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GLEASON’S THEOREM FOR TYPE I VON
NEUMANN ALGEBRAS

JURGEN TISCHER

For a von Neumann algebra % a G-measure m on 2 is
defined as a map from the projections of % to the positive
reals which satisfies the equation

m(X P)=2 m(P,)

for every family (P, of pairwise orthogonal projections. We
prove the following generalization of Gleason’s theorem:
If m is a G-measure on a type I von Neumann algebra % not
containing a type I, direct summand, then there exists an
extension of m to a positive normal linear for on .

0. Let H be a complex Hilbert space, ¥ a von Neumann
algebra acting on H, and Z°(¥) the lattice of projections in A. A
map m defined on “#(A) with values in the positive reals is called
a G-measure on Y if for every orthogonal family (P,) in () the
equation m(C, P,) = 3, m(P,) is satisfied. If the equation holds for
finite orthogonal families then m is called a finitely additive
G-measure.

Gleason proved [3] that for % = L(H) (the bounded operators
on H) and dim H == 2 every G-measure is extendable to a (necessary
unique and normal) linear form on . A. A. Lodkin generalized this
result to all von Neumann algebras acting on a separable Hilbert
space and not having a type I, direct summand, but the proofs are
only sketched and seem to be incomplete. This paper provides a
complete proof of Gleason’s theorem for those type I von Neumann
algebras not having a type I, direct summand, so in particular no
assumption about the separability of H is made.

THEOREM 1. Let U be a type 1 von Neumann algebra without
o type I, direct summand. Let m be a G-measure on Y. Then
there is an extemsion of m to a limear form om A, which is neces-
sarily normal and unique.

The proof of the theorem is given in a series of lemmas. First
we introduce some notation. Throughout the paper let X be a
hyperstonean space. For every real or complex Hilbert space K of
finite dimension n the space C(X, K) of continuous functions from
X to K is an m-dimensional module over C(X). We can easily carry
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over many concepts known in the Hilbert space K to the module
C(X, K) by defining them pointwise, so let an inner product on
C(X, K) with values in C(X) be defined by (f, g)(x) = (f(x), g(x)).
Two elements f and g are said to be orthogonal to each other (f 1g)
iff (f,9) =0. A module basis {f, ---, f..} is called an orthonormal
basis if (f,, f;) = 0,;. To avoid confusion, we define the function
| . | from C(X, K) to C(X) by |f|(x) = || f(x)]|, leaving || . || for the
usual supremum norm on C(X, K).

On C(X, K) we define an equivalence relation ~ by f ~ ¢ iff
there is 2 e C(X) such that @(x) # 0 for all xe€ X and f = @g.
Note that the following are equivalent: (i) f Lg; (i) there exists
9 ~ g and f1g¢'; (iii) for all ¢’ ~ g the equation f 1 g’ is satisfied.

For the case K = R® define a cross product x on C(X, R®) by
f X g®) = f(x) X g(x) (ordinary ecross product in R°’). By §* we
denote the usual unit sphere in R®.

Now we are ready to generalize Gleason’s notion of a frame
function on S? to the case of a function on C(X, S*) and to prove
that every frame function on C(X, S® is continuous. Note that for
X a singleton this is just the essential lemma of Gleason’s proof.
We have tried to follow as closely as possible the outline of
Varadarajan’s proof [5]. The proofs of Lemmas 7 and 10 are
almost exactly the same but are included for the convenience of
the reader since they are short. On the other hand, the remainder
of the proof requires substantially different arguments in several
places.

DEFINITION 2. A function ¢: C(X, S* — R* is called a frame
function if there is a positive real constant W, called the weight
of ¢, such that for every orthonormal basis {f, f;, fi} of C(X, R®
the equation ¢(f,) + ¢(f2) + ¢(f;) = W is satisfied.

So in particular if f, g€ C(X, S*) and f ~ g, then ¢(f) = ¢(g).

