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GLEASON'S THEOREM FOR TYPE I VON
NEUMANN ALGEBRAS

JϋRGEN TlSCHER

For a von Neumann algebra 9ί a G-measure m on 51 is
defined as a map from the projections of 21 to the positive
reals which satisfies the equation

m(Σ P*)=Σ m(P%)

for every family (Pi) of pairwise orthogonal projections. We
prove the following generalization of Gleason's theorem:
If m is a G-measure on a type I von Neumann algebra % not
containing a type I2 direct summand, then there exists an
extension of m to a positive normal linear for on 9ί.

0* Let if be a complex Hubert space, 81 a von Neumann
algebra acting on H, and ^(Sί) the lattice of projections in §ί. A
map m defined on ^(8ί) with values in the positive reals is called
a G-measure on Sί if for every orthogonal family (P*) in ^(81) the
equation m(Σ Pi) = Σ w(P<) is satisfied. If the equation holds for
finite orthogonal families then m is called a finitely additive
G-measure.

Gleason proved [3] that for 81 = L(H) (the bounded operators
on H) and dim H Φ 2 every G-measure is extendable to a (necessary
unique and normal) linear form on 81. A. A. Lodkin generalized this
result to all von Neumann algebras acting on a separable Hubert
space and not having a type I2 direct summand, but the proofs are
only sketched and seem to be incomplete. This paper provides a
complete proof of Gleason's theorem for those type I von Neumann
algebras not having a type I2 direct summand, so in particular no
assumption about the separability of H is made.

THEOREM 1. Let % be a type I von Neumann algebra without
a type I2 direct summand. Let m be a G-measure on SI. Then
there is an extension of m to a linear form on Sϊ, which is neces-
sarily normal and unique.

The proof of the theorem is given in a series of lemmas. First
we introduce some notation. Throughout the paper let X be a
hyperstonean space. For every real or complex Hubert space K of
finite dimension n the space C(X, K) of continuous functions from
X to K is an ^-dimensional module over C(X). We can easily carry
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over many concepts known in the Hubert space K to the module
C(X, K) by defining them pointwise, so let an inner product on
C(X, K) with values in C(X) be defined by (/, g)(x) = (/(a?), g(x)).
Two elements / and g are said to be orthogonal to each other (/1 g)
iff (/, 0) = 0. A module basis {fl9 ••-,/»} is called an orthonormal
basis if (fi9 fό) = did. To avoid confusion, we define the function
I . I from C(X, K) to C(X) by \f\(x)= \\f(x)\\, leaving || . || for the
usual supremum norm on C(X, K).

On C(X, K) we define an equivalence relation ~ by / ~ g iff
there is a φ e C{X) such that <p(x) Φ 0 for all x e X and / = φg.
Note that the following are equivalent: (i) f Lg; (ii) there exists
gf ~ g and f ±.gr; (iii) for all g' ~ g the equation / ± # ' is satisfied.

For the case K = R3 define a cross product x on C(X, RB) by
/ x g(χ) = /(#) x #(#) (ordinary cross product in j?3). By S2 we
denote the usual unit sphere in Rz.

Now we are ready to generalize Gleason's notion of a frame
function on S2 to the case of a function on C(X, S2) and to prove
that every frame function on C(X9 S

2) is continuous. Note that for
X a singleton this is just the essential lemma of Gleason's proof.
We have tried to follow as closely as possible the outline of
Varadarajan's proof [5]. The proofs of Lemmas 7 and 10 are
almost exactly the same but are included for the convenience of
the reader since they are short. On the other hand, the remainder
of the proof requires substantially different arguments in several
places.

DEFINITION 2. A function φ: C(X, S2) —> R+ is called a frame
function if there is a positive real constant W, called the weight
of φ, such that for every orthonormal basis {flf f2, /8} of C(X, -B3)
the equation φ(fλ) + Φ(f2) + Φ(fs) = W is satisfied.

So in particular if /, g e C(X, S2) and f~g, then φ(f) = φ(g).

NOTATION 3. Let feC(X, S2). Then we define

E(f) = {geC(X,S2) \g±f};

Uf) = {g G C(X, S2) I Vx e XΊg' e C(X, S2): g' - g — /(x) ^

For / and ^ in C(X, S2) we have E(f) £ L(/) and iSΓ(/)
Furthermore, if one notes that X is hyperstonean, the following
are easily seen to be equivalent: (i) f~g; (ii) E(f) = E(g); (iii) L(/) =
L(flO; (iv) N(f) = N(g). Now let fc be in L(/). Then |Λ x / | is
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strictly positive on X, so l/\h x f\ is in C(X). Define hof—\\\h x
f\(hx /) ; then hof is in both C(X, S2) and E{f) Π E(h). In parti-
cular heL(h°f)f so ho(h<>f) is defined. We write

EW(h, f) = EihoQiof)) .

