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INVARIANCE OF PROPERTIES UNDER AUTOMORPHISMS
OF THE LATTICE OF RECURSIVELY

ENUMERABLE SETS

MICHAEL STOB

1* Introduction* An important question about the structure
of g", the lattice of r.e. sets, is the study of which properties of
r.e. sets are invariant under Aut g7, the group of automorphisms
of g*. Many of the more important properties of r.e. sets are
easily seen to be invariant. Simplicity, maximality, and r-maxi-
mality are invariant since the usual definitions are in terms of the
lattice operations of g7. Hyperhypersimplicity is invariant since
Lachlan has characterized the hyperhypersimple sets as those which
have Boolean algebras for their lattices of r.e. supersets. D. A.
Martin has shown that hyper simplicity is not invariant. We show
in this paper that dense simplicity is not invariant.

DEFINITION 1.1. (a) If B Q N, pB is the function that enumer-
ates the elements of B in increasing order; i.e., pB(n) — nth element
of B.

(b) A coinfinite r.e. set A is hypersimple (Post) if pj is not
dominated by any total recursive function (i.e., for each recursive
function / there are infinitely many n for which fin) < pz(n)).

(c) A coinfinite r.e. set A is dense simple (Martin), if pj domi-
nates every total recursive function. (It is clear that if A is
dense simple, A is hypersimple.)

THEOREM 1.2. There is a dense simple set A, an r.e. set B
which is not hypersimple, and an automorphism Φ of & such that
Φ{A) = B.

COROLLARY 1.3. Dense simplicity is not invariant under Aut g7.

COROLLARY 1.4 (D. A. Martin). Hyper simplicity is not invariant
under Aut g7.

A proof of Martin's theorem as well as a summary of most of
what is known about the automorphisms of g* may be found in [5].
Martin's proof was a finite injury priority argument. In [5], how-
ever, Soare gives a powerful new technique of the infinite injury
type for constructing automorphisms and uses this to prove that
the maximal sets form an orbit of Aut g*. It is this technique that
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we use and extend to prove Theorem 1.2.
In § 2 we give the basic strategy for meeting each of the re-

quirements of the theorem. In §3 we describe the "pinball machines"
which give the basic combinatorial picture of the proof and we give
the basic construction. In § 4 we give the rules describing the
movement of "balls" on the "pinball machines" and thereby deter-
mining the sets A, B and the automorphism Φ. In § 5 we carry
out the verification that the construction works. In § 6 we discuss
some open problems suggested by this theorem.

Our notation is for the most part standard; a reference is
Rogers [3]. We identify a set with its characteristic function and
let A[x] denote the restriction of A to arguments <Lx. N always
denotes the set of nonnegative integers. Let if* denote the lattice
g* modulo ^ where ^ is the ideal of finite sets. If A, Be ξf,
A*, J3* 6 g7* denote the equivalence classes of A, B. We let A* = B*
be denoted by A = *B (i.e., the symmetric difference of A and B is
finite); A £ * B denotes A f] B = * φ; and Ba^A denotes A — B is
infinite. Often we will (implicitly) confuse A and A* by choosing
a particular representative of A*. A recursive array is a recursive
sequence of r.e. sets. A simultaneous enumeration of a given
recursive array {Xn}neN is a 1:1 recursive function g with range
{(m, n):meXn}. Thus at each state sf g(s) — <m, n) enumerates
one element m in one r.e. set Xn. If g is assumed, Xn>8 denotes
the set of elements enumerated in Xn by the end of stage s, Xn\Xm —
{x: ls(x e Xn,s - Xmt.)}, and Xn\Xm = (Xn\XJ Π Xm. The estate of
an element x at stage s is Σis xe*,,, 2e~* and is denoted by σ(s, e, x).
We sometimes identify σ(s, e, x) with {i <L e: xeXί}8}.

2. The requirements* The strategy for making A dense
simple is straightforward. If {φt}ieN is an effective listing of all
(partial) recursive functions, we simply insure that φ^j) < pj(n)
for all i, j ^ n. Note that the only negative requirment on A is to
make A infinite; we have considerable freedom in enumerating ele-
ments in A beyond those necessary to insure pj dominant.

To guarantee that B is not hyper simple, we will use an alter-
native characterization of hypersimplicity. If xλ < x2 < < xk and
y = 2*i + +2**, let Dy denote the finite set {xu ••-,&*}. A
sequence of r.e. sets {Dh{n)}neN determined by a recursive function
h is a strong array. Kuznecov, Medvedev, and Uspenskii (see [3])
have shown that our definition of hypersimplicity is equivalent to
the nonexistence of a strong array {Dh{n)}neN of pairwise disjoint
sets such that Dh{n) f) B Φ φ for all n. Fix a strong array {Dh{n)}neN

of disjoint sets such that \Dk(n)\ = n + 1 and \JnDh{n) = N. We
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will arrange that \Dh{n) Γ) B\ <; n. This requirement is clearly a
negative requirement on B,

We will not actually construct Φ e Aut 2Γ so that Φ{A) = B.
Rather, we will construct Φe Aut if * such that Φ(A*) = .B*. Soare
shows [5, Corollary 1.5] that this is enough. Soare also notes [5,
p. 85] that all known constructions of ΦeAutSΓ* are accomplished
by constructing a permutation p of N inducing Φ (i.e., p(C) = *Φ(C))
and functions / and g so that

(1) Φ(W:) = Wf*(n) and Φ'\W*) = W*(n) .

Of course p guarantees that Φ preserves inclusion and / and g
guarantee that Φ and Φ~ι map g * to g**. To meet the two different
requirements of (1), we will enumerate two recursive arrays {Vn}neN

and {Un}neN such that Un = * Vn =* ΫFn for all w and we will simul-
taneously enumerate recursive arrays {Un}neN and {Vn}neN so that:

(2) p(Un)=*Un and ^ ( F J =* Vn .

The requirements (2) can be naturally split into two parts cor-
responding to A and A. We will satisfy for each n both

(3) p(AnUn)=*BnUn and p~\B Π Vn) = * (1 Π Fn) ,

and

(4) p(4Π t7-n)=*(Bn Ĉn) and ^ ( β Π Vn) - * (A Π Vn) .

Let J7n - U: U «7~ where U"+ - Un\B and i7~ - B\Un. Simi-
larly let Fn = F+ U F~ where V+ and F~ are defined with A in
place of B. Condition (3) causes us only to enumerate elements in
the sets U^ and V^. Condition (4) should only require us to
enumerate elements in U~ and V~. However, these requirements
are not quite independent as U+\B Φ φ and V+ \ A Φ φ. To see
how this might affect meeting (4) in our case, consider the follow-
ing situation. Suppose | Vn Π B\ is large so that we must enumerate
many elements of A in K+. Later, to make A dense simple, many
of these elements must be enumerated in A. But then we must
enumerate many elements of VnΓ\ B into B to meet (4), but these
might be restrained by the requirements to make B nonhypersimple.
It is easy to see here that the positive requirement on B is | V»\A| =
0 0 =*l Vn\B\ = oo.

In general, Soare gives necessary and sufficient conditions [5,
Theorem 2.2, p. 91] on the enumeration of A and B so that the
permutation p guaranteeing (4) exists. We will state these condi-
tions precisely in § 5. We will control the enumerations of A and
B to meet Soare's conditions. Thus, (4) will be met by [5, Theorem
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2.2]. We remark here that the requirements of Soare on the enu-
meration of A and B can be phrased as purely positive requirements.
Thus they conflict with the requirements on B, which are negative,
but only conflict with the requirements on A to make A infinite.

We are thus left only with the requirements (3). Namely, we
must construct a permutation p\A and enumerate r.e. sets {Uf}neir
and {V+}neN so that

(5) p(AΓίUn)=*(EnU+) and p~\B n Vn) = * (A n Vi) .