NoTATION 3. Let feC(X, S*». Then we define
E(f) ={9eC(X, S)|g L f};
L(f) = {ge C(X, 8H)|Vze XVg' e C(X, 8°): ¢’ ~ g — f(x) #= ' (@)} ;
N(f) = L(HNNLLMR) |k € E(f)} -

For f and ¢ in C(X, S* we have E(f) S L(f) and N(f) S L(f).
Furthermore, if one notes that X is hyperstonean, the following
are easily seen to be equivalent: (i) f~g; (i) E(f)=E(g); (iii) L(f)=
L(g); (iv) N(f) = N(g). Now let h be in L(f). Then |h X f]| is
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strictly positive on X, so 1/|h X f| is in C(X). Define hof=1/|h %
Fl(h X f); then hof is in both C(X, S*) and E(f)N E(h). In parti-
cular h e L(hof), so ho(hof) is defined. We write

EW(h, f) = E(ho(hef)) .

REMARK. The notations E(f), N(f) and EW(h, f) are intended
to bring to mind the notions equator with respeet to f, northern
hemisphere with respect to f and east-west great circle through 2
of Gleason’s proof; the exact analogy breaks down if X is a
singleton.

I. In this section we prove the continuity of a frame function.

LEMMA 4. Let feC(X, S, and ¢ be a frame function on
C(X, S*) which is constant on E(f). Then for any g in N(f) and
any h in EW(g, f),

#(g) = ¢(h) + 6(f) .

Proof. Denote by k the constant value of ¢ on E(f), and let
W be the weight of 4.

(a) For le L(f), we claim that ¢(l) < k + ¢(f).
To see this, note that {l, lof, (lof)°l} and {f, lof, (lof)of} are both
orthonormal bases. Moreover lof and (lof)of are in E(f), so

W = 6(f) + ¢l f) + ¢((lof)of) = ¢(f) + 2k

and
W = g() + ¢(lof) + ¢((lof)ol) = ¢(1) + K .

It follows that ¢(l) < ¢(f) + k.
(b) For geN(f) and he EW(g, f) = E(go(gef)) define h' = ho

(go(gof)). Then {g, gof, go(gof)} and {h’, h, go(gof)} are orthonormal
bases and gof € E(f), so

(1) o(h') + ¢(h) = §(g) + 8(g°S) = ¢(9) + k .

Moreover A’ € L(f). Assume the contrary. Then there is an xe X
such that n'(x) = £f(x) so f(@)Lge(gef)(w); that is, {f(x), gof(x),
go(gof)(@)} and {g(x), gof(®), go(gef)(x)} are orthonormal bases in R®.
So g(x) = + f(x) which contradicts the fact that g is in N(f).

Since h'e L(f), part (a) yields the inequality

o(h") £ k + ¢(f), which, combined with (1), gives
é(h) = ¢(g9) — ¢(f). This completes the proof.
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For the moment let X be a singleton and identify C(X, S*) with
S?, so the meaning for points in S? of the notation introduced in 3
is clear. Using cartesian coordinates in R®, define P to be the plane
{x; =1} in R*®, N={zxeS*|0<x, <1} and »p = (0,0,1)eS? Denote
by II the central projection with center 0 of N into P. Then II(p)=
p and I7 is a homeomorphism of N onto P\{p} which maps the
circles in N with centers p bijectively onto the circles in E with
center p. If K =+ E(p) is a great circle in S* not containing p
then II(K N N) is a straight line in P not containing p. The map-
ping so defined is also a bijection. Moreover for y in N a great
circle K is equal to EW(y, p) iff II(K N N) is perpendicular to the
straight line connecting p and II(y).

For ye N define G, = II(EW(y, p) N N), and for se P\{p} define
G,=Gp-1,. Then for s € P\{p}, G, is the unique line in P containing
s such that the mapx — || — p|| attains its infimum in s.

LEMMA 5. Let X be a singleton, p be defined as above,
a€l0, /2], and z = (cosa, 0, sina) € S* Define K, to be the open
disc in P with center 1/2(I1(z) + p) and radius ||1/2(I1(z) — p)||, and
define S, to be the boundary of K, Then, when s€ K,, the inter-
section of G, and S, consists of two points I(s, o) and I(s, a) where
I, and I, are continuous functions of s and a. Moreover,

JREEWUI(L(s, ), p) and II-'(I(s, a)) € EW{IIXs), p) .

Proof. II(z) is of the form /1(z) = (o(a), 0,1), where p is con-
tinuous. If s is in X,, then (s, — p(@)/2)" + s3 < (p(a)/2)?, so s,p(a)/
(st+s8)—1>0. Now

S, = {xePlal + o} — x,0(a) = 0}
and
G, = {xc R*|3pc R such that x = (s, s, 1) + p(—s,, 81, 0)} .