REMARK. The notations E(f), N(f) and EW(h, f) are intended
to bring to mind the notions equator with respect to /, northern
hemisphere with respect to / and east-west great circle through h
of Gleason's proof; the exact analogy breaks down if X is a
singleton.

I. In this section we prove the continuity of a frame function.

LEMMA 4. Let feC(X,S2), and φ be a frame function on
C(X, S2) which is constant on E(f). Then for any g in N(f) and
any h in EW(g,f),

φ{g) ̂  φ(h) + φ(f) .

Proof. Denote by k the constant value of φ on E(f)f and let
W be the weight of φ.

(a) For I e L(f), we claim that φ(l) ̂  k + φ(f).

To see this, note that {I, Uf9 {Uf)ol} and {/, Uff (Uf)of) are both

orthonormal bases. Moreover Uf and (Uf)°f are in E(f), so

W - Φ(f) + φ{hf) + φ{{Uf)of) = φ(f) + 2k

and

W = φ(l) + φilof) + φ((Uf)ol) ^ ψ(l) + k .

It follows that φ(l) ̂  φ(f) + k.
(b) For geN(f) and heEW(g, f) = E(go(gof)) define h'= h<>

(g°(9°f)) Then {g, gof9 go(gof)} and [h\ h, go(gof)} are orthonormal
bases and g°f£ E(f), so

(1) ΦW) + φ{h) - φ{g) + φ(gof) = ^(^) + fc .

Moreover h'eL(f). Assume t h e contrary . Then t h e r e is an xeX
such that h\x) = ±/(a?) so f(x)±g°(g°f)(x); that is, {f(x),gof(x)>
go(gof)(χ)} and {flr(ίc), g°f(;x), g°(g°f)(x)} are orthonormal bases in JB3.
So e/(x) = ±f(x) which contradicts the fact that g is in iV(/)

Since h'eL(f), part (a) yields the inequality

Φ(h') 5g fc + p(/) , which, combined w i t h (1), gives

φ{h) ^ ^(gr) — φ(f). This completes t h e proof.
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For the moment let X be a singleton and identify C(X, S2) with
S2, so the meaning for points in S2 of the notation introduced in 3
is clear. Using cartesian coordinates in R\ define P to be the plane
{xz = 1} in R\ N= {xeS2\0 < xz < 1} and p = (0, 0, l ) e S 2 . Denote
by Π the central projection with center 0 of N into P. Then Π(p) ~
p and Π is a homeomorphism of N onto P\{p} which maps the
circles in N with centers p bijectively onto the circles in E with
center p. If K Φ E(p) is a great circle in S 2 not containing p
then Π(K Π N) is a straight line in P not containing p. The map-
ping so defined is also a bijection. Moreover for y in N a great
circle ϋΓ is equal to EW(y, p) iff /7(iΓ Π -A0 is perpendicular to the
straight line connecting p and Π(y).

For yeN define G, == Π(EW(y, p)ΠN), and for s 6P\{p) define
Gs — Gπ-i{s). Then for s 6 P\{p}, Gs is the unique line in P containing
s such that the map#—> \\χ — p\\ attains its infimum in s.

LEMMA 5. Let X be a singleton, p be defined as above,
a e ]0,7r/2[, and z — (cos a, 0, sin a) 6 S2. Define Ka to be the open
disc in P with center 1/2(11 (z) + p) and radius ||l/2(/7(») — p)\\, and
define Sa to be the boundary of Ka. Then, when s 6 Ka, the inter-
section of Gs and Sa consists of two points I^s, a) and I2(s, a) where
Iλ and I2 are continuous functions of s and α. Moreover,

z G EWiΠ-XUs, a)), p) and Π-\IJβ, a)) e EW{Π~ι{s), p) .

Proof. Π{z) is of the form Π(z) — (p(ά), 0, 1), where p is con-
tinuous. If s is in JSΓα, then (βt — p(a)/2f + s\ < (p(a)/2)2, so sφia)/
(si + st) - 1 > 0. Now

Sa = {x 6 P\x\ + x\ — xφ(a) = 0}

and

Gs = {xeRs\lμeR such that x = fo, s2, 1) + /̂ ( — s2, sl9 0)} .

