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COLLECTIONS OF COVERS OF METRIC SPACES

TED R. PETTIS

In this paper cardinality it collections of open covers
of a topological space satisfying various conditions are
studied. When tc = ω some of the conditions are equivalent
to the space being metrizable and the union of a compact
set and a discrete set. For a metrizable space some of the
conditions are equivalent to complete metrizability. If ιc ^ ω
then the relationship between some of the conditions and
the existence of scales is examined.

1* Introduction and definitions*

1.1. An ordinal number is the set of all ordinals which precede
it and a cardinal number is an ordinal which cannot be put in a
one-to-one correspondence with any ordinal which precedes it.
Throughout this paper ω will denote the set of all finite ordinals
and tz will denote an infinite cardinal number.

If M is a set, x is a point, and £%f is a collection of sets, then
the star of M. with respect to gίf, denoted st(M9 J%f) is the union
of all members of Sίf which meet M and st(x, Zίf) = st({x}, <?ίf). A
sequence gf = 5^0, Ŝ Ί, S 2̂, of open covers of a topological space
S is called a development for S iff for each xeS and open set U
containing x there is an n such that st(x, 5^J £ U. Moreover, a
development is monotonic iff gfn+1 S S?n for all n. A space which
admits a development is called a developable space and a regular-2\
developable space is called a Moore space. A development 5^ for a
Moore space is star complete (see [16]) provided that if {MOf Mu

M2, } is a sequence of closed sets such that for each n, M,n+1 £
Mn S st(x, &n) for some x e S then π M.n Φ 0 . A Moore space having
a star complete development is said to be star complete. A Moore
space S is Moore-closed (see [5] and [6]) iff S is closed in each Moore
space in which S is embedded.

A space S is a wJ-space (see [3]) iff there exists a sequence
.^o, -^i, -^2, of open covers of S such that for each x e S, if xn e
st(x, .&n) then the sequence {x0, xl9 x2, •} has a cluster point. A space
S has a Gf-diagonal (see [10]) provided there is a sequence ^ 0 , 2f1?

2̂ 2, * of open covers of S such that if x and 7/ are distinct points
of S, there is an n such that ygst(x, &n).

A nonempty subset M of a topological space S is called discrete
iff for each xeM there is an open set U such that UΠ M = {x}. A
collection of sets is discrete if the closures of the sets are mutually
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exclusive and the union of any subcollection of these closures is
closed. A topological space is /c-collectionwise Hausdorff iff for every
closed discrete subset M having cardinality at most κf there is a
pairwise disjoint collection of open sets covering M, no member of
which contains more than one point of M. A space which is ΛT-COI-

lectionwise Hausdorff for all cardinals K is called collectionwise Haus-
dorff. Regular-TΊ spaces are α>-collectionwise Hausdorff.

1.2. For a topological space S, 3f(j$) denotes the collection of
all closed discrete subsets of S and <&*(S) denotes the collection of
all infinite closed, discrete subsets of S. Consider the following
conditions on a cardinality fc collection gf = {gfα: a e ιc} of open covers
of S.

Condition A(/c). For each De^(S) and open set U containing
D there exists an a e tc such that st(D, &a) £ U.

Condition wA(/r). For each De £S?*(S) and open set U containing
D there exists an infinite subset D' of D and a n α e / ί such that

Condition B(/c). For each De^(S) there is an ae/c such that
if x and y are distinct points of D, then st(x, &a) Π st(y, &a) = 0 .

Condition WB(Λ ). For each D e ϋ^*(S) there exists an infinite
subset Df of D and an a e tc such that if x and y are distinct points
of Ό9 then st(x, &a) Π st(y, Sfβ) = 0 .

Condition C(/c). For each D e &{β) and Ee^(S) with DC\E =
0 there exists an a e tc such that st(D, &a) Π st(E, &a) = 0 .

Condition WC(Λ ). For each De^r*(S) and Ee^(S) with fln
E = 0 there exists an infinite subset D' of D and an α GΛ: such that
st(D',S?a)nst(E,S?a)= 0 .

Condition wwC(ιc). For each De^^(S) and Ee^*(S) with
D Γ) E — 0 there exist infinite subsets D' and J5" of Z) and E respec-
tively and an a e K such that st(D', 5fα) Π st(E', gfα) = 0 .

A space is said to satisfy one of the conditions above if it admits
a collection of open covers which satisfies the condition. For the
case where tc — ω reference to ω is dropped whence by condition A
is meant condition A(α>) and so forth.