Thus for the points s in G, N S, we have

pn ‘a< 5,0() > _ < s,0(@) 1) =0;

st + 8% s + st

that is, there are exactly two such points. Let I,(s, ) (resp. L(s, a))
be the point corresponding to the positive (resp. negative) square
root of g*; then 7, and I, are continuous functions of s and «. Since
I(s, @) is in G,, it follows that II-'(I(s, @) is in EW(II(s), p). Let
K be the disc in P with center p and radius ||77(z) — p||, and let
G be the line containing 77(z) and either I(s, @) or I(s, @), say I(s, a).
Then I(s, ) is the midpoint of GN K, so G =G ,a and z€
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EWII(L(s, a), p).

LEMMA 6. Let feC(X, S* and ¢ be a frame function defined
on C(X, S*) and constant on E(f). Let g€ N(f), and define M, =
{he N(f)|A e N(f)N EW(h, f) such that ge EW(, f)}. Then the
interior of M, is nonempty and for all he M, we have:

¢(h) = 8(9) + 26(f) .

Proof. The inequality is an immediate consequence of Lemma
4 and the definition of the set M,, so we only have to show that
the interior of M, is nonempty.

(a) First we show that we can assume that f= (0,0,1). With
respect to the canonical module basis of C(X, R®) we can write f =
(fu foy f5), where the f,’s are continuous functions on X and f? +
f2+fi=1. Define A ={xeX|f?+ 1}, and define o/, 8: A —> R by
a'(x) = (1 — fix)™fi(x) and B'(@) = (1 — fi(x))"°fi(x). Then «’ and
B’ are continuous and bounded and X is hyperstonean, so there are
continuous extensions « and B on el A, the closure of A. Using
the canonical basis of R® we define U": X — L(R®) by

a(x) Blx) 0
—Bx) a(x) 0], if vxecld;
U'X) = 0 0 1

. Identity map, elsewhere.

Since ¢l A is open and closed the components U/, of U’ are con-
tinuous functions on X. The mapping U’ induces an isomorphism
U of the vector space C(X, R*) by Uh(x) = U'(x)h(x). For all h in
C(X, R®) we have |Uh|=|hk| and ||Ukr| = ||h]|; that is, U is an
isometry. Moreover, for all A,! in C(X, R*) we have that A1l
iff Uh L Ul, so U maps C(X, S*) homeomorphically onto itself, taking
M, onto M,,. Furthermore Uf is of the form Uy = ((Uf), 0, f,).
Define W: X — L(R®) by

fi@) 0 —(Uf)@)
W(x) = 0 1 0

(Ufn@) 0 fil@)

Then W has the same properties as U and W(Uf) = (0, 0, 1).

(b) Now we show that we can make the additional assumption
that g is of the form g(x) = (cos a(x), 0, sin a(x)), where a is a con-
tinuous function on X with values in ]0, #/2[. Since f=(0,0,1), ¢
is in N(f) iff g(x)e]—1,0[U]0, 1] for all # in X. Reasoning as in
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(a) we can assume that g is of the form g = (g, 0, g,). Now the
function x — sign (g,(x)) is a continuous function from X to {—1,1}
and ¢’ = sign(¢,)-g is equivalent to g, so M, = M,. Moreover we
have 0 < gy(x) <1 for all x in X. Finally define a: X — 10, z/2[ by
a(x) = arc sin g,(x).

(¢) Let a, = supa(x)e]0, /2], and define z,€S* by z, = (cos «,,
0, sina,). Let K be the open dise in the plane P with center
1/2(11(z,) + p») and radius ||1/2(/1(z,)—p)||. Let B = C(X, I*(K));
then B is an open subset of C(X, S*. Choose &€ B; with the nota-
tion of Lemma 5, we have II(h(x)) € K., for every x in X. Define
I: X— 8% by l(x) = I, (h(x), a(x)))). It follows from Lemma 5
that e C(X, S?, ge EW(, f), and l € EW(h, f). Moreover 0 <l,(x) <
1 and 0 < hy(x) < 1 for all z in X, so h is in M,. We conclude that
U < M,, which completes the proof of the lemma.

LEMMA 7. With f and ¢ defined as in Lemma 6, let 1) be a
positive real number with ¢(f) < 7). Then there is a g in N(f) and
an open set M containing g such that

0 < sup ¢(M) — inf (M) =< 37 .