Thus for the points s in Gs Π Sα we have

that is, there are exactly two such points. Let Lx(s, a) (resp. I2(s, a))
be the point corresponding to the positive (resp. negative) square
root of μ2; then Ix and I2 are continuous functions of s and a. Since
Us, a) is in Gs, it follows that Π-\Us, a)) is in ^ ^ ( i Z - 1 ^ ) , p). Let
K be the disc in P with center p and radius \\Π(z) — p | | , and let
G be the line containing Π(z) and either Us, a) or I2(β, α), say Us, a).
Then I^s, a) is the midpoint of G Π K, so G = G I l ( S ) α ) and £ e
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EW(Π-\Us, a), p).

LEMMA 6. Let feC(X, S2) and φ be a frame function defined
on C(X, S2) and constant on E(f). Let geN(f), and define Mg =
{heN(J)\lleN(f)nEW(h, f) such that geEW(l,f)}. Then the
interior of Mg is nonempty and for all heMg we have:

φ{h) ̂  φ(g) + 2φ{f) .

Proof. The inequality is an immediate consequence of Lemma
4 and the definition of the set Mg, so we only have to show that
the interior of Mg is nonempty.

(a) First we show that we can assume that / = (0, 0, 1). With
respect to the canonical module basis of C(X, U3) we can write / =
(/i,/2,/3), where the //s are continuous functions on X and f2 +
fl + fi = l. Define A = {x e X\f2 Φ 1}, and define a\ β':A->R by
a'(x) = (1 - fKx))-1/2fM and β\x) = (1 - fi(x))-1/2Mx). Then af and
βf are continuous and bounded and X is hyperstonean, so there are
continuous extensions a and /3 on cl A, the closure of A. Using
the canonical basis of Rz we define Ur: X->L{R?) by

a(x) β(x) 0 \

-β(x) oc(x) 0 , if x eel A

0 0 1/

Identity map, elsewhere.

Since cl A is open and closed the components U^ of Uf are con-
tinuous functions on X. The mapping U' induces an isomorphism
U of the vector space C(X, R3) by Uh(x) = U'(x)h(x). For all h in
C(X,RZ) we have |J7Λ| = |λ| and \\Uh\\ = \\h\\; that is, U is an
isometry. Moreover, for all h, I in C(X, R*) we have that h±l
iff UhJL Uly so U maps C(X, S2) homeomorphicaily onto itself, taking
Mg onto Mug. Furthermore Uf is of the form Uf=((Uf)lf0ffz).
Define W:X->L(R3) by

W(x) =

Then "PΓ has the same properties as U and TF(Z7/) = (0, 0, 1).
(b) Now we show that we can make the additional assumption

that g is of the form g{x) — (cos a(x), 0, sin a(x))9 where a is a con-
tinuous function on X with values in ]0, ττ/2[. Since / = (0, 0, 1), g
is in iSΓ(/) iff g3(x)6]-l, 0[U]0, 1[ for all x in X Reasoning as in
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(a) we can assume that g is of the form g = (gl9 0, gs). Now the
function x —> sign (gs(x)) is a continuous function from X to { — 1,1}
and #' = sign(gz)-g is equivalent to g, so Λfff/ = My. Moreover we
have 0 < g'z(x) < 1 for all x in X. Finally define α: X-> ]0, π/2[ by
α(a?) = arc sin g[(x).

(c) Let a0 — sup α(a ) e ]0, π/2[, and define 2 0^S 2 by z0 = (cos α0,
0, sin α0). Let iΓ be the open disc in the plane P with center
l/2(/7(z0) + p) and radius ||l/2(/7(«0)-p)||. Let B = C(X9 Π'\K));
then JS is an open subset of C(X, S2). Choose heB; with the nota-
tion of Lemma 5, we have Π(h(x)) e Ka{x) for every x in X. Define
Z:X->S2 by Z(α) = Π-ι{Iλ{Π{h{x)9 a(x)))). It follows from Lemma 5
that Z e C(X, S2), flr e EW(l, / ) , and Z e EW(h, / ) . Moreover 0 < lΛ(x) <
1 and 0 < h3(x) < 1 for all x in X, so h is in ikf,. We conclude that
U £ ilf̂ , which completes the proof of the lemma.

LEMMA 7. With f and φ defined as in Lemma 6, let η be a
positive real number with ψ(f) < η. Then there is a g in N(f) and
an open set M containing g such that

0 ^ sup φ(M) - inf φ(M) ^ 2>η .