Now these requirements are the same requirements that Soare had
to meet in proving [5, Theorem 2.2] but for A, J5, Unf Vn in place
of A, B, Uny Vf. Our construction of p is therefore similar to
Soare's. There is one complication increasing the difficulty of our
task, however. In Soare's case, since A and B are r.e., no elements
"leave" the domain of p and p"1. Here, however, we are constantly
enumerating elements in A to make A dense simple and elements
in both A and B to satisfy Soare's conditions for (4) to hold. The
reader familiar with [5, Theorem 2.2] will see that this is the main
new feature of our proof and that it adds considerable complexity
to the construction.

The first example of an argument in which requirements (5) are
met is in [6] where Soare proves that the lattice of supersets of a
low r.e. set A(A' = Γ 0') is isomorphic to g\ The main technical
device for meeting such requirements introduced by him is the
assignment of certain priorities so that the domain of p settles
down. It is this device which we use in a different way to meet
the requirements. We have written this paper and [6] simultane-
ously, so as to develop a common framework for automorphism
arguments which feature requirements of the form (5). While
writting this paper we have benefitted from numerous suggestions
of W. Maass.

3* The construction* We assume that we are given a recursive
function g which enumerates simultaneously {Wn}neN> {Wn}neN> and
computations φii8(j)9 i,j,seN, where {Wn}neN and {Wn}neN are
standard enumerations of the r.e. sets. We will also assume for
convenience that Wo = Wo — N and g enumerates x e Wo( Wo) before
enumerating xeWe(We) for any e > 0. Further, we assume that,
if x e We, x is enumerated in We at infinitely many different stages.

We will enumerate in stages recursive arrays {Un}neN, {Vn}neN>
{UZ}neN> {Vn}nQN and r.e. sets A and B and construct a permutation
p so that all the requirements described in § 2 are met.
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We will, like Soare, present the proof as a construction on
pinball machines. The pinball machine M is shown in Figure 1; M
is identical except that each symbol X is replaced by X Pocket A
will also be referred to as pocket B. Two copies of N, {n}neN and
{n}neN act as the balls of M and M. A ball x (x) enters M (M)
from hole Kx (H^). It then proceeds along the surface of the
machine, that portion of the machine covered by arrows, until it
reaches a pocket. From a pocket, x (x) may re-enter the machine
from hole H2, H3, H4.

We now describe what the various parts of the machines are
for. Balls entering pocket A (A) represent numbers enumerated in
A (B). Balls elsewhere in the machine M (M) are numbers in
A (B). Thus no ball is allowed to leave pocket A (A). When x (x)
is at gate G2 (G2) we determine whether to enumerate xeA(B) to
meet the conditions of the Extension Theorem of Soare [5, Theorem
2.2]. Hole H± is used to place xeA to make A dense simple. The
rest of the machine is used to guarantee (5). Before describing

Ooin — Hole H4

*to Holes H 2 , H 3 , H 4

•to Holes H2 ,H3 ,H4

FIGURE 1
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how this is done we need some notation and definitions.
If x e M89 the full estate of x at stage s denoted v(s9 e, x) is the

triple (e, σ(s, e, x), τ(sf e, x)} where σ(s, e, x) and τ(s, e, x) denote the
β-states of x at stage s measured with respect to {Un}neN and {V+}neN

respectively. We will use β-states as finite sets of integers <;e. If
$ 6 M8, v(s, e, x) is (e, σ(s, e, x), τ(s, e, x)) where σ(s, e, x) and τ(s, e, x)
are e-states measured with respect to {U+}neN and {Vn}neN. if σ, τ
are e-states and v = (e, σ, r) a full β-state, [σ]i = σ n {0, 1, , i}
and [v]t = <i, [σ]if [r],>. Let v_x = <-l, φ, φ). Let v = <e, σ, τ> and
i/ = (e\ σ\ τ'>. We say x/ extends v, written v ^ y' if β ̂  ef, [σ']e =
σ, and [r']e = r. We say v «S.ι/ if e — e', σ £ σ', and r 2 r'. Let
y ^ Γ v'(v ^ σ ^ 0 denote P ̂  ^ and τ = τ\σ = σ') If ^ is a set of
full β-states, let S^[v0] = {v:ve<9* and v0 ^ v}. If v = <e, cr, τ>, the
length of v, \v\, is e.

A track is a section of the surface of the machine between any
two of the following: door, gate, pocket, or join. If X is a track
of M, let £ζ(X) = M s , e, χ)' e ^ χ a n ( i x enters track X at stage
s}, arranged as a sequence in order of e. Let £^{X) be the con-
catenation of the S%(X), seN. Such a sequence of full e-states is
called stream X. If v e 6^{X) infinitely often, we write veS^(X)
i.o. £^{X) for X a track of M is defined similarly. We say a stream
X covers (dual covers, τ-exactly covers, exactly covers) v if some
vf G &*(X) i.o. where v ^ v'(v' ^ v, ι> ^ Γ ^', v = vr). Steam X covers
steam Y if X covers every v such that veS^(Y) i.o. Streams X
and y are equivalent if each exactly covers the other.

We now describe the role of pockets P and Q, P and Q are
similar. To construct a permutation satisfying (5), we would like
to pair elements xeM and y eM which are in the same full e-state.
Pocket Q will consist of elements y needing mates. We will attempt
to choose mates for the elements of Q from those elements x enter-
ing track D. We will choose such an a; as a mate for y at stage
s + 1 if v(s, d, x) = v(s, df y) where d depends on s and y. We allow
d to be small when few x appear in any appropriate state making
it easier to choose a mate for y. For most (i.e., almost all) y,
however, we must have d be large so as to guarantee (5). Of
course, to insure that x's do appear that are appropriate mates for
y, we must, in general, enumerate x(y) in some sets V£{U£). For
instance, suppose veS^(E) i.o. That is, infinitely many y appear
on the track before pocket Q in state v. Suppose that V ' G ^ ( C )

i.o. where i/ ^ v. Let v' = (e, σ', τ'> and v — {e, σ, τ>. Then it is
possible to match up the y in state v with the x in state vr by
enumerating the elements x into full β-state (e, σ\ τ) and the ele-
ments y into <β, σ', τ> since vr ^ v. Thus, we should try to arrange
that C covers E (and, in fact, every stream X) and that D τ-



INVARIANCE OF PROPERTIES UNDER AUTOMORPHISMS 451

exactly covers E. Further we should enumerate y only into states
v which appear to be τ-exactly covered by D. With this motivation,
we now continue describing the construction.

At the beginning of a stage, there is at most one ball on the
surface of one machine. If there is such a ball x, the stage consists
of moving the ball according to the rules (§ 4) down one track—a
section of the surface between any two of the following: gates,
doors, joins, or pockets. This may also cause us to enumerate x e
A, B, ύi, Vi and to place other balls above holes. If there is no
ball on the surface of the machine, we choose one ball above a hole
and move it down the surface of the machine in successive stages.
If at the beginning of a stage all balls are in pockets, we enumerate
another element according to g. This may cause us to place some
balls above holes.

CONSTRUCTION. Stage 0. Do nothing.
Stage 8 + 1. The action consists of three steps.

Step 1. Adopt the first case below which holds.

Case 1. Some x (x) is on the surface of M (M). There will be
at most one such ball x (x). Exactly one of the rules of § 4 will
apply to x (x). Move x (x) according to that rule.

Case 2. Some x (β) is above a hole. Choose the least such x
(or least such x if x doesn't exist) and place x (x) on the surface of
the machine at the end of the next track downward from the hole.
(And so x (a?) will fall in Case 1 at the next stage.)

Case 3. Each x (x) in M (M) at stage s + 1 is in a pocket.
Enumerate one more value of our simultaneous enumeration g and
adopt the corresponding subcase below.

(a) g enumerates xeW0 (xeW0). Place a ball marked x (x)
above hole ΈLX (H^ unless x' (x) is in Pocket A (A). Enumerate xe

(b) g enumerates xeWe (xe We), e > 0. By the convention on
the enumeration of Wo (Wo) and Subcase 3(a), x (x) must be in some
pocket of M (M). Enumerate x (x) in Ue (Ve) unless x (x) is in
pocket P. If x (x) is in pocket P, Rule R10 (R10) will apply to x (x).
If x (x) is in pocket A (A) proceed to stage s + 2. If x (x) is in
pocket Q (Q), Rule R3 (R8) may apply to x (x) and should be followed.