Proof. (The proof follows exactly the proof of Lemma 7.16, p.
152 of [5].) Define b = inf ¢(N(f)) = 0. Let Il be in N(f) such that
b=¢()=<b+7. By Lemma 6 we have ¢(k) < ¢(I) + 27 for every
k in M, so b <¢(k) <b+ 37. Define M to be the interior of M,
and let g be any point of M.

LEMMA 8. Let f be in C(X, S?, ¢ >0, and
M(f, &) ={geCX, S8)|VSf ~ fveeX|g(@) — f(x)|| > e} .

Then there is a constant k(e) depending only on e such that for all
hy, h, in M(f, €) we have

| hof — hoof || < k() || by — D] .
Proof. For  in X and ¢ =1, 2 define K(x,¢) to be the great
circle in S? containing f(x) and h,(x). Define M(x, e)={t € S?||| f(x)—t||
>e¢ and || — f(x)—t||>e}. Let A(x, i) be that component of K(zx, 7)N

M(x, ¢) which contains h,(z), and let v, (x) be the point of intersec-
tion of A(x, 7) and E(f(x)). Then

[ By(@)o f(@) — hao(@)of(2) || = [wi(@) X fl&) — vel2) X f(@) ]

= Hvl(x) — v,(%) H .

Moreover there is a constant k(¢) such that
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k(e)-d(A(z, 1), A(z, 2)) = [[v.(z) — v(2) ]|,
SO
k(&) | () — ho(@) || = [[0:(2) — va(@) || = [[ hu(@)of (2) — ho(@)o f(2) ]
Therefore

k@) [l — kel = sup k() [| k() — k(@) || Z || hu(@)e f (&) — ho(@)e f(@)]].

LEMMA 9. Let f be in C(X,S* and ¢ be a frame function
defined on C(X, S?. Let M be a meighborhood of f such that

0<supo(M) —info(M) < « .

Then for each g in C(X, S*) there is a meighborhood U, of g such
that

0 = sup¢(U,) — inf ¢(U,) < 4a .

Proof. (a) First we show that for each h in E(f) there is a
neighborhood V, of & such that

0 < supa(V,) — inf ¢(V,) = 2 .

As in Lemma 6 one can assume that f= (0,0,1) and A = (0, 1, 0).
For 6 € R such that 0 < § < 1/10 and K,(f) & M, where K,(f) is the
open ball with radius 6 and center f, define ueC(X, S?» by u =
0, [1 + (3/2)6 + (2/9)0°]1 41 + (1/3)6], —(1/3)8). Define A = K,,(h);
then A & M(u,d/9). So by Lemma 8 we have | hpou — hypou| <
k(6/9)||h, — h,|| for all h, and h, in A. Since h,ou and h,ou are
elements of M(h, 6/9) and h, and h, are elements of M(h,ou, 6/9),
we have

tho(hl"u) — hyo(hyou) ||
= tho(hl"u) - hl°(h2°u)H + tho(hzou) - hzo(hzou)H
= k(0/9) [[hnow — hoow || + £(6/9) ([ by — hs|]
= 2(1 + k(0/9)7 | hy — hal|
This implies that the map F: A — C(X, S? defined by F(I) = lo(low)
is continuous. Since F'(h) = f there is a neighborhood V, of h such

that V, £ A and F(V,) € K,,(f). Choose l€V,. Then [ and u are
in E(lou), so

[ E() — ue(low) | = [[lo(lou) — uc(lou) || = ||l — || .
Thus
1f — wollow) | S 6/3 + [ — ] S 8/3+8/9 + |[h —ul| <5,
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80 uo(low) is in M.
In addition, {I, lou, lo(low)} and {u, low, uc(lou)} are orthonormal
bases, so we have

8(1) + g(lo(low)) = g(u) + g(uo(low)) .
Let I’ be another element of V,. Then
o(l") + ¢’ o(ow)) = $(u) + d(ue(l'ow)),
and finally, by subtraction,
l6(1) — o] = [g(uo(low)) — glue(lou))|
+ [6(le(low)) — o(Ue(Uow))| = 2 .

This completes the proof of (a).