Proof. (The proof follows exactly the proof of Lemma 7.16, p.
152 of [5].) Define b = inf φ(N{f)) ^ 0. Let I be in N(f) such that
b <Ξ φ(l) ̂ b + η. By Lemma 6 we have (̂jfc) ^ ^(ί) + 2η for every
fc in Mu so 6 ^ (̂fc) ^ δ + 3^. Define If to be the interior of M%
and let g be any point of M.

LEMMA 8. Let f be in C(X, S2), ε > 0, and

M(f, ε) = {ge C(X, S2) \ vf - fvx e X|] g(x) - /'(«) || > ε} .

Then there is a constant k(ε) depending only on ε such that for all
hlf h2 in M(f, ε) we have

Whof - h2of\\ ^ A ί ε ) ! ! ^ - ^ || .

Proof. For x in X and i — 1, 2 define iJΓ(#, i) to be the great
circle in S2 containing fix) and &Λ&). Define Mix, e) = {t e S 2 | | |/(a?)-ί| |
> ε and || — f{x) — t | |>ε}. Let A(a?, i) be that component of K(x, i)Π
M(a;, ε) which contains / (̂cc), and let t ̂ x) be the point of intersec-
tion of A(x, i) and E(f(x)). Then

fix) - hlx)ofix)\\ = \\vxix) x fix) - v2ix) x

= 11̂ (0?) - v2(x)\\ .

Moreover there is a constant &(ε) such that
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k(e).d(A(x, 1), A(x, 2)) ^ \\Vl(x) - v2(x)\\ ,

so

mWKix) - h2(x)\\ ^ \\Vl(x) - v2(x)\\ = IIW^o/Co?) - Λ2(a?)o/(a?)|| .

Therefore

- h2(x)of(χ)\\.

LEMMA 9. Let f be in C{X, S2) and φ be a frame function
defined on C(X, S2). Let M be a neighborhood of f such that

0 ^ sup φ(M) - inf φ(M) £ a .

Then for each g in C(X, S
2
) there is a neighborhood U

g
 of g such

that

0 ̂  sup φ(U
g
) - inf φ(U

g
) £ 4a .

Proof, (a) First we show that for each h in E(f) there is a
neighborhood Vh of h such that

0 ^ sup φ{Vh) - inf φ(Vh) = 2a .

As in Lemma 6 one can assume that / = (0, 0, 1) and h = (0, 1, 0).
For δ G R such that 0 < δ < 1/10 and Kδ(f) £ M, where Kδ(f) is the
open ball with radius δ and center /, define u e C(X, S2) by u =
(0, [1 + (3/2)δ + (2/9)δ2]-1/2[l + (l/3)δ], -(1/3)3). Define A - JBΓΛ/9(fe);
then A Q M(u, δ/9). So by Lemma 8 we have {{h^u — h2°u\\ ^
k(δ/9) {{hi — /&2|| for all Λx and fc2 in A. Since ^ 0 ^ and h2ou are
elements of M(hl9 δ/9) and ^ and h2 are elements of M(h2ou, δ/9),
we have

||Λi°(fei°w) — h2o(h2ou)\\

^ ll^i o(^i o^) — hLo(h2ou)\\ + Wh^ih^u) — h2o(h2ou)\\

u - h2ou\\

This implies that the map F : A -> C(X, S2) defined by F(ί) = U(loU)
is continuous. Since JP7(fe) = / there is a neighborhood F^ of h such
that F . C i and F(Vh) Q Km(f). Choose ί e F Λ . Then I and u are
in E{Uu), so

- uo{Uu)\\ = |!ίo(ίoU) - uo(ioU)|j = II ί - tt|

Thus

| | / - uo(lou)\\ £ δ/3 + IIZ - ^ | | £ δ/3 + δ/9 + ||fe - u\
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so uo(lou) is in M.
In addition, {I, l°u, U(hu)} and {u9 l°u, u°{Uu)} are orthonormal

bases, so we have

φ(l°{l°u)) = φ(u) + ψ(ιι°{lou)) .

Let V be another element of Vh. Then

oil') + φ(lΌ(l'oU)) =

and finally, by subt ract ion,

^ \Φ(uo(loU)) -
ίou)) - φ(lro{lΌu))\ <> 2a .

This completes the proof of (a).
(b) Now let I be in C(X9 S2). As in Lemma 6, we can assume

that / ΞΞ (0, 0, 1) and that I is of the form I = (llf 0, l3). Let h =
(0,1,0); then heE(f) and leEQi). The proof of the lemma is
completed by applying (a) twice.