2* Moore spaces*

2.1. If S is a developable space which has a collection of open
covers satisfying a condition defined in 1.2 for K — a) then S has a
monotonic development satisfying that condition.

THEOREM 2.2. For a regular Tx-space S containing no infinite
open and closed discrete subset the following statements are equivalent.
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( 1 ) S is a compact metric space.
( 2) S is a Moore space and every infinite subset of S has a

limit point.
( 3 ) S satisfies condition A.
( 4 ) S satisfies condition B.
( 5 ) S satisfies condition C.
( β ) S is developable and satisfies condition wA .
( 7) S is developable and satisfies condition wC.
( 8 ) S is Moore-closed and satisfies condition wB.
( 9) S is Moore-closed and satisfies condition wwC.

Proof. That (1) is equivalent of (2) is well known and that (1)
implies each of the conditions (3) through (9) is immediate.

(3)—»(2) . A sequence of covers satisfying condition A is a
development; thus S is a Moore space. Let Ϋs be a monotonic
development for S satisfying condition A. Suppose M = {xQ, xlf x2, •}
is an infinite set of limit points of S and M fails to have a limit
point. Since S is &>-collectionwise Hausdorff there is a pairwise
disjoint collection of open sets Uθ9 Ul9 Z72, with x0 e Uo, xx e Ul9

For each n, let yn e st(xn9 57 n) n Un - {xn}. Then S - <Λ{y0, yu y,, •}

is an open set containing M but there does not exist an n such
that st(M, %?„) S S — cl{]/0, yu y2, * •}. Thus M must have a limit
point.

(4)—>(2) . It follows immediately from the definitions that a
space satisfying condition B is a wΔ space with a Gf-diagonal and
hence is developable. Let V be a monotonic development satisfying
condition B and let M and {yθ9 yl9 y2f } be as in the proof of (3) —>
(2). Then either {y09 yl9 y29 •} is closed in which case MF — M [j
{Vo, Vu '''} is a set for which condition B fails or {yθ9 ylf } has a
limit point y in which case Mr — M U {y} is a set for which condition
B fails.

( 5 ) -> ( 2 ). The proof is similar to (4) --> (2).
( 6 ) --> ( 2 ). The same proof as (3) -> (2).
( 7 ) -> ( 2 ). Similar to (4) -> (2).
( 8 ) - - > ( l ) . If 57 is a monotonic development for S satisfying

condition wB then it is a star complete development. For if not,
there exists a sequence {MOf Mϊy M2r } of closed sets such that
Mn+1 £ Mn and a sequence {x0, xl9 x2f •} of points of S such that
Mn Q st(xn, gfn) for all n and Γ\Mn-= 0 . Without loss of generality
it may be assumed that Mn — MnΛι Φ 0 for all n. Let yn e Mn — Mn+1.
Then {yQ, yly y2, •} 6 i^*0S). Condition wB fails to hold for this
set. A star complete Moore-closed space is compact ([6, Theorem
1.5]).

( 9 ) -> ( 1 ) . Similar to (8) -> (1).
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2.3. Since a Moore space which is the union of a compact set
and a discrete set is paracompact the next theorem follows immedia-
tely from the proof of Theorem 2.2. See Theorem 1.6 of [6] for a
related result.

THEOREM 2.4. For a regular Trspace S the following statements
are equivalent.

(1) S is a Moore space which is the union of a compact set
and a discrete set.

(2) S is a metric space and the set of all limit points of S is
compact.

(3) S satisfies condition A.
(4) S satisfies condition B.
( 5 ) S satisfies condition C.
(6) S is developable and satisfies condition wA.
(7) S is developable and satisfies condition wC.

2.3. The next theorem shows that Moore-closed was needed as
part of the hypothesis in Theorem 2.2.

THEOREM 2.5. For a metrizable space S the following statements
are equivalent.

(1) S has a complete metric.
( 2 ) S satisfies condition wB.
( 3 ) S satisfies condition wwC.

Proof. By the proof of Theorem 2.2 if S satisfies condition wB
or condition wwC then S is star complete and hence complete Moore
and thus has a complete metric by the result of Roberts [15].

(1) —> ( 2). Suppose S has a complete metric d. Let B(x, ε) =
{y e S: d(x, y) < ε}.

For each n let g?n = {B(x, l/2n+1): neω}. Let M be a countably
infinite, closed, discrete subset of S. For each

n, An = {x e M: st(st(xf gfj, SfJ i l l is finite} .