(b) Now let I be in C(X, S?. As in Lemma 6, we can assume
that f=(0,0,1) and that [ is of the form [ = (I, 0,1[,). Let h =
(0,1, 0); then AcFE(f) and le E(h). The proof of the lemma is
completed by applying (a) twice.

LEmMMA 10. Let ¢ be a frame function defined on C(X, S?.
Then ¢ is continuous.

Proof. (The proof follows exactly the proof of Lemma 7.18, p.
154 of [5].) Let ¢ > 0. Since every positive constant function is
a frame function we can assume that inf ¢(C(X, S*)) = 0. Let >0,
feC(X, S* be given such that ¢(f) < /2. As in Lemma 6 we can
assume that f=(0,0,1). Define F:C(X, S* — C(X, S* by F((g,, g.,
gs) = (—@. 95, 95)- F is a homeomorphism which preserves ortho-
gonality, so ¢oF' is again a frame function. Define + = ¢ + goF.
Then +r is a frame function on C(X| S%), and is constant on E(f).
Moreover +(f) < 7. By Lemma 7 there is a ¢ in N(f) and a
neighborhood U, of g such that

0 < sup 4 (U,) — inf(U,) < 37 .
By Lemma 9 there is a neighborhood U; of f such that
0 = supy(Uy) — inf (U;) < 127,
0
0 = supy(U;) =137 .
Thus
0 =supg(Uy) =137,
from which it follows that
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0 < sup ¢(Uy) — inf g(Uy) =137 .

By Lemma 9 there exists for each % in C(X, S* a neighborhood
U, of h such that

0 < sup ¢(U,) — inf ¢(U;) < 527 .
Hence ¢ is continuous.

II. In this section let H be a finite-dimensional complex Hilbert
space of dimension dim H = 8 and let S be its unit sphere. Define
P to be the set of all continuous functions on X with values in
the projections on H and &7 to be the set of those members of &
which have their values in the set of all one-dimensional projections.
This section is devoted to the relaticnship between C(X, S) and .
For f in C(X, S) define the map P;: X —» F(L(H)) by Pi(x) = Ps,,
(the projection on the one-dimensional subspace of H spanned by

Sf(@)).
LeMMA 11. The map f— P; is a map from C(X, S) onto ..

Proof. (a) Let feC(X,S) and z,yc X. We have

| Pe(x) — Ps(y)|| = sup {|| Prya — Prpa|l|a € S}
= sup {||(a, f@)f (@) — (a, FO)FW) | |lacS} = 2| f(®) — fWI ,

so P; is a continuous map, so P;e .

(b) Let Pe . For each z in X select an a, in (P@)H)N S
and define f, to be the constant function which maps X to a,. Then
f. is in C(X, S) and || P(x)f,(®)|| = 1, so there is an open and closed
neighborhood U, of 2 such that ||P(y)f.(y)|| > 1/2 for all y in U,.
Define g.: U, — S by g.(%) = [| PW) fo() |7 P(¥) f.(y). Then g, is con-
tinuous and for all ye U, we have P(y) = P, ,. Since (U,),y is
an open covering of X, there is a finite subcovering (U,, ---, U,).
Define g e C(X, S) by

9.,@), fxel,;
g(x) = . .
9, , if xe U \U{U,li < k}.
Then we have P = P,.

LEMMA 12. Let n be a natural number and let Q be in P
such that dim Q(x) > n for all x in X. Let f,, ---, f. in C(X, S) be
pairwise orthogonal and such that P; < Q. Then there is a g in
C(X, S) such that g L f; 1 <1< n) and P, < Q.

Proof. For each 2 in X select a, in (Qx)H)N S such that
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a, L fi(x) 1 <1=<mn). Define g, to be the constant mapping from
X to a,. Then g, is in C(X, S) and satisfies

Qx)g:(x)| =1

and
3 (fi@), g = 0.

Hence there exists an open and closed neighborhood U, of x such
that for ye U, we have

lRWg.(w) | > 1/2

and

3 (W), Q) < /4.

Define h,: U, — H by

h.(y) = QW)g=(y) — g QW)g:(v), fiw)fi(y)

and ¢g,: U, — H by
9:(y) = ||k (y) [|7h.(v) .

As in the proof of Lemma 11 one can define a function g with the
desired properties.

LeMMA 13. For f, and f, in C(X, S) there exists a p in C(X, C)
such that (f,, ofy) is in C(X, R).