LEMMA 10. Let φ he a frame function defined on C(X, S2).
Then φ is continuous.

Proof. (The proof follows exactly the proof of Lemma 7.18, p.
154 of [5].) Let ε > 0. Since every positive constant function is
a frame function we can assume that mίφ(C(X, S2)) = 0. Let ^>0,
feC(X, S2) be given such that φ(f) < η/2. As in Lemma 6 we can
assume that / = (0, 0, 1). Define F: C(X, S2) -* C(X, S2) by F((glf g2f

gz)) = { — g2, gl9 gz). F is a homeomorphism which preserves ortho-
gonality, so φoF is again a frame function. Define ψ = φ + φoF.
Then ψ is a frame function on C(X9 S2), and is constant on E(f).
Moreover γ(f) < η. By Lemma 7 there is a g in N(f) and a
neighborhood Ug of g such that

0 ^ sup ψ(Ug) - inf α/r(ί7,) ^ Zη .

By Lemma 9 there is a neighborhood £7/ of / such that

0 ^ sup ψ( Uf) - inf ψ< C/y) ^ 125? ,

so

0 ^ sup^(J7/) ^ 13)7 -

Thus

0 ^

from which it follows that
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0 ^ supφ{ϋf) - inf φ(Uf) ^ 13)7 .

By Lemma 9 there exists for each h in C(X, S2) a neighborhood
Uh of h such that

0 ^ sup φ(Uh) - inf φ(Uh) ^ 5257 .

Hence φ is continuous.

II* In this section let H be a finite-dimensional complex Hubert
space of dimension dim H ^ 3 and let S be its unit sphere. Define
& to be the set of all continuous functions on X with values in
the projections on H and ^ to be the set of those members of &
which have their values in the set of all one-dimensional projections.
This section is devoted to the relationship between C(X, S) and ^ .
For / in C(X, S) define the map Pf: X-+&(L(H)) by Pf(x) = Pf{x)

(the projection on the one-dimensional subspace of H spanned by
fix)).

LEMMA 11. The map f-*Pf is a map from C(X, S) onto ^* .

Proof, (a) Let fe C(X, S) and x,yeX. We have

||Pf(x) - Pf(y)II - sup{||Pf{x)a - Pfiy)a\\\aeS}

= sup {|| (α, f(x))f(x) - (α, f{y))f{y) || | α e S} = 21| f(x) - f(y) \\ ,

so Pf is a continuous map, so P
(b) Let P e ^ . For each x in X select an ax in (P(x)H) Π S

and define fΛ to be the constant function which maps X to ax. Then
/β is in C(Xf S) and \\P(x)fx(x)\\ — 1, so there is an open and closed
neighborhood Ux of # such that \\P{y)fx{y)\\ > 1/2 for all y in [/,,.
Define gx: Ux-*Sbγ gx(y) - llPd/)/.^)!!"^^)/^!/). Then g, is con-
tinuous and for all yeUx we have P(y) = Pgχ{y). Since (Ux)xex is
an open covering of X, there is a finite subcovering iUXlf •••, J7βΛ)
Define gr e C(X, S) by

\g.kix), if xeU.k\Ό{U.t\i<k}.

Then we have P = Pσ.

LEMMA 12. Lβ£ n be a natural number and let Q be in &
such that dimQ(x) > n for all x in X. Let fl9 •••,/» in C(X, S) be
pair wise orthogonal and such that Pf. ^ Q. Then there is a g in
C{X, S) such that g ±ft (1 ^ i ^ n) and Pg ^ Q.

Proof. For each a; in I select ax in (Q(x)H) Π S such that
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ax±f(x) (1 5£ i <i %)• Define g'x to be the constant mapping from
X to ax. Then g'x is in C(X, S) and satisfies

||Q(a;)flrί(aO|| - 1

and

Hence there exists an open and closed neighborhood Ux of x such
that for y e Ux we have

\\Q(y)g'M\\ > i/2

and

Σ (My), Q(y)g'MY < 1/4 .

Define hx: UX->H by

hM = Q(y)flr;(l/) - ^

and ^ : Ux-> H by

Σ

As in the proof of Lemma 11 one can define a function g with the
desired properties.

LEMMA 13. For fλ and f2 in C(X, S) there exists a p in C(X, C)
such that (/i, pf2) is in C(X, R).