(c) g enumerates some computation <pt(j) = k, i <; j . Let
a\ < al < be the elements of A8 in increasing order. If a} <̂  k,
let m' be the least m such that as

m > k. Remove those balls marked
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a}, a* +1, •• ,αj,/-1 from pockets P and Q or from the store of balls
not yet in M and place them above hole JJ4. (This may cause various
other balls to be removed from pockets P (P) according to the rules.)

Step 2. Apply Rule i?4 to every x in pocket Q in increasing
order of x. Apply Rule R4 to every x in pocket Q in increasing
order of x.

Step 3. Apply Rule Rn (Rn) to every element in pocket P (P).

4* The rules* We now give the rules and some of the pro-
perties of the construction. Rules with numbered subscripts are the
same or substantially the same as the corresponding rule in the
proof of the Extension Theorem [5, Theorem 2.2]. Rules with
lettered subscripts are new to this construction.

Rule Rλ (Rλ) determines which balls enter tracks Cx and C2 (Cx

and C2) when they reach door Dx. We let &s denote a certain
sequence defined by induction on s and containing (exactly once) each
pair (v, j) for all j e {1, 2} and all full β-states v, for e < s. Let

RULE Rx. Suppose that sequence &8 is given. If an element
x enters track C at stage s, then at stage s + 1 it enters either
track CΊ or C2 (with v(s + 1, x, x) = v(s, x, x)) as follows. Let <j/, i'>
be the first pair <v, ϊ) on the sequence &8 such that v -<> v(s, x, x).
Remove (i/, i'> from its present position on ^ 8 , place it at the end
of the sequence, and place x on track C^. In this case we say that
<i/, i'> is reset at stage s + 1 . Finally, whether an element & entered
track C or not, add <v, i> at the end of the sequence (in any fixed
effective order) for each i 6 {1, 2} and each full s-state v. Let ^ + 1

denote the resulting sequence.

RULE Rx. Like R1 but with C, Clf C2 in place of C, C^ C2.

Rule RA (RA) is similar and determines which balls enter tracks
C5 and Cβ (C5 and Cβ) when they reach door D3.

RULE RA. Let ^ be a sequence of full e-states with the same
properties as ^?β in Rule Rλ except that C, C19 and C2 are replaced
by C2, C5, and Cβ. Rule RA reads as Rule Λx, but with &\ C5, C6, C2

replacing R, Cίf C2, C.

RULE RA. Like Rule RA but with C2, C5, and Cβ replacing C2, C5,
and C6.
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LEMMA 4.1. Streams Cly C2, C5, CQ (Cu C2, C5, Cβ) are each equi-
valent to C (C).

Proof. The proof follows by making the obvious modifications
to [5, Lemma 4.1]. •

The next rules are new and concern gate (?2. If X is a track,
let S^8(X) be the concatenation of the Sζ for t <̂  s. The purpose
of track CQ (C6) is to arrange for A to cover A (A to dual cover A)
to fulfill the hypothesis of the Extension Theorem of Soare. We
will check members of S%8 (CQ) which are successfully covered. We
must be careful to restrain our enumerations to make B nonhyper-
simple and A coinfinite.

RULE RB. Suppose x is on track C6 at the beginning of stage
s + 1. If there is a full e-state v on S^8(C9) for some e <J x which
satisfies

(1) v is unchecked,
(2) v^v(s, e,x);

place x on track C8 at stage 8 + 1 and check all v on S^8(C9) such
that v <* v(s, e, x). Otherwise, place x on track C7.

RULE R$. Suppose x is on track C6 at the beginning of stage
s + 1 and xeDh{e). If there is a full ΐ-state v on S^S{CQ) for some
i ^ x which satisfies

(1) v is unchecked,
( 2) v(s, i, x) £ v,
(3) the unchecked v is one of the first e members of S^8(CQ);

place x on track C8 at stage s + 1 and check all v on ^i s(C9) such
that p(s, i, x) ^ v. Otherwise, place x on track C7.

Let A (B) be the set consisting of those elements x (x) which
reside in pocket A (A) at the end of the construction. The follow-
ing rules clearly guarantee that A and B are r.e.

RULE Rc (Rc). No x (x) may leave pocket A (A).

As described previously, the pocket Q (Q) will finally contain
the elements of the domain of a finite-one map with the elements
of P (P) as range. The desired permutation p will be determined
by this map. Rule R2 governs the entry of elements into the pocket
P. Roughly, an element enters pocket P if it is an appropriate
"mate" for an element (or finite set of elements) of Q, or if it is
a more "desirable" mate for an element of Q than the present mate.
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Our Rule R2 is the same as Soare's, but Rule R2 needs considerable
modification. Roughly this is because now elements can leave pocket
P to meet the positive requirements on A. Before stating Rule R2,
we introduce some notation.

In Definition 4.2, we define uniformly recursively in s a sequence
3ί^s of full states which contains each full Estate, j < s, exactly
once. (This is the same definition that Soare gives.)

DEFINITION 4.2. (a) If vl9ι>2eJt~a, we write v1<L\v1 if vι pre-
cedes v2 in the sequence 3t\.

(b) Let J^ς = {v_J. Given ^ , let J^Γ2

+1 = {v: v e <3Γ, and (3 vr)
[v <τ vf and i/ e ^ + 1 ( C ) U ^$+1(D)]}. Let 3tr.\x = ^Ts - 3ί?+x. Let

3ίΓ8%ι be a sequence of all full s-states arranged in some effective
order (uniformly in s) such that i/ = <s, σ', τ'> precedes v = <s, σ, r>
if r' ^ r or if τ = r' and o* £ σ'. Let J^7+1 denote the concatena-
tion of ^%7+i, J ^ | 1 ? .5fΓίi in that order where J%^+i, J^7ίi have the
orderings induced by <**.

(c) Define a function r(s, i;) for s e N and v eKs as follows:

r(0, v_L) = 1, r(0f v) is undefined if v ^ ^_x

r(s + 1, v) = r(s, P) if v 6 J ^ - K

r(s + 1, y) = max {?*(s, y): r(s, p) is defined} + k if
v G Jg;^ U .^7+1 and is the ftth such
in the ordering ^*+ 1

r(s + 1, v) is undefined if v g J ^ + 1 .

(d) Let jy^, denote those v which are in J%Γslι for only finitely
many s.

Think of the list J ^ as a list of full ^/-states, j < s, each
occupying a row. At stage s + 1, certain full j-states (those in
J^Γ+i) are reset — they are removed from the list and placed on
"fresh" rows below the list J ^ . Also at stage s + 1, the full s-
states are added to J ^ + 1 in fresh rows below J^7ίi In this picture,
r(s, v) is the number of the row which v occupies in 3ίΓ9. Note
that v e S?~ω iff lims r(s, v) exists. Also note that ? (s, v) ^ r(s, i/)
iff:; ^ J ^ .

If ^ is a sequence of full β-states, we say that v0 is maximal
with respect to <9* if

(V v)[[v e S^ i.o. and v0 ^T v\ ==> ^ = ^0] •

Soare proves the following lemmas:

LEMMA 4.3 [5, Lemma 5.1]. For all estates σ, σ\ τ and all s > e,
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α ' 2 * — [<*, σ',τ)^*(e, σ,τ}].

LEMMA 4.4 [5, Lemma 5.2]. For all v , v 6 j ζ (and hence
limsr(β, v) exists) just if v is maximal with respect to

Let Ps, Qs, Ms (Ps, Qs, M8) denote the set of elements in pocket
P, pocket Q, machine M (P, Q, M) at the end of stage s.

DEFINITION 4.5. Define (in increasing order of <) a function
q(s, v) by q(s, v) = μy e Qs such that

(1) v 76 v(s, y, y),
( 2 ) q(s, v') Φ y for any %>' < v.