Proof. Define A = {x ¢ X|(fi(x), foilx)) = 0}. Then cl A is open
and closed. Define p': A — C by

o'() = [(fi(@), fula)) |7 (fil), ful®)) -

Then o' is continuous and bounded on A; since X is a hyperstonean
space there is a (unique) continuous extension p” of o’ to cl A.
Finally define o€ C(X,C) by p=p" on A and p=1 on the com-
plement of cl A.

LEMMA 14. Let P, P, be wn . Then there are fumnctions
fi, fo 5 im C(X, S) such that the following hold:

(i) fi, fa fs are pairwise orthogonal;

(i) P.=Py;

(iii) there is an f in C(X,S) which is contained in the real
submodule of C(X, H) spanned by f, and f, and such that P,=P;.
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Proof. By Lemma 11 there are functions g, and ¢, in C(X, S)
such that P, = P, and P, = P,,. Define f, = g,. By Lemma 13 there
is a p in C(X, C) such that (f, pg,) is in C(X, R); define f = pg,.
Then P, = P;. Let A ={xeX|(f,, f) # 1} and define f;: A— S by

F@) =[1(f = (f, DH@ (f = (f, @) .

Then f, is continuous and bounded. H is finite-dimensional, so the
fact that X is hyperstonean implies the existence of a continuous
extension f,’ of f, to the open and closed subset ¢l A of X. By
Lemma 12 there exists an & in C((cl A, S) such that & is orthogonal
to the restriction of f; to the complement of cl A. Now define f,
to be f;' on ¢l A and & on the complement of ¢l A. Then f, L f,
and f = (f, f)fi + (f, f)fe- Moreover, (f,f,) is in C(X, R), so f is
contained in the real module spanned by f, and f,. Again by Lemma
12 there is an f, having the desired properties.

III. In this section let Y be a von Neumann algebra of type
I, where ne N and n = 3. Then by [1], pp. 239-240, A is isomor-
phic to B L(H), where B is an abelian von Neumann algebra, H
is an n-dimensional complex Hilbert space and & denotes the tensor
product of von Neumann algebras. In particular, B is isomorphic to
a space C(X, C), where X is hyperstonean. So by [1], p. 24, Pro-
position 4, (ii) (and the fact that dim H = n < «), 9 is isomorphiec
to C(X, L(H)). We identify C(X, L(H)) with 9 and C(X, C) with
the center B of .

If m is a finitely additive G-measure on 9 then the restriction
of m to P induces a finitely additive measure on the open and
closed subsets of X and also induces a unique continuous positive
linear form on B, denoted by R(m).

Denote by M the set of all finitely additive G-measures m on
A with m(Id) = 1, and let M;" denote the set of all positive linear
forms on B with norm 1. Then R is a map from M onto M.
Define N = R*(ex M;") (ex A the extreme points of A). For me M
denote by S(m) the support (in X) of R(m). If m is in N we also
denote the single element of S(m) by S(m).

LeMMA 15. M is a compact convex subset of R”™ and N is a
closed subset of M containing ex M.

Proof. (a) M is a closed convex subset of [0, 1], so it is
compact and convex.

(b) Equip M with the w*-topology of B* = C(X, C)*. We
show that R is continuous, from which it follows that N is a closed
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subset of M.

Let (m;);.; be a net in M converging to m, so (m,(P)) conver-
ges to m(P) for all Pe #(A). Now for Pe . Z(B) we have m(P)=
R(m)(P), so for all step functions T in B = C(X,C) we have
Rm)T)— R(m)(T). Let feB and ¢ >0 be given. There is a
step function T'e®B such that ||f— T'|| < ¢/3 and an %,€ I such that
| R(m,)(T) — R(m)(T)| < ¢/3 for all ©+ = 1,. So for all ¢+ = 4, we have

| R(m)(f) — R(m)()] = |[Bm)(f) — R(m)(T)|
+ |B(m)(T) — B(m)(T)| + |R(m.)X(T) — R(m)(f)] <e.

Thus R(m,)(f) — R(m)(f), so R is continuous.

(¢) Let meex M, and assume that R(m) is not in ex M;*. Then
there exist P, P,€.Z?(B) such that P, + P, = Id and N = m(P)<]0,
1[. Define m, and m, by m,(Q)=N"'m(P,Q) and m,(Q)=(1—1)""m(P.Q).
Then m = am, + (1 — A)m, is a nontrivial convex decomposition of
m, which contradicts the assumption. We conclude that ex M = N.