Proof. Define A = {xe X\(f(x), f2(x)) Φ 0}. Then cl A is open
and closed. Define p': A —• C by

Then pf is continuous and bounded on A; since X is a hyperstonean
space there is a (unique) continuous extension p" of pf to cl A.
Finally define p e C(X, C) by p — p" on A and ^ = 1 on the com-
plement of cl A.

LEMMA 14. Let Pu P2 be in &>λ. Then there are functions
/i, ft, fz in C(X, S) such that the following hold:

( i ) fl9 f29 /3 are pair wise orthogonal)
(ii) P^Pf,;
(iii) there is an f in C(X, S) which is contained in the real

submodule of C(X, H) spanned by f and f2 and such that P2 = Pf.
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Proof. By Lemma 11 there are functions g1 and g2 in C(X, S)
such that Px = P9ί and P2 = P9z. Define fx = gx. By Lemma 13 there
is a p in C(X9C) such that (fu pg2) is in C(X, JB); define / = <og2.
Then P2 - P / e Let A = {xeX\(f,f) Φ 1} and define fi:A-^S by

Then /2 is continuous and bounded. H is finite-dimensional, so the
fact that X is hyperstonean implies the existence of a continuous
extension / " of /2 to the open and closed subset cl A of X. By
Lemma 12 there exists an h in C(G cl A, S) such that h is orthogonal
to the restriction of f to the complement of cl A. Now define f2

to be fl9 on cl A and h on the complement of cl A. Then /i J_/2

and / = (/,/J.Λ + (/,/2)/2. Moreover, (/,/2) is in C(X, Λ), so / is
contained in the real module spanned by /i and f2. Again by Lemma
12 there is an fs having the desired properties.

ΠI In this section let Sί be a von Neumann algebra of type
Iw where neN and n ^ 3. Then by [1], pp. 239-240, 81 is isomor-
phic to 35(x)L(iϊ), where 35 is an abelian von Neumann algebra, H
is an ̂ -dimensional complex Hubert space and (x) denotes the tensor
product of von Neumann algebras. In particular, 35 is isomorphic to
a space C(X, C), where X is hyperstonean. So by [1], p. 24, Pro-
position 4, (ii) (and the fact that d i m i ϊ = n < oo)f §ί is isomorphic
to C(X, L(H)). We identify C(X, L{H)) with Sί and C(X, C) with
the center 35 of Sί.

If m is a finitely additive G-measure on Sί then the restriction
of m to 35 induces a finitely additive measure on the open and
closed subsets of X and also induces a unique continuous positive
linear form on 35, denoted by R(m).

Denote by M the set of all finitely additive G-measures m on
Sί with m(Id) = 1, and let Mf denote the set of all positive linear
forms on 35 with norm 1. Then R is a map from M onto M^.
Define N = R-^exM?) (ex A the extreme points of A). For meM
denote by S(m) the support (in X) of R{m). If m is in N we also
denote the single element of S{m) by S(m).

LEMMA 15. M is a compact convex subset of R^m and N is a
closed subset of M containing ex M.

Proof, (a) M is a closed convex subset of [0, \γ{%\ so it is
compact and convex.

(b) Equip Af+ with the w*-topology of 35* - C(X, C)*. We
show that R is continuous, from which it follows that N is a closed
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subset of M.
Let (mi)ieI be a net in M converging to m, so (mt(P)) conver-

ges to m(P) for all P e ^ ( S Ϊ ) . Now for Pe^(33) we have m(P) =
R(m)(P), so for all step functions T in S3 = C(X, C) we have
R(mί)(T)->R(m)(T). Let /e$8 and ε > 0 be given. There is a
step function Te23 such that | |/ — T\\ <; e/3 and an ioel such that

- R(m)(T)\ < ε/3 for all i ^ v So for all i ^ i0 we have

I JB(m)(/) -

Thus R{m^)(f) —> R(m)(f), so R is continuous.
(c) Let meexM, and assume that R(m) is not in exikf^. Then

there exist Plf P2 e ̂ *(S3) such that Px + P2 = Id and λ = m{Pλ) e ]0,
1[. Define mx and m2 by m^^X-'miP.Q) and m2(Q) = (l-λ)-1rn(P2Q).
Then m = \m1 + (1 — λ)m2 is a nontrivial convex decomposition of
m, which contradicts the assumption. We conclude that exM Q N.

LEMMA 16. Let m be in M, let U be an open and closed subset
of X containing S(m), and let Q = 1̂  (the indicator function of U);
so QeSS. Let Plf P2 be in &*(&) such that PλQ = P2Q, Then

= m(P2).