If y does not exist, then q(s, v) is undefined.

Clearly, if y eQs, y = q($, v) for some v. Roughly, the goal of
Rule R2 is to define a function p(s, v) with values in Ps so that if
q(v) = lims q(s, v) and p(v) — limsp(s, v), then q(v) —> p(v) is the in-
tended piece of the permutation mapping Q to P. The major
difficulty is that p(v) may not necessarily exist even if q(v) does.
In this case, we will try to arrange that q(y') exists for only finitely
many i/ >- v, thereby enabling us to construct at least a finite-one
map. Our major concern is to control the cases in which p(s, v)
becomes undefined infinitely often for a fixed v.

DEFINITION 4.6. If x e M8 and v is a full e-state such that v ^
v(s, x, x), the v-rank of x at stage s, denoted p(s, v, x), is the mini-
mum of the set {r(s, v')\ v ^ vr ^ v(s, x, x)}.

Rule R2, which governs the selection of p(s, v), will depend on
the function p defined above as well as certain markers Λ<k)^>v>. Rule
R2 will choose p(s, v) so that the value p(s, v, p(s, v)) is as small as
possible. (The reason for this measure of "desirability" of candidates
for p(s, v) is not obvious but will come out in the proof of Lemma
5.17.) The marker Λ<kt;tU> will be used to prevent the positive re-
quirements on A from enumerating p(s} v) into A infinitely often
where k = ρ(s, v, p(s, v)) and / = (μt)(y v' ^ v)[q{s, v') = q(v')].

Let vk be the unique v such that (3 s)[r(sf v) = k]. For each
k, se Ny form triples (k, /, v) where v •< vk. Linearly order these
triples by

<fc, /, v> < (k\ /', i/> if 2k& < 2kΎ' or

k — k\ /— /', and v < vf .

We will suppose that these triples have been put in 1-1 order pre-
serving correspondence with N and we will denote the integer cor-
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responding to (k, < v} also by <&, /, y>. When an element x enters
pocket P (necessarily by Rule R2) we will assign a certain marker
Λ<fc,̂,v> to it. That marker remains assigned to x until x leaves pocket
P, at which time the assignment will be cancelled.

RULE R2. Suppose that x is on track D at the end of stage
s. Let v' be the first v in the ordering 76 such that

(1) v 76 v(s, x, x),
(2) q(s, v) is defined,
(3) either p(s, v) is undefined or

P(β, v, a) < p(β, », P(s, »))

If J/ exists, then at stage s + 1 place x in pocket P, let J>(8 + 1, i/) =
x (unless x is immediately removed from pocket P by the remainder
of this Rule), and remove from P all elements p(s, x>") such that
j / ^ v" (and place these according to Rule R12). Assign marker
Λ<*,*,v'> to α? where

k = jθ(s, P', a?) and

) t ^ 8 (V P" ^

Let m be the integer such that x=a8

m. If m^(k, < v'> do nothing
more, but if (k, /, v')<m, place above hole iϊ4 all a\ where (k, /, v'>^
i < m. (This may cause other balls to be removed from pocket P
by the next rule, Rule RD.) If i/ does not exist, place x on track A

RULE RD. If a? = p(s, v) is placed above hole £Γ4 at stage s + 1,
remove each p(s, v') for i/ ^ v and place these balls according to
Rule JR12.

RULE i?^. A ball x may only be placed above hole iJ4 by
Subcase 3(c) of Step 1 of the construction or Rule R2.

Rule ^ 2 , the pockets P and Q, and the functions p and q are
duals to the above except that the markers Λ<kl^tU> are omitted. This
is because there are no positive requirements on B requiring elements
to be taken out of P. Thus, there is no Rule RD, and RE reads as
follows:

RULE RE. No x may be placed above hole H4.

By induction on s, we now define recursively, uniformly in s,
sequences of full ^-states .^C, ̂ B such that ^ g ^ . S J ; for
all s. Our main goal is to prove that D exactly covers Q so that
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Q sees enough "mates" to achieve the desired piece of the permuta-
tion. (Here Q can be considered a stream in the following sense:
let S*8+1(Q) = {v(s + l,e,x):e^x,xeQ8+1--Q8 or xeQ8+1f]Qaf and
v( + 1, x, x) Φ v(s, x, x)}.) We will do this by insuring that C covers
every stream X of M and that D τ-exactly covers every stream that
C covers.

DEFINITION 4.7. (a) Let ^ = {v_J. Given SΓ8+1 and ^ we
will define ^ ^ + 1 . Let v — (e, σ, τ> and suppose we have already
determined whether v ' e χ + 1 if | i/ | < e. We say v is excluded from

+1 if one of the following conditions holds:

CONDITION 1. (3 v')[r(s, v') < r(s, v) and v' e

CONDITION 2. (3v ' ) (3 l ) [v '6^ (X) - ^ * and |i/| < e], where X
is any stream of M except A, including Q.

CONDITION 3. There is a full i-state vf and an element x such that
( i ) x = p(s, v'),
(ii) x is placed above hole if4 at stage s + 1,
(iii) p(s, v', x) ^ r(s, v),
(iv) r{s, ι>)^S=(μt£ 8){V z)t*,i.(y v" * v')[q(z9 v") = q(s, v")}.
Define v e ^ ^ β + 1 if v is not excluded from ^ί",+1 and either y 6 ^C

or v e ^ + 1 φ ) .
(b) Let ^ + 1 - {v: (3 v')[ι>' e ^f8+1 and v ^ v']}.
(c) Let ^ ^ — {vwe ^£s for almost all s}.
(d) Let ^ ω = {v: v e ^ 8 for almost all s}.
(e) Let s$ = ^ί[ί e Mt]. Define

d(β, ») = max {e: v(s, e, x) e &8 and (V t)[st <:t <s=*e <> d(t, x)]}. For
other x and s let d(s, δ) = — 1. (Note that limβ cί(s, x) exists.)

(f) Let v*(s, x) = [v(8, x, x]d{β^ and v*@) = lim. i>*(89 x).

We now give some intuition as to these lists. First, 3ίΓω is
simply the maximal full e-states with respect to £f(P). Λtm except
for the complications of conditions (2) and (3) of Definition 4.7(a),
is an approximation to those states in 3ίfω which appear infinitely
often on S^(D). Thus ^ ω is a recursive approximation to those
full e-states that D r-exactly covers. If we knew the full ^-states
that D does in fact τ-exactly cover, we would be able to guarantee
that D τ-exactly covered Qω by only enumerating elements of M
into these states. As it is, v*(s, x) is simply a "guess" as to the
largest initial segment of v(s, x, x) which D τ-exactly covers.

The next rule, Rule i?3, determines what happens when an ele-
ment x arrives at gate Gx. Here the element x may be enumerated
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in certain sets V+. The purpose of this rule is to insure that D
r-exactly covers any stream X which C covers. In the next rule
and associated lemmas, X (X) ranges over streams of M (M) except
for A (A).

Rule j?3 involves a certain r.e. sequence β^ of full β-states,
which is the concatenation of the finite sequences £%fs, s e N, defined
as follows. <%r8 = φ unless there is some track X of M, some
element yx on track X at stage s, and some full β rstate vι such that

via ylf in which case SίfΛ consists of the following full eΓstates for
each such yλ (in some effective order uniformly in s):

{»: (3 t)^[yx 6 Mt and v(elf t, yx) ^ v]} .

Once added to Sίf, a given v is never removed from ^f or altered
in position, although it may later be checked, during an application
of Rule iϋ3. Let 3ίf^ denote the sequence of elements added to έ%f
by the end of stage s.