Suppose An is finite for each n. There is a point x0 e M — Ao. Then
let xn+1 e st(st(xnf Sfn), gfn) Π M - An+1 - {x0, xu , xn}. The sequence
{x0, xu x2, •} is Cauchy and hence converges to a point y. Thus y
is a limit point of M which is impossible. Thus, there is a k such
that Ak is infinite. Let {α0, α1? α2, •} be the points of Ak. There is
a least positive integer nx such that αni g st(st(aQ, 5?h), &k). There is
a least positive integer n2 such that ani $ st(st(aQ, ani, &k), g^). This
process may be continued. The set A = {α0, αni, αΛ2, •} has the
required property.
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The proof of (1) —> (3) is similar.

3* First countable spaces*

3.1. An interesting generalization of development due to E. E.
Grace [1], is the concept of a quasi-development. A sequence g^ =
Ŝ o, Ŝ i, 5̂ 2, of collections of open subsets of a topological space
S is called a quasi-development for S provided for each point p of
S and open set U containing p there is an n such that st(p, &n) Φ 0
and st(py gfn) £ U. The conditions defined in 1.2 can be modified to
conditions on quasi-developments by requiring that the collection g n̂

in the definition cover the closed discrete sets. The following theorem
results from these modifications.

THEOREM 3.2. For a regular Tx space S containing no infinite,
discrete, closed and open subset, the following statements are equi-
valent,

(1) S is compact metric.
(2) S has a quasi-development satisfying condition A.
(3) S has a quasi-development satisfying condition B.
(4) S has a quasi-development satisfying condition C.
(5) S has a quasi-development satisfying condition wA.
(6) S has a quasi-development satisfying condition wC.

Proof. That (1) implies each of statements (2) through (6) is
immediate.

By modifying the arguments of Theorem 2.2 only slightly, it
can be shown that each of statements (2) through (6) implies that S
is countably compact. By a result of Wicke and Worrell [17, Theorem
2.10] countably compact quasi-developable spaces are compact.

3.3. Another generalization of the results of §2 is obtained in
the following fashion. Using the notation of Hodel in [11] let (S, τ)
be a regular 2\ space, and let g: S x ω —> τ be a function such that
x e g(x, n) for all xe S and neω and such that g(x, n + ΐ) Q g(x, n)
for all n. If D is a nonempty set then g*(D, n) — \J{g(x, n): xeD}.
If C is one of the conditions defined in §1.2 and st(x, &n) and st(D, g n̂)
are replaced by g(x,n) and g*(D,n), respectively, the resulting
statement defines g to have condition C. The next theorems follow
from the corresponding proofs in §2.

THEOREM 3.4. For a regular Tx space S containing no infinite,
open and closed subset, the following statements are equivalent.

(1) S is a first countable, countably compact space.
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(2) There is a function g for S which satisfies condition A.
(3) There is a function g for S which satisfies condition B.
(4) There is a function g for S which satisfies condition C.
(5) S is first countable and there is a function g for S which

satisfies condition wA.
(6) S is first countable and there is a function g for S which

satisfies condition wC.

THEOREM 3.5. For a first countable, regular 2\ space S the
following statements are equivalent:

(1) The set of all limit points of S is countably compact.
(2) Then is a function g for S which satisfies condition A.
(3) There is a function g for S which satisfies condition B.
(4) There is a function g for S which satisfies condition C.
(5) There is a function g for S which satisfies condition wA.
(6) There is a function g for S which satisfies condition wC.

4* Uncountable collections*

4.1. If each definition in §1.2 is viewed as a cardinal function,
a natural question is what is the minimum cardinal /c such that a
space S admits a cardinality tz collection of open covers satisfying
that condition? Also one might ask if a space S admits a cardinality
K collection of open covers satisfying a condition in 1.2 what does
this imply about <S? In this section some partial answers to these
two questions are given.

A topological space S is said to have property D(κ) iff for each
closed discrete subset M of S with cardinality at most tc there is a
collection έ%f of mutually exclusive open sets such that (1) ^f covers
M and each member of 3£p contains only one point of M, and (2)
if N is a set covered by 3ί? such that each member of £ίf contains
only one point of N then N has no limit point. A space which has
property D(ω) is said to have property D (see [13, page 69]). For
an infinite cardinal Λ: a space having the property that each of its
subsets of cardinality tz has a limit point will be called Λ -compact.