LEMMA 16. Let m be in M, let U be an open and closed subset
of X containing S(m), and let @ = 1, (the indicator function of U);
s0o QeB. Let P, P, be in FPR) such that PQ = P,Q, Then
m(Pl) = m(Pz)

Proof. S(m) is the support of R(m), so m(@)=1 and m(1—Q)=
0. Thus for all Pe. () we have

m(P) = m(PQ) + m(P(1 — @) = m(PQ) .

LEMMA 17. Let m be in N and let P, P,€.57 be such that
P,(8(m)) = P(S(m)). Then m(P,) = m(P,).

Proof. Choose f,, fi, f; and f as in Lemma 14. Let g, g., g, be
the canonical module basis of C(X, R®). Define I: C(X, R*) —C(X, H)
by I(h) = (h, 9.)f; + (k, 9.)f2 + (h, 95)f;- Then I is an isometry of
C(X, R®) onto the real module spanned by {f, f: fi}, and I maps
C(X, S* into C(X, S) (where S is the unit sphere of H). Define a
frame function ¢ on C(X, S*) by ¢(f) = m(Prys). Now P(S(m)) =
Py(S(m)), so either f(S(m)) = f(S(m)) or fi(S(m)) = — f(S(m)); we
can assume that f,(S(m)) = f(S(m)) (otherwise take — f instead of
f). Define h = I"'(f). Then we have g¢,(S(m)) = h(S(m)). For each
n € N there exists an open and closed neighborhood U, of S(m) such
that

sup {[| g:(@) — h(@)[||z€ U,} < 1/n .
Define &, € C(X, S*) to be h on U, and g, on the complement. Then
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lhe — g:]l <1/n, so h, converges to g,. For xe U, we have h(x)=
h,(x) and so also f(x) = I(h)(z) = I(h,)(x). By Lemma 16, m(P,) =
m(Pra,,) = ¢(h,) for all ne N. Moreover, m(P,) = m(P;) = ¢(g,). So
by Lemma 10 we conclude that m(P.) = é(g,) = lim ¢(h,) = ¢(h) =
m(Py).

For Pe ZFQ) and xe X define P,e & (A) by P,(y) = P(x) for
all ¥y in X.

LEMMA 18. Let m be in N and x = S(m). Then m(P)=m(P,)
for all Pe ().

Proof. The map d: X — N, defined by d(x)=trace P(z)=dim P(x)
is continuous, so there is an open and closed neighborhood U of x
such that d is constant on U. By Lemma 16 we may assume U =
X. If d=0, then P=0 and 0 = m(P) = m(P,). Assume that
d=neN. By Lemma 12 there are P, ---, P, € &% which are pair-
wise orthogonal and such that P=>7%, P, Thus m(P)=>r, m(P,),
and we may apply Lemma 17 to complete the proof.

LEMMA 19. Let m be in N. Then there is a wunique state f,
on A extending m. The map m — f, is continuous from N to the
set S of all states of A when S is equipped with the w*-topology
of the dual of .

Proof. (a) Denote by m’ the restriction of m to C-1, ® L(H)=
L(H). Then m'is a G-measure on L(H). Define h, to be the unique
extension of m’ to a state on L(H). Define I: % — L(H) by I(P) =
P(S(m)). Then I is a representation of A, and f,, = h,ol is a
state on 2. We show that f,, extends m. Let Pe.Z”(). Then we
have fu(P) = hnoIl(P) = h,(P(S(m))) = m'(P(S(m))) = m(Psm) = m(P),
the last equality being justified by Lemma 18. Since the dimension
of H is finite, the linear combinations of elements must be dense in
A in the norm topology, so f, is unique.

(b) Let (m,);.; be a net in N converging to m. Then (m))
converges to m’. As in the proof of Lemma 15 one can show that
(hn,) converges to h, and that (f,,) converges to f,.

LEMMA 20. Let m be in M. Then there is a unique state f,,
of U extending m.

Proof. By Choquet’s theorem there is a maximal measure p
on M which represents m. By Lemma 15 the support of g is in
N. This and Lemma 19 suffice to settle the question of existence
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of an extension. The uniqueness follows as in Lemma 19.