RULE i?3. Suppose an element x enters track Cx at stage s.
Let vQ — (x9 σ0, ro> denote v{s, x, x). Let v1 = (elf σlf rx> be the first
member v — {e, σ, τ> 6 ^fύs such that:

( i ) v has not been checked by the end of stage s;
(ii) e <5 x; and
(iii) v ^a [vo]e (i.e., σ = [σo]e, and r 2 [:0]e). If v1 exists, then

at stage s + 1 check vlf enumerate x in F^ s + 1 for each n ^ eλ such
that neτ1 — r0 (so that v(s + 1, e1? a;) = vj, and place x on track C3.
If vλ fails to exist, then at stage s + 1 place cc on track C4, and
let v(s + 1, x, x) = v(s, x, cc).

RULE ^ 3 . Same as Rule i?8, but with C,, C3, C4, C, K+, £^
replaced by Clf C3, C4, C, ί/Λ

+, and ί ^
7 ' (which is defined in the ana-

logous way using ^ and Sζ(X))9 and with the roles of σ and τ
interchanged.

Rule J?4 determines the enumeration of elements x in sets ύn
while x is in pocket Q. It is a combination of the Rules R± and Rδ

of [5]. Thus there is no Rule R5 although we have kept the same
numbering of the other rules to avoid confusion.

Rule J?4. Suupose that x is in Q at the end of step 1 of stage
s + 1 of the construction. Then x remains in pocket Q through
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the end of stage s + 1 and τ(s + 1, x) — τ(s9 x), (else x was removed
at stage s + 1, step 1, under Rule R8).

Case 1. If ι>*(8, x) e ^ C do nothing.

Case 2. Otherwise perform the following enumeration on x.
Let S^tΦ) denote the sequence which is the concatenation of the
sequences {S^JJJ)\ u <̂  t}. Let z/(s + 1) — <e, σ', τ'> denote v*(s, x).
Define

and i/(β + 1) ^ Γ v) .

Note that v\s + 1) e ^* and thus ^ ί + 1 ^ Φ, by the definitions of
and cί. Furthermore, for each v e^sy v eS^{s)(D). Define v"
(e, σ", τ'} to be the last v on the sequence S^ω(D) such that v e
Enumerate x in U£8+1 for each neσ" — σ\

LEMMA 4.8. (v x) [x e Qω => v*(x) 6 ^ r j .

Proof. Let e = lim8 d!(s, ί). Let v = lims v(s, e, x). Then v =
v*(x). Let s0 be any stage such that, for s^s0, d(s, x) — e, v(s, e, x) =
v, and x e Qs. By Rule R4, if v g ^£^s for any such s, x is enumerated
in certain r.e. sets i7J;8+1 for n <^ e causing v(s + 1, β, x) Φ v, contrary
to the hypothesis on stage s0. Thus v = v*(x) 6^^ 8 for each s^s0. •

Rules i?4 and a function d are similar and are omitted.
We now give the rest of the rules of the machines. The duals

of these rules are similar and are omitted.

RULE JR6. An element x e V+a+1 - F+s only if at stage 8 + 1,
Rule iϋ3 or i24 applies to x.

RULE RΊ. If x e Un>s+1 — Un,s and xeMs then x is in some
pocket at the beginning of stage s + 1.

RULE RQ. If x e Qs and x e Un,s+1 — Un,s for some n ^ x remove
x from pocket Q at stage s + 1 and place x above hole H2.

RULE RQ. If x e Qs then x e Qs+1 unless x is removed at stage
s + 1 from pocket Q under Rules R2 or RQ or Subcase 3(c) of the
construction.

RULE jβ10. If x = p(s, v) e Ps for some v such that | v \ = e and
x is enumerated in Wn at stage s + 1 for some n ^ e, then at stage
s + 1 remove from pocket P all p(s, vf) such that v ^ vf and enumer-
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ate x in Un. If x is enumerated in Wn for some n > e, proceed to
stage s + 2.

RULE Rn. If £(β, v) =£ q(s + 1, v) or q(s + 1, v) is undefined,
then remove from pocket P at stage s + 1 all p(s, i/) such that
v 76 v\

RULE R12. If a;6P8, then aιeP4 + 1 unless x is removed from P
at stage s + 1 by the construction Subcase 3(c), or Rules R2, Rm

R1U or RD. If x is not placed above hole 2ϊ4 by Rule R2 or Subcase
3(c) and x last entered pocket P at stage t, then place x above hole
iϊ2 if v(s + 1, a, α?) Φ v(t, x, x) and place x above hole if3 otherwise.

RULE RF. If at the end of stage s, x is on any of the tracks
CO, C4, C5, C7, C8, A, or £7, place x at stage s + l o n the next track
or pocket in the downward direction (the direction of the arrows).

5* The verification* The first two lemmas of this section
guarantee that each ball eventually reaches a pocket where it resides
for the rest of the construction.

LEMMA 5.1. Each element x (x) re-enters the surface of M. (M)
at most finitely often.

Proof. Suppose x is an element of M. (The case x e M is
similar.) From hole Hi9 x can only reach pocket A and so x may
be placed above hole iZ"4 at most once. Suppose x is placed above
hole Hz at stage s + 1. Then xeP8 or Q8. If xeQ8 — Q8+1 then
v(s + 1, xf x) Φ v(s, x, x) by Rule RQ, which can happen only finitely
often. Similarly, if x e P8 — P8+1, v(s + 1, x, x) Φ v(t, x, x) by Rule
R12 where t is the last stage before s that x entered P. Thus x
can be placed above hole H2 only finitely often. If x is placed above
hole Hs, x can only re-enter M from pocket Q and hence via hole
H2. •

LEMMA 5.2. Each element x (x) is in some particular pocket
for cofinitely many stages.

Proof. By Lemma 5.1, each element x re-enters only finitely
often. Once x is on the surface of M it will reach a pocket by the
construction. The only possible obstacle then is for x to remain
above a hole cofinitely often. Choose any stage s such that x is
above a hole. At stage s, only finitely many elements are in M8.
By Lemma 5.1, each of the elements besides x can generate only
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finitely many moves; eventually x will be the x of Case 2 of step
1 of the construction and will re-enter the surface of M.

We can actually prove already that B is not hypersimple.

LEMMA 5.3. B is not hypersimple.

Proof. That

B = {x: x is in pocket B for cofinitely many stages}

is r.e. is already clear by Rule Rc. By Rule RE, no x enters pocket
B except by track Cβ and hence by Rule RB. Since each xeDhie)

which enters JS in this way checks one of the first e members of
&ί9(C9), \Dhω f]B\ <; e. Of course {Dh{e)}eeN witnesses that B is not
hypersimple since \Dh{9)| = e + 1 ==> DhU) Π B Φ φ. •

The next set of lemmas together will show that D τ-exactly
covers every stream X of M. Recall that markers A<k^^y are
assigned to elements of pocket P so that each element of pocket P
has exactly one marker assigned to it at stage s. Marker Λ<kts,p>

was supposed to insure that if / = (μt)(Vv' τ< v)[q(t, v') = q(ι>')] and
p(s, v, P(s, *0) = fc for infinitely many s, then the positive require-
ments on A do not remove p(s, v) from pocket P infinitely often.
We arranged this by guaranteeing that, if x = p(s, v) has marker
Λ(ht/tV> assigned to it at stage s and (k, /, v) — m, then x <, as

m. Thus
only computations <pt(j) for i, j <^ m can put such an x in A. Lemma
5.5 guarantees that the use of marker Λ(kfέffi/> accomplishes somewhat
more than the above. This lemma depends heavily on the careful
indexing of triples <&, /, v). We first prove a technical lemma which
will be used in Lemma 5.5.

LEMMA 5.4. Suppose that at stage s + 1 x is placed above hole
H2. Then x is placed on track C at some stage t > s + 1.

Proof. By the construction, x eventually enters track C unless
x is placed above hole if4 at some stage ί + 1 > $ + 1. By Rule
REJ x may only be placed above hole Jϊ4 by Subcase 3(c) of the
construction or by Rule R2. Subcase 3(c) of the construction never
applies while x is above hole H2. If Rule R2 placed x above hole
Hi at stage t + 1, then at stage t some y is on track D and x < y.
But, by the order in which balls are released from holes, no y > x
is ever on any track while x is above hole H2. (This can be proved
easily by induction on the stages that x is above hole H2). •

LEMMA 5.5. Fix k, /, v. Then there are only finitely many
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stages s + 1 such that Rule R2 assigns marker A<ktstU> at stage s + 1.