THEOREM 4.2. If n is an infinite cardinal, and S is a regular
Tx space which has property D(tc), which satisfies at least one of the
conditions A(κ), B{tc), or C(κ), and which contains no infinite discrete,
open and closed subset of cardinality K, then S is tc-compact.

Proof Suppose the theorem is false. Then there exists a closed,
discrete subset M of limit points of S. Let c?sf be an open cover
of S satisfying (1) and (2) of the definition of property D(fc). Pro-
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ceeding as in the proof of Theorem 3.2 will yield a contradiction.

4.3. Notation and definitions from set theory not stated here
may be found in [12]. The usual axioms for set theory, the Zermelo-
Fraenkel axioms including the axiom of choice, will be denoted by
ZFC, the continuum hypothesis will be denoted by CH, and Martin's
axiom will be denoted by MA. If a is a limit ordinal, the cofinality
of a denoted cf(α), is the least ordinal β such that there is a function
/ from β into a such that sup{/(x): x e β} = a.

The set wω of all functions from ω to ω has two natural orders.
If / and g are functions from ω to ω then / < g iff f{n) < g(n)
for each neω, and f < *g iff there is an m such that f{n) < g(n)
for all n > m. A subset S^ of ωω is called a scale provided for each
/ e ωω there is a g e .9* such that / < *g. A subset £f of ωω is
called a dominating family iff for each / e ωω there is a g e ,ζ^ such
that f < g. If there is a scale with cardinality tc there is a dom-
inating family of cardinality tc. See [8] for results on the existence
of scales. Among the results there, Hechler shows that MA implies
all scales have cardinality c and for each cardinal tc such that ω1 <j
cf (ΛJ) ^ tc ̂  c, it is consistent with ZFC that there exists a scale
whose cardinality is tc.

REMARK 4.4. Whether the converse to Theorem 4.2 is true,
even for metric spaces, depends on the type of set theory assumed.
The case for ^-compactness is of particular interest, since in metric
spaces ^-compact, Lindelof, separable, and second countable are
equivalent and important.

THEOREM 4.5. CH implies that if S is a metric space which
has no uncountable, discrete, closed and open subset, the following
are equivalent.

(1) S is ωrcompact.
(2) S satisfies condition A(ωL).
( 3 ) S satisfies condition B ^ ) .
(4) S satisfies condition

Proof. An argument similar to the one used in the proof of
Theorem 2.2 will establish each of the implications (2) —> (1), (3) —>
(1) and (4) —> (1). That (1) implies each of the statements (2), (3), and
(4) follows from the fact that an ω rcompact metric space is second
countable.

EXAMPLE 4.6. If tc < cf(c), there is a subspace S of the real
line such that if fo' — {Ϋ7ιx\ a e tc} is a collection of open covers of S,
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there is a ΰ e 3f{β) such that if βe/c, there is a member of Z?β

containing more than one point of D. Thus S does not satisfy
condition A(tc) or condition B(/c). A modification of the argument
which follows shows that S does not satisfy condition G(/c) either.
There is a subset S of the set R of real numbers such that both S
and R — S have cardinality c and, moreover, both S and R — S
intersect every uncountable, closed subset of R [4]. Suppose there
is a collection gf = {&a: a etc} of open covers of S contrary to the
claim. For each point teR — S there is a sequence {t0, tlf t2, •} of
points of S which converges to t. The set of terms of this sequence
is discrete and closed in the subspace topology on S. For each a etc,
let Ta be the set of all points t belonging to R — S such that no
member of Sfa contains more that one point of the sequence {tQ, t19

t2, •}. Since cf(c) > tc and \Jaeκ Ta = R - S, for some a etc, Ta has
cardinality c. The closure in R of Ta contains a point p of S. The
point p belongs to some member V of 2^α. There is a set U open
in R such that V = C7n S. Moreover, t/n Tα ^ 0 . If ί e C7n Taf U
contains a tail of the sequence {tOftlftif •••} associated with t, but
then so does V and this is a contradiction.

4.7. In what follows the space Y will denote the set to which
a point x belongs iff x is a nonnegative integer or for nonnegative
integers n and fc, a? = n — l/(fc + 2). The topology on IT is the sub-
space topology Y inherits as a closed subset of the set of real
numbers with the usual topology.

LEMMA 4.8. If S is a metric space and the set of all limit
points of S is not compact, then S includes a closed subspace which
is homeomorphic to the space Y.