Proof. S(m) is the support of R(m), so m(Q) = l and m(l — Q) =
0. Thus for all Pe^(W) we have

m(P) = m(PQ) + m(P(l - Q)) - m(PQ) .

LEMMA 17. Lβί m be in N and let Pl9 P2 6 ̂  6e such that
P1(S(m)) = P2(S(m)). Then m(Px) = m(P2).

Proof. Choose fl9 f2, fz and / as in Lemma 14. Let gl9 g2, gz be
the canonical module basis of C(X, Λ3). Define J: C(X, RZ)-*C(X, H)
by I(fe) = (h, gdfi + (Λ, ί/2)/2 + (h, gz)fz. Then I is an isometry of
C(Xf R3) onto the real module spanned by {flf f2, /3}, and I maps
C(X, S2) into C(X, S) (where S is the unit sphere of H). Define a
frame function φ on C(X, S2) by fφ(f) = m(P/(/)). Now P^Sim)) =
P2(S(m)), so either ^(Sίm)) - /(S(m)) or /.(SCm)) - -/(S(m)); we
can assume that /i(S(m)) = f(S(m)) (otherwise take — / instead of
/ ) . Define Λ = /"'(Z). Then we have g^Sim)) = h(S(m)). For each
w 6 iV there exists an open and closed neighborhood Un of S(m) such
that

s u p { | | g t ( x ) - h(x)\\\xeUn}

Define hn e C(X, S2) to be h on ί7Λ and gλ on the complement. Then
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\\hn ~ 01II < Vnt s o K converges to gx. For xeUn we have h(x) =
hn(x) and so also /(a?) = I(h)(x) = I(hn)(x). By Lemma 16, m(P2) =
m(Pnhn)) — Φ(K) for all neN. Moreover, m{P^ = m(Pfl) = ̂ (^). So
by Lemma 10 we conclude that m(Pχ) = ̂ (c/i) = lim 0(fe J =

For P e ^ ( 9 ΐ ) and xeX define P β e ^ ( 8 ϊ ) by Px(y) = P(x) for
all 7/ in X

LEMMA 18. Let m be in N and x — S(m). Then m(P) — m(Px)
for all Pe^(SI).

Proof. The map d: X-+N, defined by d(x) = trace P(x)
is continuous, so there is an open and closed neighborhood U of x
such that d is constant on U. By Lemma 16 we may assume U —
X. If d Ξ 0, then P = 0 and 0 = m(P) = m(Px). Assume that
d = neN. By Lemma 12 there are P l y , Pne^ which are pair-
wise orthogonal and such that P=Σ?=iP* Thus m(P) = Σ?=iW(Pi),
and we may apply Lemma 17 to complete the proof.

LEMMA 19. Let m be in N. Then there is a unique state fm

on 9ί extending m. The mapm—>fm is continuous from N to the
set S of all states of Sί when S is equipped with the w*-topology
of the dual of St.

Proof, (a) Denote by m' the restriction of m to CΊX (x) L(H)~
L(H). Then m' is a G-measure on L(H). Define hm to be the unique
extension of m' to a state on L(H). Define /: δί-^L(iϊ) by /(P) =
P(S(m)). Then / is a representation of 81, and fm = hm°I is a
state on 81. We show that fm extends m. Let P e ^ ( 9 ϊ ) . Then we
have fm{P) - hmoI{P) = hm(P(S(m))) = m'(P(S(m))) = m(Ps{m)) = m{P),
the last equality being justified by Lemma 18. Since the dimension
of H is finite, the linear combinations of elements must be dense in
Sί in the norm topology, so fm is unique.

(b) Let (mt)ieI be a net in N converging to m. Then (m )
converges to m'. As in the proof of Lemma 15 one can show that
(hm.) converges to hm and that (fM.) converges to fm.

LEMMA 20. Let m be in M. Then there is a unique state fm

of $ί extending m.

Proof. By Choquet's theorem there is a maximal measure μ
on M which represents m. By Lemma 15 the support of μ is in
N. This and Lemma 19 suffice to settle the question of existence
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of an extension. The uniqueness follows as in Lemma 19.

IV. Proof of the theorem. By [1], p. 240, second paragraph
and Proposition 2, 31 is of the form Sί = /73ίw, where the SΪΛ are of
type In and n is out of a fixed set of cardinals. By the assumption
n Φ 2 for all n. Since m is completely additive we can assume that
Sί is of type In and n Φ 2. If n — 1, then Sϊ is commutative, so
we may assume that n ^ 3.