Proof. By induction on m~{k, /, v), we may assume that there
is a stage s0 such that if n = <&', / ', i/> < m, then Rule iϋ2 never
assigns marker Λn at a stage s + 1 ^ s0 and, if the last assignment
of marker Λn is ever cancelled, it is cancelled before stage sQ. Of
course we may also assume that Subcase 3(c) of step 1 of the con-
struction never applies to α» if s ^ s0. Let vk denote the unique v
such that r(s, v) — k for some s. If Rule R2 assigns A(k^jV> to x at
stage s + 1, then

( 1 ) X = p(8 + 1, V),
( 2 ) k = p(8,ι>,x),
(3 ) S=(μti^ s)(y z)tSzύs(V i/ τ6 v)[q(z, v') = q(β, v%
( 4 ) x ^ α^+1.
For the sake of a contradiction, assume that Rule R2 assigns

Λ<kts,u> at infinitely many stages s + 1 > s0. Thus we also may
assume that lims r(s, vk) — k since p(s, v, x) — k for any stage s such
that A<ktM is assigned at stage s + 1 and /?(§, v, x) = r(s, vf) for
some vr ^z v. Further, we may assume that q{v) = lims q(s, v) exists
by (3). At a stage s + 1 > sQ such that A<k^tV> is assigned by Rule
R2 Sit stage s + 1 the element x which newly arrives in pocket P
has full x-state satisfying v 76 vk τ6 v(s, x, x). Since this element
was not preferred as p(s + 1, vr) for any i/ < v, it must be the case
that p(s, i/, p(s, v')) ^ & for any such vf < v. Now we note that
p(β, v\ p(s, v')) does not decrease as long as p(s, v) remains in pocket
P since p(s, v') is not enumerated in any r.e. set while in pocket P.
Thus, at stage s, p(s, v') had some marker A<k>,;>,>>) still assigned to
it where kτ ^ p(s, v\ p(s, i/)) ^ k and /' <, S (since v' -< v). Thus
(k!y /', v'> < <&, /, v) so that, by our induction hypothesis p(sQ, vr) =
p{vr) because A<k>^>,,y} is never assigned by Rule R2 or cancelled after
stage s0.

Suppose that the assignment of Λm is cancelled at some stage
s + 1 > s0. Then, by Rule Rl2, p(s, v) is taken out of pocket P at
stage 8 + 1 by Rules R2y Rlθ9 Rιu or RD or by Subcase 3(c) of the
construction. It is easy to see that p(s, v) could not be removed
by Rule Rn or Subcase 3(c) of the construction by our hypotheses
about stage β0. Also Rule RD could not remove p(s, ι>) at stage s + 1
because this would require some p(s, vr) to be placed above hole iϊ 4

at stage s + 1 for some v' < v. If Rule R2 removes p(s, v) at stage
s + 1, then either Rule R2 defines p(s + 1, v), Rule R2 defines
p(s + 1, vf) for some vf < v, or Rule R2 assigns a marker An for
n < m. The latter two cases cannot happen after stage s0, so
suppose Rule R2 defines p(s + 1, v). Then p(s, v, x) < p(s, v, p(s, v))
for some x on track D at stage s. But p(s, v, p(s, v)) — k since
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p(s, v) does not change state while in P nor is vk ever reset. Thus
Rule i?2 assigns a marker A{k>^^ to x with &' < k. This contradicts
the hypothesis about sQ since (k\ /, v) < ζk, < v>. Finally, we con-
sider Rule 221O. If # = p(s, v) is removed from pocket P at stage
s + 1 b y R u l e R 1 0 , x e UnjS+1 — Unt8 f o r s o m e n ^ \v\ ^ \ v k \ . B y R u l e
i?12, x is placed above hole H2. By Lemma 5.4, x is placed on track
C at some stage £ + 1 > s + 1. Then vk <

r [̂ (ί + 1, x, x)\Vk\ and so,
at stage t + 1, vΛ e J^7+i and r(t + 1, vΛ) > k, contradicting the as-
sumption that lims r(s, vk) = k. This final contradiction establishes
the lemma. •

LEMMA 5.6. Any full estate v e ^ ζ is excluded from ^fs+1 by
condition 3 of Definition 4.7(a) only finitely often.

Proof. Let k = \imsr(s, v) which exists since v e , % . If v is
excluded by condition 3 at stage s + 1, some element x — p(s, vr) is
placed above hole H^ at stage s + 1 where x was assigned a marker
Λ<fc'f̂ ',»,'> at stage s with k' <,k and / ' ^ k. Since there only finitely
many such markers, v is excluded by condition 3 only finitely often
because of Lemma 5.5. •

The preceding lemma says that condition 3 exclusion was not
used too often. In Lemma 5.17 we will see that condition 3 exclu-
sion is used often enough.

Recall that X , was our approximation to those full β-states
that are in S^(D) infinitely often and are the maximal such e-states
with respect to <Jr. The next lemma derives the crucial properties
of Λ%ω and &ω under a certain assumption that will be verified
later (in Lemma 5.9).

LEMMA 5.7. Suppose that v is excluded only finitely often from
^ C + 1 under condition 2 of Definition 4.7(a). Then

(1) v e _3f; and v e S^(D) i.o. => v e ̂ €ω, and
( 2 ) ve^s i.o. =>ve^ω.

Proof. Fix v — (e, σ, τ) with v e 5€~ω and v e 6^{D) i.o. Consider
the conditions under which v could be excluded from ^ C + 1 . Since
v e Jst~ω, v is excluded by condition 1 only finitely often. By hypo-
thesis, v is excluded by condition 2 only finitely often. Finally, v
is excluded by condition 3 only finitely often by Lemma 5.6. Thus,
v G ̂ ω since v e S^(D) i.o.

(2) This follows from (1) as in [5, Lemma 5.3, p. 107]. •

LEMMA 5.8. With the same hypothesis as Lemma 5.7 for vx and
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v21 let vι and v2, be full estates. Suppose that D τ-exactly covers vx

and Rule RA applies at infinitely many stages s such that v\s) = vt

and v"(s) = v2. Then D τ-exactly covers v2.

Proof. Fix vx — (e, σ1} τx> and v2 — (e, σ2, τ2> satisfying the
hypotheses and assume that D does not r-exactly cover v2. There
is a full e-state vz e S^(D) i.o. with vx^

τvB and V 3 G X for D
τ-exactly covers vx. If v3 is excluded from ^ C under condition 2
of Definition 3.4.7(a), so is v2 since |v3| = \v2\ — e. Thus vz is excluded
only finitely often from ^/ίs under condition 2. Thus, by Lemma
5.7(1), v 3 e ^ . But since v2£<9*(D) i.o. and v3eS^(D) i.o., for
almost all s we must have that some occurence of v3 follows the
last occurence of v2 on S^Ss(D). Thus, for almost all s, v3 is prefer-
red to v2 as v'\s) when i/(s) = vx. •

Of course, Lemmas 5.7 and 5.8 have duals for M which we have
not discussed. However, the dual lemmas can be proved just as
in [5] since we defined the lists Sfs\ ^£'s, &l just as in [5] because
we have no new rules removing elements of M to hole H4.

The next lemma establishes that Rule J?3 does not require too
much enumerat ion. Let S^\X) = {v: veS^e{X) and \v\<Le).

LEMMA 5.9. Fix e. If each v such that \v\ < e is added to J%
at most finitely often then C dual covers

Proof. Soare gives a proof [5, Lemma 5.4, p. 108] which
depends only on Lemma 5.2 and Rule i?3. Π

Nevertheless, Rule Rs allows enough enumeration to prove the
following key lemma.

LEMMA 5.10. If X is any stream of M, and C covers X, then
D τ-exactly covers X.

Proof. (This is essentially the same proof as that of [5, Lemma
5.6, p. 109] which has similar content.)