LEMMA 4.9. If tc is an infinite cardinal; there is a cardinality
tc collection of open covers of Y which satisfies at least one of con-
ditions A(ιc), B(/c) or C(tc) iff there is a dominating family of car-
dinality tc.

Proof. If & = {&a: a etc} is a collection of open covers of Y,
define fa as follows. For each n, let fa(n) — inf{ΐ: n — l/(i + 2) e
8t(n, Z?a)}. The set {fa: a etc} forms a dominating family provided the
collection of covers {̂ V. a etc} satisfies condition A(Λ ) or B(Λ ) or C(tc).

Conversely, if n and k are nonnegative integers and f eωω, let
U(n, k) = {n} \J{n- l/(i + 2): i ^ k) and gfy = {{n - l/(k + 2)}: n, k e ω] U
{U(n, f(n)): neω). If Sf is a dominating family of cardinality tc,
then {Gf'.feS^} is a cardinality /c collection of open covers satisfying
conditions A(/c), B(/c) and C(Λ:).
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THEOREM 4.10. If tc is an infinite cardinal and S is a o-compact
metric space whose set of limit points is not compact, the following
statements are equivalent.

(1) There is a dominating family of cardinality K.
(2) S satisfies condition A(/c).
( 3 ) S satisfies condition B(/c).
(4) S satisfies condition C(κ).

Proof. Suppose there is a dominating family £f having car-
dinality K. There exists an increasing sequence {Fo, Fu F2, •••} of
compact sets whose union is S. For each pair of nonnegative
integers n and k, let g?t be a cover of Fn by open balls, centered
at a point of Fn9 with radius less than l/2fc+1. For each g e S? define
%?g = {&i{n): neω}. If Be &(S) there is a function feωω such that
if x and y are distinct points of D, at least one of which belongs
to D, then d(x, y) > l/2/(n). It is then easily seen that Sf = {&g: ge^}
satisfies each of conditions A(κ), B(Λ ), and C(tc).

To prove the implications (4) -> (1), (3) -» (1), (2) -> (1), note that
S includes a closed subspace homeomorphic to Y. Each of conditions
A(Λ ), B{K) and C(/c) is hereditary on closed subsets. Lemma 4.9 gives
the desired result.

REMARK 4.11. Example 4.6 shows that Theorem 4.10 does not
hold in general for all metric spaces. The next result improves 4.10
slightly, but the collections of sets are no longer covers.

THEOREM 4.12. // there is a dominating family with cardinality
ωt and S is an ωL-compact metric space which is the union of ωlt

compact sets, there is a collection Sf of each type below.
(1) ^ — {Ŝ V. a e a)}} is a collection of sets of open subsets of

S having the property that if De &(S) and U is an open set includ-
ing D, there is an aeω± such that gfα covers D and st(D, &a) £ U.

(2) 2^ = {ĝ α: a 6 ωt} is a collection of sets of open subsets of
S having the property that if De ϋ^(S), there is an a e cί>1 such
that 2̂ α, covers D and if x and y are distinct points of Ό, then
st(x, 2?a) Π 8t(y, S?a) = 0 .

( 3 ) 27 = {Z/'a- a e <£>i} is a collection of sets of open subsets ofS
having the property that if D and E are pairwise disjoint sets,
DG&(S), and Ee&(S) there is an aeω1 such that ^a covers
DUE and st(Df S?a) f] st(Ef &a) - 0 .

Proof. There is a collection {Fa: a e ωγ) of compact subsets of
S whose union is S. For each a e ω1 the collection {Fβ: βea} is a
countable collection of compact sets and if D e £${$>) there is an
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a e <ϊ>i such that {Fβ: β e a] covers Zλ The construction in 4.10 applied
to this collection yields a cardinality ωx collection of open covers of
U {Fβ: βea}. Then the family of all collections for all βeωι satisfies
each of conditions (1), (2), and (3) and has cardinality ωt.

REMARK 4.13. If there is a dominating family of cardinality ωu

then the irrationals—indeed, every metric space which is the con-
tinuous image of the irrationals—is a^-compact and is the union of
a cardinality ωx collection of compact sets (see [9]). If CH is false
then the space of Example 4.6 is not the union of a cardinality ω1

collection of compact sets.

5* An application for the set of real numbers*

5.1. A scale £f which is order isomorphic to the ordinal a is
called an α-scale. Hausdorff in [7] showed that CH implies there is
an α^-scale. The set of rational real numbers is denoted Q, the set
of irrational real numbers is denoted P, and the set of real numbers
is denoted R. ^ will denote the set jgr(Q) n

THEOREM 5.2. // there is a dominating family of cardinality
ωu and ωx < cf(c), then every subcollection S%? of ̂  with cardinality
c has a subcollection £>£" with cardinality c, and such that U 3ίf'
has no irrational limit point.

