for each 1, %y, (A*B) = x,,(E+B) = x,(B) = %,,(H). Similarly for
each 1, 2,(B*A) = ®p,,(E*A) = %p,,(A) = «,(E). Thus, for any
independent row, say =z, of Type 2 we have x,(A*B) =2,E =
2z, (BxA). Similar proofs give the same result for MFRs. Now
consider independent rows of Type 2 within an MFB as in Step 4.
By the construction, if row m of K is row » of A, then row p of
E is row m of B where row m is in B; and row p is in 8(B,). This
implies z,(&) = x,(A) and z,(E) = z,(B) and for each row m in B,
we have z,(H) = 2,(4) = z,(ExA) = z,(BxA). Similarly, if row m
of E is row q of B, then row q of E is row m of A and z,.(E) =
2(B) = 2(E+B) = 2, (A*B). Thus, for these rows z,(A*B)=x,E=
2z, (BxA). Sub-MFRs satisfy z,(4+B) = 2, B = z,(BxA) by the same
type of proof. We now show the result for dependent rows. Let

row m of E be dependent. Then it is the sum of rows p,, ---, D,
of E which are fixed or independent, and rows m of A and B are
the sums of rows p, ---,p, of A and B respectively. Since

2. (AxB) = z,E = z,(BxA) for row =z, fixed or independent, we
bave z,E = {x,, -+, ¢, } B = {x,}E + -+ + {2, }E = {x,}JA*B + --- +
{x,}AxB = {x,, ---, x,}A*B = x,(A+B). Similarly, v,k = x,(B*A).

COROLLARY 1. CL(R) is trivial if and only if

(i) No two distinct independent rows of Type 2 are in E.
(ii) No independent rows of Type 1 can be permuted.

(iii) No two fixzed rows of E are in the same class.

COROLLARY 2. Gy(R) is nontrivial if and only if it contains a
nontrivial subgroup isomorphic to a permutation group.

Proof. Assume G (R) is nontrivial. Then at least one of the
three statements of Corollary 1 must be false. Assume (i) is false
and let p, ---, », be the distrinct independent rows of Type 2. Let
A be the set of all A in Gz(R) formed by permuting rows p,, ---, D,
of E and leaving all other rows of K stationary. A is a subgroup
of G(R) isomorphic to the permutation group on {p, ---,2}. A
similar proof establishes the result if we assume (ii) or (iii) is false.

The converse is clear.

If for each N, in {N,, ---, N,} there are n, identical independent
rows of Type 2 and also if for each C, in the set {C, ---, C;} there
are ¢, MFBs of class C, where ¢, is greater than 1, then Gz(R)
contains a subgroup isomorphic to G =P, X P, X P, X -+ X Py,
where P, is the permutation group on the set of T elements. As
in the proof of Theorem 6 let . in Gz(R) be the set of all A such
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that the independent rows of Type 1 are fixed. Then A ~ G. Thus
we have the following

COROLLARY 3. If E contains mo independent rows of Type 1
that can be permuted or if mo MFBs are of the same class, then
G:(R) is isomorphic to a direct product of permutation groups.

ExAMPLE 4. Let &k =6 and

0

- O OO0 O O H
O O MO O O
O O MO O O
oo o0 o oo o o
o o0 o o o o

S ©O © O O H+H = O
S O © O +H O O O

O O O O O H+H =

0

Rows 1, 2,3,7 and 8 are independent of Type 2; but since rows 1, 7
and 8 are alike and 2 and 3 are alike, we only get one permutation
from these. Row 4 is fixed and rows 5 and 6 are independent of
Type 1. Thus, Gz(R) = {E, A} where

1 0

HHOOOOOK
SO HMHMKFOOCO
SO HFHMHKFEOOO

Soocoo KO
coocoocoooo
coocoocooooO

MO OOOO
SO OO OO

&
=
[oN

EXAMPLE 5. Let k =

H OO OO OoOOoOOO M
SO o OO oCOoOoOoO O fo'e)
SO O0OOH-HMHOOOO
QOO HMMEKODOOO
O MHRMEMMKMEF OO OO
S OO OO OO O OO

S OO O OO HMHMHO
SO OO OO - MHHMHO
S OO OO HOOOO
=R e T e I e R e I o I e B = I =
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Row 1 is independent of Type 2. Row 2 is an MFR with rows 2, 8
and 4 as summands and so S,(F) =8. Row 5 is an MFR with rows
5,6,7,8 and 9 as summands and so S,(E) =5. Rows 6 through 9
form a sub-MFB of row 5. From the above we see no permutations
can be formed and G.(R) is trivial.

EXAMPLE 6. Let k. = 16 and R be 18 x 18. Let

- 11111111

01110000

S, 00100000

Bl | 700010000 5
00001111

00000111

s, 00000010

E= L |sirlooo000001

~

1111111100
0111100000
0011100000
0001000000 s,

o 0000100000£ﬁ
0000011100 )
0000001000 B,
0000000100 s,
0000000000}k
0000000000

B, and B, are MFBs of the same class and can be permuted. S,
and S, are sub-MFBs of B,, s, is a sub-MFB of S,. Similarly, S,
and S, are sub-MFBs of B, and s, is a sub-MFB of S,. Note s, and
s, are mFBs and I, through I, are independent of Type 1. S, and
S, (and S, and S,) are not of the same class. The pairs (I, L,), (I,,
L), (I, I,) and (I, I;) are independent of Type 2 within blocks S,,
s, s, and S, respectively and can be permuted within these blocks.
Observe, if we permute B, and B,, then we must permute S, and
S; and S, and S, within the blocks. Thus we can describe G (R)
as follows. If we do not permute B, and B, then we have 16
elements of this form—one for each of the possible permutations of
the pairs of independent rows. If we do permute B, and B,, then
we again have 16 elements. Thus, GL(R) has 32 elements. The
first 16 elements described form the subgroup K =S, %X S, X S, X S,
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where S, is the symmetric group on the set of two elements. For
example the element

((1 2 12 12 12

1 2)’ (2 1)’ <2 1)’ <1 2))

in K corresponds to the element A in G, (R) with rows I, and I,
and I, and I; interchanged. Rows I, I,, I, and I; are not permuted.
We can consider elements of G,(R) as 5-tuples (A, B, C, D, E) where
each entry is a permutation of 1,2. A represents the permutation
of B, and B, B,C,D and E represent the permutations of the
pairs (I, L), (I, L), (I, I,) and (I, I;) respectively. Consider the
elements where A is the identity to be of Type 1, and those where
A represents the permutation of B, and B, to be of Type 2. Let
X=(A,B,C, D, E)and Y= (A, B',C’, D', E') be elements of G,(R).
The multiplication in G(R) is given by

XY = (A4, BB’,CC’, DD', EE’) if X and Y are both Type 1
B l(AA', BE',CD’, DC’, EB’) if either X or Y is Type 2.

We remark that the above theorems and propositions are also valid
if R has the form
I, A (Ik 0
or
(0 0) A O)

where A has exactly one nonzero entry. The proofs would be as
indicated in the remarks following Theorem 5.

It is not known if there is a way to determine the maximal
groups in B,(R) for any given R. It would be interesting to find
properties of the relation R that determine the maximal groups.
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