Fix a stream X of M, and assume for a contradiction that some
V1Q.^{X) i.o. and C covers vλ but no v e y ( ΰ ) i.o., if v1 ̂

τv. Let
vλ = (e, σίy rx>. Then there exists sf such that no v is added to
SS(Ό) at any stage s ^ s' if vx <Lτ[v]e. Choose e'̂ > e and e'>\v\ for
any veS^(D) such that vι^

τ\y\β. Replacing vt by some extension
if necessary we may assume that vιeS^{X) i.o., C covers vu and

(6) ( v Φ i έ r M , — v
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vx^^8 for any s. Thus, by the definition of <%?, each
i.o. if v1 ̂

Γ v.
Since C covers vlf some v2 — (e, σ2, ro> 6 S^(G) i.o. (and hence

v2 e ̂ (CΊ) i.o.) where σ2 2 σx and τ0 2 r lβ Furthermore, ^GS^X) —

έ^8 for infinitely many s implies that vz = <β, <72, rx> e £έf i.o.
Now i ^ ' i ^ and thus by (6) vΛί£f(D). Hence, v 8 e ^ ( C 8 ) and

y3 once added to 34f is never checked under Rule Rz. Choose s0

such that no v preceding vz on the sequence Sίf is checked at any
stage s ^ 80. Choose sλ ^ sQ such that some x ^ e enters track Cι at
stage 8U where v(sl9 e, x) = v2 = (e, σ2, ro>. But r0 £ τlf and hence
at stage s + 1 by Rule it?3, v3 = <β, σ2, rx> is checked, and a; is placed
on track C3 with v(sx + 1, e, x) = v3, contrary to (6). •

LEMMA 5.11. For each track X of M {X or M) and each ι>,
(1) veSS(X) i.o. =
(2) v e y ( I ) i.o. =

The proof is by induction on the length of v. Fix β and suppose
that (1) and (2) hold for all v with \\>\ < e. It suffices to prove (1)
for all v of length e since (2) is dual. By inductive hypothesis (2),
each v of length <e is added to <%ff only finitely often. Thus by
the dual of Lemma 5.9, C covers S^e(Cs).

Now^by inductive hypothesis (1), each v of length e is excluded
from ^ ^ 8 + 1 under Condition 2 of Definition 4.7(a) only finitely often.
Thus for every v of length e we have

v e <9*(D) i.o. and v e ̂ ς = * v e

g for infinitely many s = >

Now assume for a contradiction that for some X and î , ̂  e
i.o., but Vxί^L. Let v± — {e9σlfτ^) with σx minimal for e,

and Tx minimal for e and <7lβ Since vx g ̂ ω , vx e ̂ 8 for finitely many
s, and thus

vx e S^(X) — ̂ 8 for infinitely many s .

But for each such s all Ϊ/ of length >e are excluded from
under Condition 2 and hence

Now choose elements yy and corresponding stages sy + 1 such
that for all jeN,

Note that 8S exists since v{vh e, ys) = (e, φ, φ) e &ω where vs is the
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stage that yd enters M. For each j e N, define the finite sequence
of full e-states,

&~i = {»: (3 s)[vd £ s ^ ss + 1 and v = φ, e, yό)}} ,

where vs is the stage when y5 entered M. Let ά?" be the con-
catenation of {^J: j 6 N}. From the definition of ^ note that if
v e ^ i.o., then v'e^f i.o. for all vf such that V < Γ J / . Thus by
Rule R3 we have

v e ^ i.o. and C covers v ==> Z? τ-exactly covers v .

But ^! e &ωf so i) does not r-exactly cover v± and hence

C does not cover vx .

On the other hand we shall get a contradiction from this by prov-
ing that

C covers

First note that by the minimality of σx and τλ above we have,

v G ̂  i.o. and v Φ vx ===> v e ^ω ,

and thus,

(a.a.j) (Vs)za.[d(8, yά) ^ e] ,

by the definition of d(s, y) from ^ s , and by induction on t for

Assume for a contradiction that C does not cover ^ 7 a n ( * choose
v0 = <β, σ0, τo> such that

v0 e ^ * i.o. but C does not cover v0 ,

where σ0 and τ0 are minimal. Choose an infinite set J and stages
th td + 1 <; s,- + 1 such that

(V j G J)[y 0 = v(ί, + 1, β, ^ ) ^ i;(ί i f e, y5)} .

(Of course, td + 1 > v̂  since ^^ changes β-state only when in machine
M.)

C covers the sequence {v(td, e, yά): j eJ} .

Now by Rule ^ 6 , for almost all j e J, either Rule J£3 or R^ applies
to yά at stage tά + 1. Now Rule ^ 3 applies for at most finitely
many j eJ because if Rule Rs applies infinitely often, v0 e S^(0S) i.o.
but then C, which covers S^e(Cz), would cover v0.

Thus, for almost all j e J, Rule R± applies to y5 at stage ίy + 1,
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with v0 τ<> v'\tά 4- 1). However, ^^[v0] £ {v0} for almost all s since
v e ̂ fω ==> M^Se and D does not τ-exactly cover v0. Hence, v"(tj + l) =
v0 for almost all j e J. Fix any v'o such that v[ = v\tά + 1) in Rule
R± for infinitely many jeJ. C covers v'o, and vf

oe^ i.o., so D τ-
exactly covers v'o. Thus, by Lemma 5.8, D τ-exactly covers vQ, and
therefore C covers v0 which is the desired contradiction. •

LEMMA 5.12. C covers C3 and C dual covers C3.

Proof. The proof in [5, Lemma 5.12, p. 113] depends only on
Lemma 5.11 and Rule JZ3 (JB8). •

LEMMA 5.13. (V e) (a.a.s) (a.a. y)[y eMs — As=> d{s, y) ̂  e].

Proof. [5, Lemma 5.13, p. 113]. (This uses only Lemma 5.11
and the definition of d.) •

LEMMA 5.14. Given vx and infinitely many elements yd9jeN,
such that for all j 6 N, Rule R4 applies to yό at stage ss with vx 76
v(sd + 1, y3 , y3), then C covers vλ.

Proof. The proof [5, Lemma 5.14, p. 113] depends only on
Lemma 5.13 and Rule R4. •

LEMMA 5.15. C covers every stream X of M, X Φ A.

Proof. [5, Lemma 5.15, p. 113]. The proof depends on Lemma
5.12 and Lemma 5.14. •

LEMMA 5.16. D τ-exactly covers every stream X of M, X Φ A.

Proof. Lemmas 5.15 and 5.10. •

Of course the dual Lemmas 5.13-5.16 have similar proofs.
The next lemma is crucial for constructing the permutation of

A to B. The statement of the lemma is the same as [5, Lemma
6.1] but the proof is different due to the complications of our con-
struction. It is here that the condition 3 exclusion of Definition
4.7(a) plays a crucial role. If q(v0) = lims q(s, ι>0) exists but p(vQ) does
not, we would like it to be the case that q(v) exists for only finitely
many v ^ v0. This is done by arranging that ^ω[vQ] is finite since
if xeQω, v*(ί) e^Cυ. As in [5], condition 1 exclusion handles the
cases where p(s, v0) becomes undefined due to changes in \ι>0[-state.
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Condition 3 was designed to handle the case in which p(s, v0) becomes
undefined because p(s, vQ) enters A.

LEMMA 5.17. Fix vQ and suppose that
( 1 ) (Vv < v0) [lims p(s, v) exists],
( 2 ) (V v τ< vQ) [limsg(s, v) exists], and
( 3 ) limβp(s, v0) does not exist.

Then ^jfω[Vo] is finite.

Proof. Suppose that v0 = (eQ, σ0, τo> and let s0 be a stage such
that

( V K Vo)[p(s0, v) = p{v)] , and

(V v ^ vQ)[q(s0, v) - q(v)] .