Proof. It follows with the aid of Theorem 4.10 there is a col-
lection gf = {5fa: a e ωλ] of open covers of R satisfying condition
B(ωt) and such that for each a, Ga is countable and locally finite.
For a e ωt let g^ = {Vn: n e ft)}. For each n, x%, x*9 x%> are the
points of the set Q Γ) Vn. There is a dominating family S^ with
cardinality ωt. For feS* define D} - \Jneω {x?: t ^ f(n)}. The set
^ = {Dfi aeωx and / e S^7} has cardinality at most α>lβ Each D} is
a closed discrete subset of R. Moreover, ^ has the property that
if F G ^ there is an a e ω1 and an / e <9" such that F £ Da

f. Thus
since 3ίf has cardinality c and cf(c) > ωλ there is an / e S? and an
a e ft>! such that Ώ* includes c members of Sίf. Let 3ίf' be those
members of 3$f which are contained in D}.

THEOREM 5.3. Assuming CH, there is a subcollection Sfc? of ^
having cardinality c and such that if £ίfr is any subcollection of
r'yΐf with cardinality c, then U SZ" has an irrational limit point.

Proof. For each nonnegative integer n, let {a#, a f, a;?, •} denote
the rational numbers in the interval (n, n + 1). CH implies there
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is an αvscale £f. For each / e Sf let Df = {x1?: t ^ f(n) and n e ω}.
Let Sίf = {Df: feS*}. For each subset Sϊf' of 3f having cardi-
nality c, &" = {/ 6 ̂ : D/ e 2Zf'\ is cofinal in ^ . Hence U J T ' is
dense in R.

REFERENCES

1. H. R. Bennett, On quasi-developable spaces, Gen. Top. and Appl., 1 (1971), 253-262.
2. R. H. Bing, Metrization of topological spaces, Canad. J. Math., 3 (1951), 175-186.
3. C. J. R. Borges, On metrizability of topological spaces, Canad. J. Math., 20 (1968),
795-804.
4. F. Bernstein, Zur Theorie der trigonometrischen Reihen, Leipz. Ber, 60 (1908),
325-338.
5. J. W. Green, Moore-closed spaces, completeness and centered bases, Gen. Top. and
Appl., 4 (1974), 297-313.
6. 1 Moore-closed and locally Moore-closed spaces, Set Theoretic Topology, Aca-
demic Press, 1977, 193-217.
7. F. Hausdorff, Untersuchen iίber Ordungstypen, Ber. Sachs. Acad. Wiss., 59 (1907)t

84-159.
8. S. H. Hechler, On the existence of certain cofinal subsets of ωω, Proc. Sympos. Pure
Math., vol. 13, part 2, Amer. Math. Soc, Providence, R. I., 1974, 155-173.
9. 1 On a ubiquitous cardinal, Proc. Amer. Math. Soc, 52 (1975), 348-352.
10. R. E. Hodel, Moore spaces and wά-spaces, Pacific J. Math., 38 (1971), 641-651.
11. , Spaces defined by sequences of open covers which guarantee that certain
sequences have cluster points, Duke Math. J., 39 (1972), 253-263.
12. T. J. Jech, Lectures in Set Theory with Particular Emphasis on the Method of
Forcing, Springer-Verlag Lect. Notes in Math., Vol. 217, 1971.
13. R. L. Moore, Foundations of Point Set Theory, Amer. Math. Soc. Colloq. Pub.,
Vol. 13 rev. ed., 1962.
14. T. R. Pettis, Collections of covers which imply compactness, Ph. D. Thesis, Uni-
versity of Oklahoma.
15. J. H. Roberts, A property related to completeness, Bull. Amer. Math. Soc, 38
(1932), 835-838.
16. D. R. Traylor, Completeness in developable spaces, preprint.
17. H. H. Wicke and J. M. Worrell, Point-countability and compactness, Proc Amer.
Math. Soc, 55, No. 2, (1976), 427-431.
18. S. Willard, General Topology, Addison-Wesley, Reading, Mass., 1970.

Received September 3, 1980 and in revised form December 15, 1980.

TEXAS A & M UNIVERSITY

COLLEGE STATION, TX 77843