We first prove the following claim:

If Pe^(W) is a finite projection, then the restriction
(2) mP of m to PSΆP has a unique extension to a state

on PSIP.

Let P e ^ ( S ϊ ) be finite, that is, PSΆP is a finite type I von Neumann
algebra. As above we may restrict our attention to the case in
which P8ϊP is of type ln, where now n is a natural number. The
case n = 1 is the commutative case and for n ^ 3 the claim follows
by Lemma 20. Only the case n — 2 remains. Let PSΐP be of type
I2. Then there are projections Pl9 P2 in PSΆP such that Px and P2

are abelian relative to P%P, Px is orthogonal to P2, Px is equivalent
to P2 relative to PSίP, and P, + P2 = IdP3lP = P. Since PJE> = PP, = P<
we have that P1 and P2 are abelian relative to Sί and since PSίP £ Sί
they are equivalent relative to 2Ϊ as well. Denote by Z(Q) the
central support of Qe^(Sί) . Because of the additivity of m we
may assume that Z(P) = 1. Let Q = 1 - P. Then by [1], p. 218,
Theoreme 1, there exists a projection G in 35 such that

(a) QG < P,G, and (b) Px(l - G)< Q(l - G).
By (a) and [1], p. 123, Definition 3 and the succeeding paragraph

there must be a projection H in S3 such that H<*G and QG~PλH.
Then Z(QG) = ^ ( P ^ ) = ^(PJjff = iϊ, so Q(G - H) = 0 or P(G-H) =
G - H. Now PSίP is of type I2 and 81 is of type In where w > 2,
so G - H has to be 0. So we have QG - P,G.

By (b) there is a Qx ^ Q(l - G) such that Px(l - G) - Qlβ Let
P, = QG + Qx. Then P3 - P l f so P3 is abelian and Pl9 P2 and P3 are
pairwise orthogonal. Define Pf = Px + P2 + P3. Thus P'8lP' is of
type I3 and contains PWP, so again we may apply Lemma 20. This
completes the proof of (2).

Now define F' = U {PSίP | P G ^(Sί), P finite}, and let F be the
vector subspace of Sϊ which is spanned by Fr and 1; that is, F —
Fr U {λ(l - A) I λ 6 C and A e F'}. Let A be in ί7 and Px, P2 be finite
projections in ^(Sί); denote by Q their supremum in ^(81), which
is again a finite projection. Then we have:

( i ) If A = PiAPi - P2AP2, then A = QAQ and fPl(A) = /P2(A) =
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(ii) If A = P1AP1 = λ(l - E) where B = P2BP2, then either
A = 0 or 1 G QSίQ, so /Pl(A) = /«(A) = λ(l - fP%(B)).

(iii) If A=\ι(l - P1B1P1) = λ ϊ(l-P fB2P2) then ^ ( 1 - / ^ 5 ^ ) =
λ,2(l = fP2(P2B2P2)). These properties of the family (/P) allow us to
define a linear form / ' on F by

I MA), if A ePWP;
S (λ(l -fP(B)) , if A = λ(l - 5) and BePWP .

We may assume that m(l) = 1. Then we have the following:
( i ) F is self-ad joint and leF;
(ii) /'(1) = 1;
(iii) f'(A) ^ 0 for all A e F f] Sί+;
(iv) /'(A*) = Tψ) for all AeF.

We only show that (iii) is true for A = λ(l — 5) and λ < 0. In this
case B^l9 so suppl? ^ 1. Now J5 = PBP for some finite P; that
is, 1 = PIP. So F = ί1' = Sί and /'(A) ^ 0. By [2], p. 50, Lemme
2.10.1, the conditions (i)-(iv) ensure that there is a state / on 9ί
extending /'. It remains to prove that / is an extension of m; the
normality of / is then an immediate consequence of the complete
additivity of m.

Let P e ^ ( S l ) . Then there exists a family (Pt)tB1 of pairwise
orthogonal and finite projections in Sί and a subset J Q I such that

Σ Λ = 1 and Σ*Pt = P.
iel iej

Then we have

(3) f{P) ^ Σ f(Pi) = Σ »(P<) = m(P) .

)Σ
IV

SO

(4) /(P) = 1 - /(I - P) ^ 1 - m(l - P) = m(P).
By (3) and (4) we have f(P) = m(P), so / is an extension of m and
the proof is completed.
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