We will show that, if vx e ^CJ^o] — ^ C ^ M for some s1 > s0

and r(slt vj > β0, then vγ is excluded from ^f ί + 1 for some stage
t ^ 8X. (This clearly implies that ^€ω[v0] is finite since ^fω[Vo] £
^ [ V o ] U {vk: k ^ so} ) If y i is never excluded from ^ Γ ί + 1 for ί ^ sx,
by Condition 1 of Definition 4.7(a), it must be the case that
limβr(s, %>) = r ^ , v) for all v such that r ^ , v) <; r ^ , v j .

Since ^ e ^ S l — ^^S l_1 ? some element x is on track D at stage
sx in state v(s1} x, x) such that

V, ^ ^ ^ KSi, », ί») .

By Rule R2, x is preferred as pfa + 1, P0) unless p(st + 1, v0, p(slf vo))tί
r(βi + 1, vO. Thus, in any case,

^ ( ^ + 1, v0, ^(sx + 1, v0)) ^ ^(Si + 1, ^i)

Now p(s, ι>0) — pis + 1, v0) unless Rule R2, R10, Rn, RD or Subcase
3(c) of the construction removes it. It is easy to see that Rules
Rn and RD never apply to p(s, v0) for any s > s0 since p(s0, v')~p{vf)
for every v' < v0. Rule R2 can remove p(s, v0) from Ps in two ways
after stage s0: by placing p(s, v0) above hole JΪ4 at stage s + 1 or
by defining p(s + 1, v0) to be a new element. Suppose Rule i22 is
used to replace p(sf v0) at some state s2 + 1 > sλ + 1 before any of
the other Rules are used to remove p(s, v0). Then, by induction on
stages s such that s± + 1 ^ s ^ s2,

This is true by Lemma 4.3, the fact that p(s2f v0) = p(su v0) does not
change in state while in pocket P, and the fact that lims r(s, v) =
r(sl9 v) for all v such that r(slf v) ^ τ(slf vx). At stage s2 + 1, ^(β2, v0,
p(s2 + 1? y0)) < p(s2, v0, p{s2f vQ)). Thus, by induction on stages s > s19
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p(s, v0, p(s, v0)) decreases with each application of Rule R2 to p(s, vQ)
as long as no other rule intervenes.

Thus we have shown that there must be a stage s + 1 > sx + 1
such that p(8, v0) is removed from pocket P at stage s + 1 by being
removed to hole JSΓ4 (by Subcase 3(c) or Rule R2) or by Rule R1Q.
Furthermore, p(β, vQ, p(s, v0)) tί r(s1 + 1, vj.

If p(s, v0) is removed to hole H±, it is easy to see that vι is
excluded from ^ C + 1 by condition 3 of Definition 4.7(a) since

r(sl9 v,) >s0^ (μt ^ *)(V z)iMa(y vf τ6 vQ)[q(z, v') = q(s, v')} .

and

Suppose, on the other hand, that p(s, v0) is removed from pocket
P at stage s + 1 by Rule i210. Then

and, in fact, if the state corresponding to p(s, vOf x) is (eu σlf τ^),
v(s + 1, elf p(s, vQ)) Γ > v(s, eu p(s, ι>0)) since β0 ^ 0i- But then at some
later stage t + 1 > s + 1, p(s, v0) enters track C in full ^-state
v(s + 1, 0X, p(s, ι>0)) by Lemma 5.4. This causes ι>x to be excluded
from ^£s+γ by condition 1 and the fact that r{sx + 1, v) ^ ^(5, v0,
p(β, v0)) and v(«, elf p(s, v0)) e ^ . This last contradiction shows that
vx must in fact be excluded from ^ C , for some s > sx. •

LEMMA 5.18. .Fΐ# v αwώ suppose that there are infinitely many
Vj e Qω, i e iSΓ, ŝ c/z. that v 76 v(yjf ys), j e N. Then lim8 p(s, v) exists.

Proof. By the definition of v* and Lemma 5.13 it is clear that
v ^ v*{yi) for almost every j . Now by Lemma 5.14, if \imsp(s, v)
does not exist, then ^Xv\ is finite. But if ys e Qω, v*(ys) e ^ ω by
Lemma 4.8. For any particular vQ, v*(^ ) = v0 for only finitely many
j . This is a contradiction. •

Recall that the desired permutation of A to B was the one that
sent q(y) to p(v) and q(v) to p(v) for every full e-state v. Of course,
this is not quite right since q(v) may exist where p(v) does not. In
this case, however, Lemma 5.18 suggests a finite-one map which
will suffice.

LEMMA 5.19. There are finite-one maps py\ Qω —> Pω and p2: Qω->
Pω such that for every n

( l ) ft(Q n ύ:)=*pωn uny
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( 2 )
(3) p2(QωΠ Ϋ:)=*PωnVn, and
(4) P ΰ

Proof. We define px\ p2 is similar. If p(v) is defined, let p1(q(v)) =
p(v). If p(ι>) is undefined, let v' ^ v the maximal full e-state in the
ordering ^ such that p(vf) is defined and define p^qiv)) — p{v'). This
map is finite-one by Lemma 5.18 and meets (1) and (2) since q(iή
and p(v) are in the same full | v [-state. Π

Although we have not given a one-to-one map from A to B
inducing an automorphism on A, the details on constructing such a
permutation are straightforward, given Lemma 5.19, and can be
found in [5, Corollary 1.7, p. 85]. Notice that A is infinite, since
B is. Also, note that Un = * Vn = * Wn, since if x e Wn, x e Z7n(̂  6 F J
unless x = £>(v) (ί = ί?(v)) for some y such that | v \ < n. (Note that
x cannot be in pocket P infinitely often without being p(v) for some
v since x enters P only finitely often by Lemma 5.1.)

We can now show that the hypothesis of the Extension Theorem
[5, Theorem 2.2] are met by our enumeration of A and B. It is
easy to see that this hypothesis is simply

LEMMA 5.20. C9 covers C9; C9 dual covers C9.

Proof. C dual covers every stream X of M. Thus C6 dual
covers every stream X of M by Lemma 4.1. Suppose veS^(C9) i.o.
Then there are infinitely many vf 6 S^(C6) such that v' ^ v. Suppose
v appears as the eth element of <5^S(C9). Then at some stage sQ>s
some x not in (J^e DhH) must enter C6 in full e-state vf <J v. Thus,
x checks v and enters C8 by Rule RB. Thus C9 dual covers C9

since any x checks only finitely many occurrences of v on Sζ(CQ)
and each occurrence is eventually checked.

The proof that C9 covers C9 is similar. Instead of using some
x not in U ^ A w to cover the eth element on S^{CQ), we use any
x. Since C6 covers C9, eventually some such x in the appropriate
e-state appears on track C6. •

LEMMA 5.21. A is dense simple.

Proof. Subcase 3(c) of Step 1 of the construction guarantees
that px dominates every (partial) recursive function. •

Lemma 5.21 shows that A is dense simple, Lemma 5.3 that B
is not hypersimple. Lemma 5.20 and the Extension Theorem of
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Soare guarantee the existence of a permutation p and r.e. sets
{U~}neN and {Vn}neN extending our permutation of Lemma 5.19 to
an automorphism of S** taking A* to J3*.

6* Open questions* If B is any simple set, is there a dense
simple set A and an automorphism Φ of ^ such that Φ{A) = BΊ
It is known that A can be found such that J*f*(B) = <^*01).

What is the class of r.e. sets A such that Φ(A) is hypersimple
for every automorphism Φ of g7? Only trivial results about this
question are known.

Is the property of strong hypersimplicity invariant? (A is
strongly hypersimple if there does not exist a recursive function /
such that \Jn Wf[n) — N, Wf{n) Π A Φ φ for each n, and the r.e. sets
Wfin) are finite and pairwise disjoint.) This question may require
yet another modification of the automorphism machinery to answer.

Much recent research has identified new properties of r.e. sets
which are invariant under Aut(^) (see [1], [2], and [4] for example).
Can the methods now known for constructing automorphisms of §?
be used to find some other orbit of Aut(if) besides the maximal
sets?
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