IV. Proof of the theorem. By [1], p. 240, second paragraph
and Proposition 2, A is of the form A = IIY,, where the A, are of
type I, and % is out of a fixed set of cardinals. By the assumption
n %= 2 for all n. Since m is completely additive we can assume that
A is of type I, and n=2. If n =1, then A is commutative, so
we may assume that n = 3.

We first prove the following claim:

If Pe.Z2() is a finite projection, then the restriction
(2) mp, of m to PYUP has a unique extension to a state
on PYP.

Let Pe.Z2(Y) be finite, that is, PAP is a finite type I von Neumann
algebra. As above we may restrict our attention to the case in
which PYP is of type I,, where now » is a natural number. The
case n = 1 is the commutative case and for » = 3 the claim follows
by Lemma 20. Only the case n = 2 remains. Let PP be of type
I,. Then there are projections P, P, in PUP such that P, and P,
are abelian relative to PUYP, P, is orthogonal to P, P, is equivalent
to P, relative to PUAP, and P, + P,=1d,y, = P. Since P,P= PP,= P,
we have that P, and P, are abelian relative to ¥ and since PUAP A
they are equivalent relative to 9% as well. Denote by Z(Q) the
central support of Qe.Z7(). Because of the additivity of m we
may assume that Z(P)=1. Let @ =1 — P. Then by [1], p. 218,
Théoréme 1, there exists a projection G in B such that

(a) QG < PG, and (b) P,1 — G) < Q1 — G).

By (a) and [1], p. 123, Définition 3 and the succeeding paragraph
there must be a projection H in B such that H £ G and QG~P.H.
Then Z(QG) = Z(P.H) = Z(P)H = H, so Q(G — H)=0 or P(G—H)=
G — H. Now PP is of type I, and % is of type I, where n > 2,
so G — H has to be 0. So we have QG ~ PG.

By (b) there is a @, < Q1 — G) such that P1 — G) ~ Q,. Let
P,= QG + Q,. Then P, ~ P,, so P, is abelian and P,, P, and P, are
pairwise orthogonal. Define P’ = P, + P, + P,. Thus P'UP’' is of
type I, and contains PP, so again we may apply Lemma 20. This
completes the proof of (2).

Now define F' = U {PAP|Pe Z (), P finite}, and let F' be the
vector subspace of 9 which is spanned by F’ and 1; that is, F =
F'U{M1 — A)|xeC and A€ F'}. Let A be in F' and P, P, be finite
projections in .Z2(Y); denote by @ their supremum in .2°(A), which
is again a finite projection. Then we have:

(i) If A= PAP, = P,AP, then A = QAQ and f»(4) = f»(4)=
FolA).
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(ii) If A= PAP, =X\1 — B) where B = P,BP,, then either
A =0 or 1eQUQ, so fp(4) = fo(4) = M1 — f5,(B)).

(iii) If A=n1 — P,B,P,)=\(1—P,B,P,) then \(1—fp (P.B,P,))=
M1 = fp,(P,B,P,)). These properties of the family (f») allow us to
define a linear form f’ on F by

P4 =1 ~ fu(B), if A=2(1 — B) and BePuP.

We may assume that m(l) = 1. Then we have the following:

(i) F is self-adjoint and 1€ F}

(i) /=1

(iii) f'(A) =0 for all Ae FnuU;

(iv) f'(A*) = f'(A) for all AcF.
We only show that (iii) is true for A = A1 — B) and » < 0. In this
case B=1, so suppB=1. Now B = PBP for some finite P; that
is, 1=P1P. So F=F'=9% and f'(A) = 0. By [2], p. 50, Lemme
2.10.1, the conditions (i)-(iv) ensure that there is a state f on %
extending f’. It remains to prove that f is an extension of m; the
normality of f is then an immediate consequence of the complete
additivity of m.

Let Pe (). Then there exists a family (P,);.; of pairwise
orthogonal and finite projections in 9 and a subset J & I such that

E}P‘=1 and ;‘J,P,=P.

Then we have

(3) fP)z 2 f(P) = X m(P) = m(P).
fA—P)z> f)=ml-P),

SO

(4) fP)=1—-f1—-P)=1—-md—P)=mP).

By (8) and (4) we have f(P) = m(P), so f is an extension of m and
the proof is completed.
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